
Lecture 22: 
Neural Radiance Fields (NeRFs)

COMP 590/776: Computer Vision
Instructor: Soumyadip (Roni) Sengupta

TA: Mykhailo (Misha) Shvets

Course Website:
Scan Me!



Stereo Photography

Viewing Devices



Left



Right





6

NeRF (Neural Radiance Field) has revolutionized 
Computer Vision & Graphics in past 3 years!

Let’s look at some of the stunning results it produced!



NeRF: Representing Scenes 
as Neural Radiance Fields for 
View Synthesis
ECCV 2020

7

Ben Mildenhall*

UC Berkeley

Pratul Srinivasan* Matt Tancik* Jon Barron Ravi Ramamoorthi Ren Ng

UC Berkeley UC Berkeley Google Research UC San Diego UC Berkeley



Given a set of sparse views of an 
object with known camera poses

3D reconstruction viewable 
from any angle

Optimize a NeRF
model



9

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, 
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.



10

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis, 
Ben Mildenhall, Pratul Srinivasan, Matthew Tancik*, Jonathan Barron, Ravi Ramamoorthi, Ren Ng, ECCV 2020.



11



12

Block-NeRF: Scalable Large 
Scene Neural View Synthesis, 
CVPR 2022.



13

NeRFies: Deformable Neural Radiance Fields, Keunhong Park et al., ICCV 2021.



14

Neural 3D Video Synthesis 
from Multi-view Video, 
Li et al., CVPR 2022



Surface Representation: 
Signed Distance Function (SDF)

- implicit representation via level set

Deep SDF: Use a neural network (co-ordinate based MLP) to represent the SDF function.

SDF(X) = 0, when X is on the surface.
SDF(X) > 0, when X is outside the surface
SDF(X) < 0, when X is inside the surface

Note: SDF is an implicit representation!
Suitable for neural networks but hard to 
import inside existing graphics software.



16

Signed Distance Function



17

Regression of Continuous SDF

NN



What is Volume Rendering?

• Assume a cloud of tiny colored particles in 3D. Each particle has a RGB 
color and a density.
• Take a pixel on image plane, and shoot a ray from the camera center, 

through the pixel and into the ‘cloud of tiny colored particles’
• What should be the color for that pixel?

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝



19

Volumetric formulation for NeRF

19

Scene is a cloud of colored fog

Max and Chen 2010, Local and Global Illumination in the Volume Rendering Integral



20

Volumetric formulation for NeRF

20

Consider a ray traveling through the scene, and a point 
at distance 𝑡 along this ray. We look up its color 𝐜(𝑡), 
and its opacity (alpha value) α(𝑡)

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝

𝑡



21

Volumetric formulation for NeRF

21

But 𝑡 may also be blocked by earlier points along the 
ray. 𝑇(𝑡): probability that the ray didn’t hit any particles 
earlier.
𝑇(𝑡) is called “transmittance”

𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

3D volume

𝑡%

Camera

Ray

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

𝑡!

𝑡" 𝑇#

𝐜! ,𝛼#
𝑡#final rendered 

color along ray

Computing the color for 
a set of rays through the 
pixels of an image yields 
a rendered image

Slight modification: 𝛼 is not directly stored in the 
volume, but instead is derived from a stored volume 
density sigma (σ) that is multiplied by the distance 
between samples delta (δ):

𝛼! = 1 − exp(−𝜎!𝛿!)



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

final rendered 
color along ray

𝛼! = 1 − exp(−𝜎!𝛿!)

3D volume

𝑡%

Camera

Ray

𝑡!

𝑡" 𝑇#

𝐜! , 𝜎#
𝑡#

𝛿#

Numeric
al e

stim
ate

 of 

integ
ral 

of ac
cumulate

d 

color a
long ra

y



Volume rendering estimation: integrating color along a 
ray

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

colors
weights

𝐜 ≈ ∑
!"#

$
𝑇!𝛼!𝐜!

𝑇! = ∏
%"#

!&#
(1 − 𝛼%)

final rendered 
color along ray

𝛼! = 1 − exp(−𝜎!𝛿!)

3D volume

𝑡%

Camera

Ray

𝑡!

𝑡" 𝑇#

𝐜! , 𝜎#
𝑡#

How do we store the values of 
𝐜, 𝜎 at each point in space?





26

Toy problem: storing 2D image data

26

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

Usually we store an image as a 
2D grid of RGB color values



27

Toy problem: storing 2D image data

27

(𝑥, 𝑦) (𝑟, 𝑔, 𝑏)

What if we train a simple fully-connected 
network (MLP) to do this instead?

𝐹'



28

Naive approach fails!

28

Ground truth image Neural network output fit 
with gradient descent



29

Problem:
● “Standard” coordinate-based MLPs cannot 

represent high frequency functions.

29

Solution:

● Pass input coordinates through a 
high frequency mapping first.



30

Example mapping: “positional encoding”



Positional encoding

Raw encoding of a number x “Positional encoding” of a number x



32

Problem solved!

32

Ground truth image Neural network output without
high frequency mapping

Neural network output with
high frequency mapping



33

Network Architecture: Overcoming Spectral Bias

[Baatz et al. 2021]

The signals we want are high frequency!



34

Network Architecture: Input Encodings

Random Fourier Encodings

Non-axis aligned sine embeddings

[Tancik et al. 2020]

Super Gaussian Encodings

[Ramasinghe et al. 2021]

Gaussian embeddings

One-blob Encodings

[Müller et al. 2020]



NeRF = volume rendering + 
coordinate-based network

3
5



How do we store the values 
of 𝐜, 𝜎 at each point in space

36

𝑡%

𝐜, 𝜎
MLP

𝑡%
Po

sit
io

na
l 

en
co

di
ng



How do we store the values of 𝐜, 𝜎
at each point in space

37

𝑡%𝑡%

𝐜, 𝜎
MLP

Po
sit

io
na

l 
en

co
di

ng



How do we store the values of 𝐜, 𝜎
at each point in space

38

𝑡+

𝑡%

𝐜,, 𝜎,
MLP

Po
sit

io
na

l 
en

co
di

ng

𝑡%



How do we store the values of 𝐜, 𝜎
at each point in space

39

𝑡+

𝑡%

𝐜&, 𝜎&
MLP

Po
sit

io
na

l 
en

co
di

ng

𝑡%



How do we store the values of 𝐜, 𝜎
at each point in space

40

𝑡+

𝑡%

𝐜-, 𝜎-
MLP

Po
sit

io
na

l 
en

co
di

ng

𝑡%



How do we store the values of 𝐜, 𝜎
at each point in space

41

𝑡+

𝑡%

𝐜', 𝜎'
MLP

Po
sit

io
na

l 
en

co
di

ng

𝑡%



How do we store the values of 𝐜, 𝜎
at each point in space

42

𝑡+

𝑡%

𝐜., 𝜎.
MLP

Po
sit

io
na

l 
en

co
di

ng

𝑡%



How do we store the values of 𝐜, 𝜎
at each point in space

43

𝑡+

𝑡%

𝐜/ , 𝜎/
MLP

Po
sit

io
na

l 
en

co
di

ng

𝑡%



Extension: view-dependent field

44

𝑡%𝑡%

3D point and direction

𝐜, 𝜎
MLP

Po
sit

io
na

l 
en

co
di

ng

Include the ray direction in 
the input to the MLP à
allows for capturing and 

rendering view-dependent 
effects (e.g., shiny surfaces)



Modeling view dependent effects



What do we learn in NeRF?



• Coordinate-based modeling of RGB and Densities
Instead of SDFs

47

DeepSDF Extensions: NeRF

Mildenhall et al. 2020



Putting it all together

Training NeRFs



∇∥ − ∥!
Train network using gradient 

descent 
to reproduce all input views of 

scene 

49

Volume rendering of 
MLP colors/densities

Ground truth
image





Importance Sampling



52



NeRF encodes convincing 
view-dependent effects using 

directional dependence

53



NeRF encodes convincing view-dependent 
effects using directional dependence

54



NeRF encodes detailed scene 
geometry

55

Building 3D models from NeRFs

Apply marching cubes algorithm on NeRF predicted volume density (𝜎)



Summary

• Represent the scene as volumetric colored “fog”
• Store the fog color and density at each point as an MLP 

mapping 3D position (x, y, z) to color c and density σ
• Render image by shooting a ray through the fog for each 

pixel
• Optimize MLP parameters by rendering to a set of known 

viewpoints and comparing to ground truth images



Key limitations of the original NeRF

•Very slow in training and inference
•Requires Ground-Truth poses
•Do not generalize to new scenes



Key limitations of the original NeRF

•Very slow in training and inference
•Requires Ground-Truth poses
•Do not generalize to new scenes



Instant NGP: Superfast training and inference with NeRF using 
multi-resolution hash-table



60



61

Hybrid representation

Features:

• are also parameters that can be updated while training the NeRF. (slight increase in memory, significantly 
faster training & inference)

• are individual NeRFs trained on a small section of a scene (for large city-size scene)

• are priors obtained from ConvNets, e.g. VGG-features (used for generalization)



62

Hybrid representation: It’s all about Data Structures!

Why hybrid representation?

- Reduce the size of neural network -> fast inference & rendering.
- Helps in rendering large scale scenes.
- Helps in generalization.



63

Uniform Grids



64

Hash Grids



65





Key limitations of the original NeRF

•Very slow in training and inference
•Requires Ground-Truth poses
•Do not generalize to new scenes







Key limitations of the original NeRF

•Very slow in training and inference
•Requires Ground-Truth poses
•Do not generalize to new scenes





Input Images PixelNeRF NeRF



Slide Credits

• ”Introduction to Computer Vision”, Noah Snavely, Cornell Tech, Spring 
2022
• “Understanding and Extending Neural Radiance Field”, Jon Barron MIT 

& Tu Munich Lecture.
• “Neural Fields in Computer Vision”, CVRP 2022 Tutorial.
• Shubham Tulsiani, “Learning for 3D Vision”, Spring 2022, CMU
• Leo Guibas, JJ Park, “Neural Models for 3D geometry”, Spring 2022, 

Stanford.

https://neuralfields.cs.brown.edu/cvpr22

