Track II: Implementation and Analysis

This project track is for students who want hands-on experience with existing 3D computer vision tools. Students will work on two separate projects, each focusing on applying 3D computer vision tools to specific applications.

Project Requirements:

• Project Selection:

Students will choose one application for each project:

- Project I Applications:
 - Monocular Depth Estimation
 - Pairwise Matching
 - NeRF vs. Gaussian Splatting
 - Text-to-3D

• **Project II Applications:**

- Structure from Motion
- SLAM
- Inverse Rendering
- Dynamic/Physics-Based Applications

• Subtopic Selection:

For each application, students must select a **specific subtopic** (e.g., for Inverse Rendering: Intrinsic Decomposition, Material Estimation, or Lighting Estimation).

• Model Selection and Evaluation:

- Identify three different models addressing the chosen subtopic.
- Ensure the models have publicly available code and pre-trained checkpoints.
- Use pre-trained models on a suitable dataset (either found or collected) without additional training.
- Identify three instances of success (where the model performed well) and three instances of failure (where it did not meet expectations).
- Compare the three different models to determine their strengths and weaknesses.

• Report Writing:

- For each project, students will document their work in a **4-page report** (using the <u>CVPR format</u>). This includes:
 - Detailed model explanation.
 - Analysis of results.
 - Key insights and findings.

Grading Breakdown:

1. Project Pitch (5 points)

Present your Project selection, Subtopic and approach.

2. Project I (20 points)

- **Presentation + Q&A (10 points):** Explain your results and answer questions.
- Progress (10 points):
 - Visual Results (6 points): 2 points per model.
 - Comparison (4 points): Analyze and compare the models.

3. Project II (20 points)

- **Presentation + Q&A (10 points):** Explain your results and answer questions.
- Progress (10 points):
 - Visual Results (6 points): 2 points per model.
 - Comparison (4 points): Analyze and compare the models.

4. Final Reports (15 points)

• Project I Report (7.5 points):

- Introduction (1 point).
- Explanation of 3 models (2 points).
- Experiments (3 points).
- Conclusion (0.5 points).
- Project II Report (7.5 points):
 - Same structure as Project I.

By the end, students will have completed two projects, presented their results, and submitted detailed reports totaling **8 pages (4 pages per project)** in the CVPR format.