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NeRF (Neural Radiance Field) has revolutionized
Computer Vision & Graphics in past 3 years!

Let’s look at some of the stunning results it produced!



NeRF: Representing Scenes
as Neural Radiance Fields for
View Synthesis
ECCV 2020
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Optimize a NeRF
model

Given a set of sparse views of an 3D reconstruction viewable
object with known camera poses from any angle



NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.
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NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis,
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.







Block-NeRF: Scalable Large
Scene Neural View Synthesis,
CVPR 2022.
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(a) Capture Process (b) Input (c) Nerfie (d) Nerfie Depth

NeRFies: Deformable Neural Radiance Fields, Keunhong Park et al., ICCV 2021.
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Neural 3D Video Synthesis
from Multi-view Video,
Li et al., CVPR 2022




Surface Representation:
Signed Distance Function (SDF)
- implicit representation via level set

° o ¢ Decision
s boundary
e ofimplict

surface
.

e SDF >0
..

SDF(X) = 0, when X is on the surface.
SDF(X) > 0, when X is outside the surface | « - ~——
SDF(X) < 0, when X is inside the surface @& SPF<0

Note: SDF is an implicit representation!
Suitable for neural networks but hard to
import inside existing graphics software.

{c)

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.



Signed Distance Function




Regression of Continuous SDF
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What is Volume Rendering?

* Assume a cloud of tiny colored particles in 3D. Each particle has a RGB
color and a density.

* Take a pixel on image plane, and shoot a ray from the camera center,
through the pixel and into the ‘cloud of tiny colored particles’

* What should be the color for that pixel?

Rayr(t) = o+ td

Camera



Volumetric formulation for NeRF

Max and Chen 2010, Local and Global lllumination in the Volume Rendering Integral

Scene is a cloud of colored fog
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Volumetric formulation for NeRF

Rayr(t) = o0+ td

Camera Consider a ray traveling through the scene, and a point
at distance t along this ray. We look up its color ¢(t),
and its opacity (alpha value) a(t)
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Volumetric formulation for NeRF

P[no hits before t] = T(t)

But ¢ may also be blocked by earlier points along the
ray. T (t): probability that the ray didn't hit any particles
earlier.

T(t) is called “transmittance”
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Volume rendering estimation: integrating color along a
ray Ray

Rendering model for ray r(t) = o + td. /

n
C= Z Ticxici
/ i=1

final rendered \

color along ray weights

colors

3D volume

How much light is blocked earlier along ray: ‘
i—1

Camera

a; =1 —exp(—0;0;)

Slight modification: a is not directly stored in the
volume, but instead is derived from a stored volume
density sigma (o) that is multiplied by the distance
between samples delta ():

Computing the color for
a set of rays through the
pixels of an image yields
a rendered image




Volume rendering estimation: integrating color along a
ray

Rendering model for ray r(t) = o + td.

n Ray
c~ ) Tia;c; S/
final rendered colors tn
color along ray weights

3D volume

How much light is blocked earlier along ray:
1—1
T; = 'H1(1 — a;)
]=

a; =1 —exp(—0;9;)



Volume rendering estimation: integrating color along a
ray

Rendering model for ray r(t) = o + td.

n

c= ) Tqc; /
/ i=1 \ N

final rendered

color along ray weights

colors

How do we store the values of
Cc, o at each point in space?

How much light is blocked earlier along ray: I'

1—1
Ti=[1(1-qa)
j=1

Camera

a; =1 —exp(—0;0;)






Toy problem: storing 2D image data

(x,Y)

Usually we store an image as a
2D grid of RGB color values
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(r,9,b)
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Toy problem: storing 2D image data

(x,7) -»Iil-» (r,g.b)

What if we train a simple fully-connected
network (MLP) to do this instead?
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Naive approach fails!

Ground truth image

Neural network output fit
with gradient descent

28

28



Problem:

. “Standard” coordinate-based MLPs cannot
represent high frequency functions.

Solution:

. Pass input coordinates through a
high frequency mapping first.
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Example mapping: “positional encoding”

>l
sin(v), cos(Vv)

sin(2v), cos(2v)
sin(4v), cos(4v) *III * y
sin(2°1v), cos(2¥ v

30



Positional encoding

Raw encoding of a number x

"Positional encoding” of a number x



Problem solved!

Ground truth image

Neural network output without
high frequency mapping
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Neural network output with
high frequency mapping
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Network Architecture: Overcoming Spectral Bias

[Baatz et al. 2021]

The signals we want are high frequency!
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Network Architecture: Input Encodings

Random Fourier Encodings

A% T Y [Tancik et al. 2020]

. v(v) = [cos(2rBvV), sin(2rBv)]"
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Non-axis aligned sine embeddings
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One-blob Encodings Super Gaussian Encodings
[Muller et al. 2020] [Ramasinghe et al. 2021]
/\ @(m) = [¢)1($),¢2($),...,¢D($)]T,
| | T | T T T ) ) ) o (w~a—ti)2
| e =2

Gaussian embeddings
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NeRF = volume rendering +
coordinate-based network
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Include the ray direction in
the input to the MLP -
allows for capturing and

rendering view-dependent

effects (e.g., shiny surfaces)




Modeling view dependent effects

(c) Radiance Distributions

(2,9, 2,0, ) —>III—>(7~, g,b,0)
o e e ——

Spatial Viewing Output Output
location direction F 9 color density
Fully-connected
neural network
9 layers,
256 channels



What do we learn in NeRF?

(CB,y,Z,O ¢ »III_’ T g7b U)
e e/

Spatial Vlewmg Output Output
location direction color density

Fully-connected
neural network
9 layers,
256 channels



DeepSDF Extensions: NeRF

e Coordinate-based modeling of RGB and Densities
Instead of SDFs

v(x)
60

-+ g
v(x)
o > 256 —> 256 —> 256 —> 256 —> 256 —> 256 —> 256 —> 256 256 —> 128 ---» RGB
+
v(d)
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Mildenhall et al. 2020



Training NeRFs

Ray Distance
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Volume rendering of  Ground truth
MLP colors/densities image
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Importance Sampling

Ray

treat weights as probability 3D volume

distribution for new samples
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NeRF encodes convincing view-dependent
effects using directional dependence




Building 3D models from NeRFs

Apply marching cubes algorithm on NeRF predicted volume density (o)




Summary

* Represent the scene as volumetric colored “fog”

* Store the fog color and density at each point as an MLP
mapping 3D position (X, vy, z) to color c and density o

* Render image by shooting a ray through the fog for each
pixel

* Optimize MLP parameters by rendering to a set of known
viewpoints and comparing to ground truth images



Key limitations of the original NeRF

* Very slow in training and inference
* Requires Ground-Truth poses
* Do not generalize to new scenes



Key limitations of the original NeRF

* Very slow in training and inference
* Requires Ground-Truth poses
* Do not generalize to new scenes



Instant NGP: Superfast training and inference with NeRF using
multi-resolution hash-table
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Hybrid representation

Ray Query Point Feature Grid Interpolation Tiny Neural Network @
Features:

e are also parameters that can be updated while training the NeRF. (slight increase in memory, significantly
faster training & inference)

« areindividual NeRFs trained on a small section of a scene (for large city-size scene)

e are priors obtained from ConvNets, e.g. VGG-features (used for generalization)
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Hybrid representation: It’s all about Data Structures!

; -

Ray Query Point Feature Grid Interpolation Tiny Neural Network @

Why hybrid representation?
- Reduce the size of neural network -> fast inference & rendering.

- Helps in rendering large scale scenes.
- Helps in generalization.
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Uniform Grids

Pros:

Easy to implement

Algorithmically fast access [O(1)]
Established operations like convolutions
Simple topology

Cons:

e Expensive in memory and bandwidth
e Limited by Nyquist

[PIFu (Saito et al.), Neural Volumes (Lombardi et al.), etc]
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Hash Grids

Pros:

e Densely supported

o Disaggregate resolution from
memory cost

e No complex data structures

o Performant memory access if
codebook is small enough

\

Cons:

Codebook o Multiresolution and large codebooks

needed for collision resolution
e Features not spatially local

[Instant-NGP (Muller et al.)]
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1 MB 10 MB 100 MB 1000 MB

Feature-Grid Zone = o e e =
P

(Fast!L =
P

’

)
V4
Quality 7’
7 Non-Neural Zone
7 (Fast!)

Size / Bitrate
(Log-Scale)
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Key limitations of the original NeRF

* Very slow in training and inference
* Requires Ground-Truth poses
* Do not generalize to new scenes

BARF @: Bundle-Adjusting Neural Radiance Fields

Chen-Hsuan Lin©  Wei-ChiuMa®  Antonio Torralba®  Simon Lucey = @
&

@Carnegie Mellon University “Massachusetts Institute of Technology “The University of Adelaide

IEEE International Conference on Computer Vision (ICCV), 2021
oral presentation
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RGB camera network
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\ﬁ encourages representation with high frequency
Q() detrimental to gradient-based registration!!



falx) = fi(x) +c fg , SOLUTION @ :
WA A make it coarse-to-fine!

Resolve large pose misalignment &

(X) gets stuck in suboptimal solutions coarse scene representation

\o\ Gradually activate higher-
®—0

| frequency components in
\\ i ’ positional encoding
O 3
- : Refine granular pose misalignment &
) smooth signals = coherent updates high-fidelity scene representation

V2020



Key limitations of the original NeRF

* Very slow in training and inference
* Requires Ground-Truth poses
* Do not generalize to new scenes



pixelNeRF

Neural Radiance Fields from One or Few Images
CVPR 2021

Alex Yu Vickie Ye Matthew Tancik  Angjoo Kanazawa

UC Berkeley

f Volume Rendering

— (RGBo) /_\‘/\/\

Ray Distance

Input View
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CNN Encoder Target View Rendering Loss



NeRF

PixeINeRF

Input Images




Slide Credits

* “Introduction to Computer Vision”, Noah Snavely, Cornell Tech, Spring
2022

* “Understanding and Extending Neural Radiance Field”, Jon Barron MIT
& Tu Munich Lecture.

e “Neural Fields in Computer Vision”, CVRP 2022 Tutorial.
e Shubham Tulsiani, “Learning for 3D Vision”, Spring 2022, CMU

* Leo Guibas, JJ Park, “Neural Models for 3D geometry”, Spring 2022,
Stanford.



https://neuralfields.cs.brown.edu/cvpr22

