
COMP 537: Cryptography Fall 2025

Problem Set 4

Instructions: You must typeset your solution in LaTeX using the provided template. Please submit your
problem set via Gradescope. Include your name and the names of any collaborators at the top of your
submission.

Problem 1: Key-Homomorphic PRFs [15 points]. In class we saw the PRF F (k, x) = H (x)k and were told
that it has many useful properties. In this problem, we will explore one of these. Let F : K×X →Y be
a PRF defined over groups (K,+) and (Y , ·), where + and · are the respective group operations in those
groups. We say F is key-homomorphic if it holds that

F (k1 +k2, x) = F (k1, x) ·F (k2, x).

(a) Demonstrate with a counterexample that not every PRF is key-homomorphic.

(b) Please prove that the PRF F (k, x) = H(x)k defined with a random oracle H : X → G (where G is a
group of prime order p) is a key-homomorphic PRF. This can be proved directly in at most a few lines.

(c) Key rotation is a common problem encountered in cloud storage: how to change the key under which
data is encrypted without sending the keys to the storage provider? A naive solution is to download
the encrypted data, decrypt it, re-encrypt it under a new key, and re-upload the new ciphertext. We
will now see how this process can be made more efficient with a key-homomorphic PRF.

Suppose you have a ciphertext c made up of blocks c1, ...,cN that corresponds to a message m =
(m1, ...,mN ) encrypted under a key k1 using a key-homomorphic PRF F in counter mode, i.e., ci =
mi ·F (k1, i ). Now you want to rotate to a key k2. It turns out you can send the storage provider a single
element kupdate ∈K which it can then use to generate c ′, an encryption of m under k2. Please tell us
how you can compute kupdate and how the storage provider can use kupdate and c to compute c ′.

Problem 2: Multi-Commitments [10 points]. Let G be a group of prime order q in which the discrete
logarithm problem is hard. Let g and h be generators of G. As we saw in class, the Pedersen commitment
scheme commits to a message m ∈Zq using randomness r ∈Zq as Commit(m;r ) := g mhr ∈G. Moreover,
we saw that Pedersen commitments are additively homomorphic, meaning that given commitments to
m1 and m2, one can compute a commitment to m1 +m2. The “public parameters” associated with the
Pedersen commitment scheme are the description of the prime-order group G and the group elements g
and h.

(a) Use G to construct an additively homomorphic commitment scheme Commitn(m1, . . . ,mn ;r ) that
commits to a length-n vector of messages (m1, . . . ,mn) ∈Zn

q using randomness r ∈Zq . The output of
the commitment should be short – only a single group element. You should specify both the public
parameters of your scheme (which may be different from that of the basic Pedersen commitment
scheme) as well as the description of the Commitn function.

You do not need to prove (or even argue for) the security of your scheme, but the resulting scheme
should be perfectly hiding and computationally binding assuming hardness of discrete log in G.



(b) Show that if you are given a hash function H : Zq → G (modeled as a random oracle), the public
parameters for your construction from Part (a) only needs to consist of the description of the group G
and the description of H . Argue informally why your modification to the construction is secure. You
do not need to provide a formal proof. This problem shows that getting rid of public parameters is
another reason why random oracles are useful in practice!

Problem 3: ZK Conceptual Questions [12 points]. For each of the following statements, say whether it
is TRUE or FALSE. Write at most one sentence to justify your answer.

(a) Let 〈P,V 〉 be a zero-knowledge interactive protocol for some language. The protocol has perfect
completeness and soundness error 1/3.

i A malicious verifier interacting with an honest prover will always accept a true statement.

ii An honest verifier interacting with a malicious prover will “learn nothing” besides the statements
validity.

(b) Consider a modified version of Schnorr’s signature in which the signing nonce r is computed as
r ← H(m), where H : {0,1}∗ →Zq is a hash function (modeled as a random oracle), m is the message
to be signed, and q is the order of the group used for the signature scheme. This deterministic version
of Schnorr’s signature scheme is secure.

(c) The security of the Fiat-Shamir transform implies that a sigma protocol with a random challenge and
soundness 1/2 can be directly converted to a NIZK by replacing the challenge message with a hash,
so long as the hash function is modeled as a random oracle.

Problem 4: Sigma Protocol for Circuit Satisfiability [15 points]. Let circuit-SAT be the language of
satisfiable Boolean circuits1 :

circuit-SAT= {
C : {0,1}n → {0,1} | n ∈N, ∃(x1, . . . , xn) ∈ {0,1}n such that C (x1, . . . , xn) = 1

}
.

Let Commit : {0,1}×R→ C be a perfectly-binding and computationally-hiding commitment scheme with
message space {0,1}, randomness space R, and commitment space C. Suppose that there exist Sigma
protocols 〈PXOR,VXOR〉 and 〈PAND,VAND〉 for languages LXOR and LAND, respectively, where:

LXOR =
{

(c1,c2,c3) ∈ C3
∣∣∣∣ ∃(m1,m2,m3) ∈ {0,1}3, (r1,r2,r3) ∈R3 such that

∀i ∈ {1,2,3} ci =Commit(mi ;ri ) and m1 ⊕m2 = m3

}
LAND =

{
(c1,c2,c3) ∈ C3

∣∣∣∣ ∃(m1,m2,m3) ∈ {0,1}3, (r1,r2,r3) ∈R3 such that
∀i ∈ {1,2,3} ci =Commit(mi ;ri ) and m1 ∧m2 = m3

}
.

Give a Sigma protocol for circuit-SAT. In addition to describing a protocol, you will also need to argue
informally that your protocol satisfies completeness, soundness,and honest-verifier zero-knowledge.
Please state which assumptions about the underlying tools are needed to prove each property.

1A boolean circuit is modeled as a directed acyclic graph where each node represents either a gate or an input to the circuit (if it
has in-degree zero). You can assume without loss of generality that a Boolean circuit consists of only XOR and AND gates.



Optional Feedback [5 points]. Please answer the following questions to help design future problem sets.
You are not required to answer these questions (the points are free), and if you would prefer to answer
anonymously, please use the anonymous feedback form. However, we do encourage you to provide
feedback on how to improve the course experience.

(a) Roughly how long did you spend on this problem set?

(b) What was your favorite problem on this problem set?

(c) What was your least favorite problem on this problem set?

(d) Any other feedback for this problem set? Was it too easy/difficult?

(e) Any other feedback on the course so far?


	Problem 1: Key-Homomorphic PRFs [15 points].
	Problem 2: Multi-Commitments [10 points].
	Problem 3: ZK Conceptual Questions [12 points].
	Problem 4: Sigma Protocol for Circuit Satisfiability [15 points].
	Optional Feedback [5 points].

