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ABSTRACT
While the end-to-end encryption properties of popular messag-

ing schemes such as Whatsapp, Messenger, and Signal guarantee

privacy for users, these properties also make it very difficult for

messaging platforms to enforce any sort of content moderation.

This can lead to the unchecked spread of malicious content such as

misinformation on such platforms. In 2019, Tyagi et al. developed

message traceback, which addresses this issue by allowing a messag-

ing platform to recover the path of a forwarded message after a user

reports it for malicious content. This paper presents an alternative

to message traceback that offers more privacy to users and requires

less platform-side storage. We term this approach source-tracking
for encrypted messaging schemes. Source-tracking enables mes-

saging platforms to provide the privacy guarantees expected from

standard end-to-end encryption, but also helps hold the sources of

malicious messages accountable: if malicious content is reported

by a user, the source can be identified. We formalize security goals

for source-tracking schemes and design and implement two source-

tracking schemes with different security and performance tradeoffs.

1 INTRODUCTION
End-to-end encrypted messaging apps like WhatsApp and Signal

provide users with strong privacy guarantees and deliver billions of

messages a day [29]. Concerns about abuse and misinformation on

such platforms have led to work on technical solutions for verifiable

reporting of messages with no impact on the privacy guarantees

for messages that are not reported [12, 14, 32, 33]. Techniques

for enabling some degree of moderation with minimal impact on

privacy are all the more important as Brazil and India consider laws

that would require messaging providers to be able to identify the

sources of misinformation [26–28, 30]. In the absence of strong

privacy-preserving tools to minimize the impact of such policies,

these requirements would cripple the hard-won privacy victories

of end-to-end encrypted messaging.

The majority of work on verifiably reporting abusive messages

has been in the context of message franking [12, 14, 32], which

focuses on reporting the immediate sender of a message and not on

identifying the sources of viral misinformation campaigns. While

message franking techniques are important for reporting abusive

messages, they do not help find the origin of a message that may be

forwardedmany times before someone reports it. Although it would

be possible to find the source of a message by combining a message

franking scheme with extensive metadata collection and retention,

e.g., a graph of all message sources and destinations with forwarded

messages labeled, this approach requires a great deal of storage

and forces the platform to collect and keep lots of metadata, which

may compromise user privacy in its own right. Solutions relying

on having users sign their messages are also unsatisfactory, as this

damages deniability and may reveal the identity of the original

sender of a message even before it is reported.

To our knowledge, the only work to consider tracing the source

of a reported message is the traceback scheme of Tyagi et al. [33].

Traceback boasts extremely low client-side costs and reveals the set

of users who have received a reported message without revealing

any additional information about a message’s source before it is

reported. Unfortunately, revealing all the recipients of a message

may be leaking too much if the goal of reporting is only to find

the source of the message. Moreover, tracing a message back to its

source takes time linear in the length of the forwarding chain and

requires a 32 Byte token to be stored by the server for each message

sent, regardless of whether that message is ever reported. The token

must be kept for as long as the message can be traced. For a high-

volume messaging platform like WhatsApp, this translates into

terabytes of additional long-term storage each day. Thus traceback

removes the need for a platform to collect message metadata, but it

does not reduce the large quantity of data the platform must store.

This paper introduces the notion of source-tracking for end-to-

end encrypted messaging schemes. Like traceback schemes, source-

tracking schemes reveal the source of a reported message, but they

do not reveal the identities of users who received amessage between

when it was first sent and when it was reported. Moreover, our

schemes do not require the server to store any data for eachmessage

sent, and the time to trace the source of a reported message does

not depend on the length of the forwarding chain.

We begin by formalizing the notion of a source-tracking scheme

and providing security definitions that capture and exceed the

privacy requirements of prior message franking and traceback

schemes. We consider confidentiality of an unreported message’s

origin from both the platform and other users who may be for-

warded the message. In particular, we offer two notions of con-

fidentiality, tree-linkable and tree-unlinkable confidentiality. In a

tree-linkable scheme, the recipient of two messages with identical

plaintexts can tell if the two messages have the same origin. A

tree-unlinkable scheme hides even this information.

Our definitions also require accountability, unforgeability, and

deniability. These properties require that every successfully deliv-

ered message must be able to be traced to its source, that nobody

can be framed for originating a message, and that only the platform

can verify the origin of a reported message.

Next, we provide two constructions of secure source-tracking

schemes, onewith tree-linkable security and onewith tree-unlinkable

security. We implement and evaluate our schemes, comparing per-

formance both to the traceback scheme of Tyagi et al. [33] and

an implementation of end-to-end encryption based on the double

ratchet protocol [25, 39] without any additional functionality for

finding the source of a reported message.



In exchange for its slightly weaker security guarantee, the tree-

linkable scheme offers exceptional performance, introducing very

reasonable overheads compared to an end-to-end encrypted mes-

saging service with no source-tracking capability. For example, it

takes under 60𝜇s to find the source of a reported message. The

additional server-side overhead of using our tree-linkable scheme

is only 20𝜇s of cryptographic operations per message delivered.

The scheme only relies on standard cryptographic primitives such

as signatures and commitments, re-using the security of the under-

lying end-to-end encrypted messaging service to provide additional

security properties at low cost.

Our tree-unlinkable construction, while slower than our first

construction, requires only milliseconds to send and receive mes-

sages. At a high level, we unlinkably hide the source of a message

using a heavily modified version of the algebraic MAC and anony-

mous credential techniques used in the new Signal groupmessaging

system [4, 5].

Our implementation and raw evaluation data are free and open

source and can be accessed at https://github.com/cpeale/srctracking.

In summary, this paper makes the following contributions:

• Introduces the notion of source-tracking for end-to-end encrypted
messaging systems and defines strong security requirements for

source-tracking schemes.

• Constructs a tree-linkable source-tracking scheme with excep-

tional performance that can easily be deployed on top of existing

end-to-end encrypted messaging services.

• Constructs a tree-unlinkable source-tracking scheme which re-

quires milliseconds to process and deliver messages.

• Implements and evaluates both schemes, including comparisons

to both prior work and a baseline messaging implementation

without source-tracking functionality.

2 DESIGN GOALS
A source-tracking scheme builds on top of an end-to-end encrypted

messaging system and allows a user who receives an abusive mes-

sage to report that message to the messaging platform. This is

achieved by augmenting the usual protocol for sending and receiv-

ing messages as well as by adding a new Report feature. Given
the contents of a report, the messaging platform should be able to

uncover the true author of the message, regardless of how many

times the message has been forwarded. Source-tracking schemes

do not identify objectionable content on their own (as in, e.g., [16]),

they only deal with the process of identifying the source of content

that a user has reported.

Security goals. Informally, we require the following security prop-

erties from a secure source-tracking scheme. We formalize these

properties in Section 3.

• Confidentiality: Neither the platform nor any user not involved

in sending or receiving a given message should learn anything

about that message’s forwarding history or contents. The scheme

should also preserve unlinkability: a user who receives two dif-

ferent forwarded messages should not be able to tell if they were

authored by the same user. After a report, the messaging plat-

form should not learn anything new about the reportedmessage’s

forwarding history other than the identity of the source.

• Accountability: No malicious user should be able to send a

message which cannot later be traced back to them.

• Unforgeability: No malicious user should be able to frame an-

other user for sending a message it did not send.

• Deniability: Only the platform can verify a report, so if the

contents of a report are leaked, it would be impossible for a third

party to verify that the report implicated a particular user.

Tree-linkable andunlinkable confidentiality.We consider two

levels of confidentiality: tree-linkable and tree-unlinkable. When a

message is authored and then forwarded, a forwarding tree is cre-
ated consisting of all the users who have received and forwarded

that message, rooted at the author of the message. In the strictest

form of user confidentiality, a recipient shouldn’t be able to tell

which forwarding tree a message came from. If a user receives a

forward consisting of plaintext𝑚, and then later receives another

forward of the same plaintext𝑚, the user shouldn’t be able to tell

whether the two messages are from the same forwarding tree or

from different trees whose messages happen to have the same plain-

text. If a scheme satisfies this form of confidentiality, we will say it

has tree-unlinkable confidentiality.
In some situations, this notion of confidentiality may be unnec-

essarily strong, as whether or not two identical messages are on

the same forwarding tree may not be sensitive information. Addi-

tionally, depending on the exact implementation of a messaging

scheme, other metadata associated with the message (such as a

timestamp) would mean that no two forwarding trees could ever

correspond to the same message plaintext. If a scheme is such that

a recipient can determine whether two forwards came from the

same tree, but can still learn nothing about the tree structure or

other messaging activity, we say that it satisfies tree-linkable user
confidentiality.

It is worth noting, however, that there are circumstances where

a stronger tree-unlinkable security guarantee may be preferable.

For example, a malicious insider working for a messaging platform

can send the same message to multiple recipients. Later, if one of

those recipients sends the message to someone who reports it, the

sender will know, from tree-linkability, which person’s version of

the message was reported. Although we believe tree-linkability

suffices for most scenarios, we design and evaluate constructions

of both tree-linkable and tree-unlinkable schemes.

Accommodating report metadata. In order to properly handle

a report, a messaging platform may wish to receive additional

information about a reported message beyond the identity of its

original author, e.g., an exact or approximate timestamp of when

the message was written. Our schemes support this functionality by

allowing messaging platforms to optionally add report metadata to

messages such that the metadata associated with a message when

it is originally authored will be revealed if and only if that message

is reported. We note that this feature is intended for including

timestamps or other associated data, and, like any cryptosystem,

it is possible for it to be abused in ways that damage security.

For example, the platform could damage deniability by including a

unique id in each message’s metadata and keeping a public database

of hashes of ids used in authentic messages.

Limitations. Any system aimed at finding the source of a for-

warded message faces certain non-technical limitations. Both our

https://github.com/cpeale/srctracking


scheme and prior work on traceback [33] track the source of mes-

sages that are forwarded using a messaging app’s “forward” feature.

However, a user could also re-type a message instead of forwarding

it using the app, at which point the message appears to be a fresh

message which happens to have the same content. Thus the actual

guarantee of a scheme that finds the source of a message is that it

finds the first person to send the message that was later forwarded,

not its real-world author.

As discussed in [15], a more significant issue raised by schemes

that find the source of a message is that they allow a user to reveal

information about someone other than their immediate conversa-

tion partner. This is a fundamental component of the functionality,

but it should be weighed carefully whether the potential modera-

tion benefit of such a feature outweighs the privacy risk. Part of

our goal in designing source-tracking is to minimize the risk posed

compared to traceback. For example, consider the case where a

journalist reports a piece of misinformation to a platform. A trace-

back scheme would, in the process of revealing the source of the

misinformation, also reveal the identity of the user who forwarded

it to the journalist. Source-tracking does not reveal the path taken

by a message, so only the original sender of the message would be

revealed.

Finally, both our work and traceback rely on the platform being

aware of the identity of the parties sending and receiving a mes-

sage at the time the message is sent. This information is currently

required by most end-to-end encrypted messaging systems in or-

der to deliver messages, so our schemes do not impose additional

metadata-collection or retention requirements on these systems.

However, it remains an important problem for future work to de-

velop source-tracking schemes that do not even require thisminimal

metadata at the time of message delivery.

3 FORMALIZING SOURCE-TRACKING
We now formalize the syntax and security definitions for a source-

tracking scheme. We begin by describing some notation we will

use throughout the rest of the paper.

Let 𝑥 ← 𝐹 (𝑦) denote the assignment of the output of 𝐹 (𝑦) to
𝑥 , and let 𝑥 ←R 𝑆 denote assignment to 𝑥 of an element sampled

uniformly random from set 𝑆 . We use A𝐻 to denote that A has

oracle access to some function 𝐻 . A function negl(𝑥) is negligible if
for all 𝑐 > 0, there is a 𝑥0 such that for all 𝑥 > 𝑥0, negl(𝑥) < 1

𝑥𝑐 . We

omit 𝑥 if the parameter is implicit. Throughout the paper we also

omit an implicit security parameter 𝜆. Finally, we use ⊥ to indicate

an empty message or special character indicating failure.

Interactive protocols. We define an interaction between two par-

ties using the notation

(𝑜𝑢𝑡1, 𝑜𝑢𝑡2) ← ⟨𝑃1 (secret params), 𝑃2 (secret params) ⟩ (public params)

Where the first party acts according to the protocol defined by 𝑃1
and has access to the secret parameters of 𝑃1 as well as all public

parameters, and the second party acts according to 𝑃2 with access

to the public parameters as well as its analogous secrets.

Tables and sets. Our security definitions use tables to keep track

of important information about adversary queries. Tables are de-

noted with a capital 𝑇 and a subscript name, and store key/value

pairs. To add a key/value pair to a table, we use the notation

𝑇 [𝑘𝑒𝑦] ← 𝑣𝑎𝑙𝑢𝑒 . To retrieve a value corresponding to a partic-

ular key from a table, we use the notation 𝑣𝑎𝑙𝑢𝑒 → 𝑇 [𝑘𝑒𝑦]. We

use standard set notation to check if a key is included in a table

(𝑘𝑒𝑦 ∈ 𝑇 ). Sets are similar to tables, but only store a set of values.

We add values 𝑣1, ..., 𝑣𝑘 to a set S with S.𝑎𝑑𝑑 (𝑣1, ..., 𝑣𝑘 ).

3.1 Source-Tracking Syntax and Correctness
A source-tracking scheme 𝑆𝑇 consists of six algorithms: KGen,
NewUser, AuthMsg, FwdMsg, RecMsg, and Report, where the lat-
ter five are interactive protocols between a user and the messag-

ing platform. Source-tracking involves users 𝑈1, ...,𝑈𝑛 , each repre-

sented by a unique identifier, e.g., a username or long-term public

key taken from some setU, and a platform 𝑃 .

In contrast with prior work, which operates independently of the

underlying end-to-end encrypted messaging scheme [33], we allow

source-tracking schemes to make use of the underlying messaging

scheme as a black box. We see this as striking a happy medium

where source-tracking can take advantage of the security benefits

already provided by the messaging scheme while still being easy to

deploy on top of existing applications. Although modern end-to-

end encrypted messaging protocols provide many useful security

properties [1, 7, 25], our constructions will only rely on them to

provide authenticated encryption and protect against replay attacks.

To abstract away the details of the underlying messaging scheme,

we will assume the existence of a messaging oracle

E = (send(𝑚,𝑈𝑠 ,𝑈𝑟 ), receive(𝑐𝑡,𝑈𝑠 ,𝑈𝑟 ))
that sends and authenticates messages between users using the un-

derlying end-to-end encryption scheme the source-tracking scheme

is associated with.

The syntax of a source-tracking scheme is defined as follows:

• KGen(𝑝𝑝) → (pk, sk): The platform runs this algorithm at sys-

tem setup. It takes in public parameters 𝑝𝑝 and outputs a platform

key pair (pk,sk).
• NewUser is an interactive protocol between a new user and the

messaging platform to register that user in the system. It is rep-

resented by the pair of algorithms𝑈𝑛𝑒𝑤 , 𝑃𝑛𝑒𝑤 :

(𝑎𝑑,U ′) ← ⟨𝑈𝑛𝑒𝑤 , 𝑃𝑛𝑒𝑤 (sk,U)⟩(𝑈𝑛, pk)
WhereU is the set of currently registered users, (pk, sk) is the
platform’s key pair, and𝑈𝑛 is the user information or id associated

with the new user. We assume that the user runs a separate

protocol to register with the underlying messaging scheme as

needed. Optionally,𝑈𝑛𝑒𝑤 can add additional private inputs, e.g.,

a secret used to prove its identity.

On success, the protocol should return some authoring data 𝑎𝑑

to the user that can be used to send messages and the updated

membership setU ′ to the platform.

While we define this function interactively in our security defi-

nitions for maximum flexibility, a non-interactive function run

by the platform suffices for both of our schemes. For ease of

notation in the first scheme, which uses no authoring data, we

will denote the non-interactive version of this protocol as the

function 𝑛𝑒𝑤𝑈𝑠𝑒𝑟 (𝑈𝑖 , sk), run by the platform, which returns

only the new set of usersU or ⊥ on failure.

• AuthMsg is an interactive protocol between a user authoring a

message and the platform, represented by the pair of interactive



algorithms

((𝑎𝑑 ′, 𝑒), (𝑝𝑑, 𝑒)) ← ⟨𝑈𝑎𝑢𝑡ℎ (𝑚𝑠𝑔), 𝑃𝑠𝑒𝑛𝑑 (sk,md)⟩(𝑈𝑠 ,𝑈𝑟 , pk)
where𝑚𝑠𝑔 is a tuple (𝑚, ad),𝑚 is the plaintext being sent, and

𝑎𝑑 (“authoring data”) is any associated data required to send a

message.

The platform has secret inputs sk, its secret key, and report meta-

data md that it wants to recover if the message is later reported.

Both algorithms receive the identities of the sender and receiver

as well as the platform public key. Upon successful completion of

the protocol, the sender gets updated authoring data 𝑎𝑑 ′ that it
can store for authoring futuremessages, and the platform receives

platform data 𝑝𝑑 to be used when the message is delivered to its

recipient. Both parties receive the message identifier 𝑒 for the

message sent using the underlying messaging platform E.
• FwdMsg is an interactive protocol between a user forwarding a

message and the platform, represented by interactive algorithms

((fd ′, 𝑒), (𝑝𝑑, 𝑒)) ← ⟨𝑈𝑓 𝑤𝑑 (𝑚𝑠𝑔), 𝑃𝑠𝑒𝑛𝑑 (sk,md)⟩(𝑈𝑠 ,𝑈𝑟 , pk)
where each algorithm’s inputs and outputs are identical toAuthMsg
except that𝑚𝑠𝑔 = (𝑚, fd), where fd (“forwarding data”) repre-

sents associated data required to forward a message, and the

user’s output is updated forwarding data fd ′ to be used if the

user wishes to forward the same message again.

We note that because the platform shouldn’t be able to distinguish

between an authored and a forwarded message, the platform pro-

tocol 𝑃𝑠𝑒𝑛𝑑 is identical to the platform’s protocol for an authored

message. The report metadata (md) is only included if the mes-

sage is new, so in this case it is passed to the forwarding function

but remains unused.

• RecMsg is an interactive protocol between a user receiving a

message and the platform, represented by the pair of interactive

algorithms

((𝑚, fd),⊥) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑)⟩(𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
The platform has access to its secret key sk and the transac-

tion data 𝑝𝑑 generated when the message was sent (from either

AuthMsg or FwdMsg), and both user and platform have access to

the sending and receiving users’ identities, the message identifier

for the message sent by the underlying message scheme, and the

platform’s public key. Upon successful completion, the receiving

user gets the message plaintext𝑚 and forwarding data fd that it

can use to forward or report the message in the future.

• Report: This is an interactive protocol between a user who would

like to report a received message and the platform, represented

by the pair of interactive algorithms

(fd ′, (𝑈 ,md)) ← ⟨𝑈𝑟𝑒𝑝 (fd), 𝑃𝑟𝑒𝑝 (sk)⟩(𝑚, pk)
where the user knows the forwarding data fd for the message it

would like to report, the platform knows the platform secret key,

and both participants have access to the platform public key and

the plaintext𝑚 of the message being reported. Upon successful

completion, the platform gets the source user identity 𝑈 and

associated metadata md for the reported message. Optionally,

the reporting user could get new forwarding data fd’ used to

forward the message again in the future, but we do not require

use of this in either of our schemes.

We define correctness for a source-tracking scheme as follows.

Definition 3.1. A source-tracking scheme 𝑆𝑇 is correct if when all

users and the platform are honest (i.e. follow the protocols and don’t

try to forward or report messages that they have not received), all

protocols will fail with zero probability, messages will be delivered

as intended, and if a user reports a message to the platform, the

platform can recover the identity of the original author of the

message as well as the metadata that the platform included at the

time of authoring with probability one.

3.2 Confidentiality
Confidentiality guarantees that a source-tracking scheme does not

break the privacy of the underlying end-to-end encryption system

or leak more forwarding metadata than the underlying messaging

system to either the platform or to users. We formalize this by

defining user confidentiality, which ensures that a malicious user

cannot learn more about other users’ messaging activity than it

could without the source-tracking scheme, and platform confiden-
tiality, which makes the same guarantee for the platform before

a message is reported and additionally requires that, even after a

report, the platform learns only the source and associated metadata

of a reported message and nothing more.

We present definitions for both tree-linkable and tree-unlinkable

user confidentiality. For the platform, we only define tree-linkable

platform confidentiality because the platform can set the report

metadata to be unique for each forwarding tree, allowing it to

distinguish between two forwarding trees with the same plaintext

whenmessages are reported. Note that tree-linkability/unlinkability

for the platform is only relevant when a report is made: the security

guarantee for unreported messages is identical in the two settings.

For simplicity, we present our definitions without allowing for

adaptive corruption of users.

User Confidentiality. We define a security game for user confi-

dentiality in Figure 1 with respect to a source tracking scheme 𝑆𝑇 ,

an adversary A, and an underlying messaging scheme E.
Intuitively, the user confidentiality game allows an adversary

to assume the identity of a malicious user and simulate messaging

activity with access to the view of that user. An adversary is given

the ability to forward an arbitrary number of message pairs to

adversary-controlled users. Only one message from each pair is

actually forwarded, and the adversary wins if it can determine

which of the two messages was sent.

To prevent trivial wins, the game requires that within a pair,

messages have the same plaintext and have been sent to the adver-

sary by the same honest user, although the forwarding history of

the two messages, including their original source, can differ. The

tree-linkable version of the game adds the additional restriction

that the forwarding trees of the queried messages must either be

the same tree, always be previously queried together, or have never

before been sent to the malicious user. While the adversary cannot

make calls to the challenge with two different message plaintexts,

the game still captures basic unlinkability because an adversary

can make two or more calls to the challenge, allowing it to receive

multiple different messages along paths of its choice.

This game is constructed by giving the adversary access to a

number of oracles it can use to simulate activity in a messaging

system. The getUser function allows the adversary to create an



getUser(𝑈 , 𝑖𝑠𝑀𝑎𝑙)
U ← Uℎ𝑜𝑛𝑒𝑠𝑡 ∪ U𝑚𝑎𝑙

if 𝑈 ∈ U : return ⊥
if 𝑖𝑠𝑀𝑎𝑙 : U′ ← ⟨A, 𝑃𝑛𝑒𝑤 (sk,U)⟩(𝑈 , pk)

if U′ = ⊥ : return ⊥
return U𝑚𝑎𝑙 .𝑎𝑑𝑑 (𝑈 )
(𝑎𝑑,U′) ← ⟨𝑈𝑛𝑒𝑤 , 𝑃𝑛𝑒𝑤 (sk,U)⟩(𝑈 , pk)
if (𝑎𝑑,U′) = ⊥ : return ⊥
𝑇𝑎𝑢𝑡ℎ [𝑈 ] ← ad

return Uℎ𝑜𝑛𝑒𝑠𝑡 .𝑎𝑑𝑑 (𝑈 )

goodAuth(𝑈𝑠 ,𝑈𝑟 ,𝑚,md)
if 𝑈𝑠 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 ∨𝑈𝑟 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 : return ⊥
ad ← 𝑇𝑎𝑢𝑡ℎ [𝑈𝑠 ],𝑚𝑠𝑔 ← (𝑚, ad)
(𝑎𝑑′, 𝑝𝑑, 𝑒) ← ⟨𝑈𝑎𝑢𝑡ℎ (𝑚𝑠𝑔), 𝑃𝑠𝑒𝑛𝑑 (sk,md) ⟩ (𝑈𝑠 ,𝑈𝑟 , pk)
(𝑚, fd) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
if (𝑚, fd) = ⊥ : return ⊥
𝑇𝑎𝑢𝑡ℎ [𝑈𝑠 ] ← ad′

𝑚𝑖𝑑 ←R {0, 1}𝑛

𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ] ← (𝑈𝑠 ,𝑈𝑟 ,𝑚, fd,𝑚𝑖𝑑)
return𝑚𝑖𝑑

goodFwd(𝑈𝑠 ,𝑈𝑟 ,𝑚𝑖𝑑,md)
if 𝑈𝑠 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 ∨𝑈𝑟 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 ∨𝑚𝑖𝑑 ∉ 𝑇𝑟𝑒𝑐 : return ⊥
(𝑈 ′𝑠 ,𝑈 ′𝑟 ,𝑚, fd, 𝑡𝑖𝑑) ← 𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ]
if 𝑈 ′𝑟 ≠ 𝑈𝑠 : return ⊥
𝑚𝑠𝑔 ← (𝑚, fd)
(fd𝑠 , 𝑝𝑑, 𝑒) ← ⟨𝑈𝑓 𝑤𝑑 (𝑚𝑠𝑔), 𝑃𝑠𝑒𝑛𝑑 (sk,md) ⟩ (𝑈𝑠 ,𝑈𝑟 , pk)
(𝑚, fd𝑟 ) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
if fd𝑟 ∨ fd𝑠 = ⊥ : return ⊥
𝑚𝑖𝑑′ ←R {0, 1}𝑛

𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ] ← (𝑈 ′𝑠 ,𝑈 ′𝑟 ,𝑚, fd𝑠 , 𝑡𝑖𝑑)
𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑′] ← (𝑈𝑠 ,𝑈𝑟 ,𝑚, fd𝑟 , 𝑡𝑖𝑑)
return𝑚𝑖𝑑′

𝑈𝐶𝑂𝑁𝐹
A,𝑏,ℓ
𝑆𝑇 ,E

(pk, sk) ← KGen(𝑝𝑎𝑟𝑎𝑚𝑠)

𝑏′ ← AOℓ,𝑏 (pk)
return 𝑏′

malSend(𝑈𝑠 ,𝑈𝑟 ,md)
if 𝑈𝑠 ∉ U𝑚𝑎𝑙 : return ⊥
(𝑝𝑑, 𝑒) ← ⟨A, 𝑃𝑠𝑒𝑛𝑑 (sk,md) ⟩ (𝑈𝑠 ,𝑈𝑟 , pk)
if 𝑈𝑟 ∈ U𝑚𝑎𝑙 :

return ⟨A, 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
(𝑚, fd) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
if fd = ⊥ : return ⊥
𝑚𝑖𝑑 ←R {0, 1}𝑛

S𝑠𝑒𝑒𝑛 .𝑎𝑑𝑑 (𝑚𝑖𝑑), S𝑎𝑙𝑙𝑜𝑤𝑒𝑑 .𝑎𝑑𝑑 ( (𝑚𝑖𝑑,𝑚𝑖𝑑))
𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ] ← (𝑈𝑠 ,𝑈𝑟 ,𝑚, fd,𝑚𝑖𝑑)
return𝑚𝑖𝑑

malRec𝑙𝑖𝑛𝑘𝑎𝑏𝑙𝑒,𝑏 (𝑈𝑟 ,𝑚𝑖𝑑0,𝑚𝑖𝑑1,md)
if 𝑈𝑟 ∉ U𝑚𝑎𝑙 : return ⊥
if 𝑚𝑖𝑑0 ∨𝑚𝑖𝑑1 ∉ 𝑇𝑟𝑒𝑐 : return ⊥

(𝑈 (0)𝑠 ,𝑈
(0)
𝑟 ,𝑚0, fd0, 𝑡𝑖𝑑0) ← 𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑0 ]

(𝑈 (1)𝑠 ,𝑈
(1)
𝑟 ,𝑚1, fd1, 𝑡𝑖𝑑1) ← 𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑1 ]

if 𝑈 (0)𝑟 ≠ 𝑈
(1)
𝑟 ∨𝑈 (0)𝑟 ∈ U𝑚𝑎𝑙 ∨𝑚0 ≠𝑚1 : return ⊥

if 𝑙𝑖𝑛𝑘𝑎𝑏𝑙𝑒 ∧ (𝑡𝑖𝑑0, 𝑡𝑖𝑑1) ∉ S𝑎𝑙𝑙𝑜𝑤𝑒𝑑 ∧ {𝑡𝑖𝑑0, 𝑡𝑖𝑑1 } ∩ S𝑠𝑒𝑒𝑛 ≠ ∅ :
return ⊥
S𝑎𝑙𝑙𝑜𝑤𝑒𝑑 .𝑎𝑑𝑑 ( (𝑡𝑖𝑑0, 𝑡𝑖𝑑1)), S𝑠𝑒𝑒𝑛 .𝑎𝑑𝑑 (𝑡𝑖𝑑0, 𝑡𝑖𝑑1)
𝑚𝑠𝑔 ← (𝑚𝑏 , fd𝑏 )

(fd𝑠 , 𝑝𝑑, 𝑒) ← ⟨𝑈𝑓 𝑤𝑑 (𝑚𝑠𝑔), 𝑃𝑠𝑒𝑛𝑑 (sk,md) ⟩ (𝑈 (𝑏)𝑟 ,𝑈𝑟 , pk)

𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑𝑏 ] ← (𝑈 (𝑏)𝑠 ,𝑈
(𝑏)
𝑟 ,𝑚𝑏 , fd𝑠 , 𝑡𝑖𝑑𝑏 )

return ⟨A, 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈 (𝑏)𝑟 ,𝑈𝑟 , 𝑒, pk)

Figure 1: User confidentiality game and oracles. The oracle Oℓ,𝑏 gives the adversary access to getUser( ·, ·) , goodAuth( ·, ·, ·, ·) ,
goodFwd( ·, ·, ·, ·) ,malSend( ·, ·, ·) , and malRecℓ,𝑏 ( ·, ·, ·, ·) as well as the send( ·,𝑈 , ·) and receive( ·, ·,𝑈 ) oracles for the underlying encrypted
messaging scheme for all𝑈 ∈ U𝑚𝑎𝑙 . ℓ is a fixed variable that determines whether the𝑈𝐶𝑂𝑁𝐹 game requires tree-linkability (ℓ = 1) or
tree-unlinkability (ℓ = 0), and 𝑏 is a hidden variable that determines which version of the game the adversary sees.

arbitrary number of malicious (adversary-controlled) users, which

are stored in the setU𝑚𝑎𝑙 , as well as honest users that it does not
control, which are stored inUℎ𝑜𝑛𝑒𝑠𝑡 . goodAuth and goodFwd allow
the adversary to send messages between users it does not control,

while malSend and malRec allow an adversary to send messages

between an honest user and a malicious user. The adversary is also

given oracles send(·,𝑈 , ·) and receive(·, ·,𝑈 ) to send and receive

messages from the adversary-controlled users 𝑈 ∈ U𝑚𝑎𝑙 in the

underlying encrypted messaging scheme. In all cases, the adversary

gets to choose the plaintext𝑚 that is sent as well as themetadatamd
included with authored messages. The same game applies for both

tree-linkable and tree-unlinkable security, with the only change

being that the 𝑙𝑖𝑛𝑘𝑎𝑏𝑙𝑒 flag in the malRec oracle is set to true for
tree-linkable security.

In order to keep track of messages and their associated forward-

ing trees, each message sent in the game is identified by a unique

message id𝑚𝑖𝑑 , and each forwarding tree is identified by a unique

𝑡𝑖𝑑 , which is the value of𝑚𝑖𝑑 for the message at the root of the tree.

The game uses table 𝑇𝑎𝑢𝑡ℎ to keep track of authoring data 𝑎𝑑 for

each honest user and table 𝑇𝑟𝑒𝑐 to keep track of messages received

by honest users. The set S𝑠𝑒𝑒𝑛 records which forwarding trees the

adversary has encountered, and the set S𝑎𝑙𝑙𝑜𝑤𝑒𝑑 keeps track of the

pairs of trees from which malRec can be given messages without

enabling a trivial win in the tree-linkable variant of the game.



Definition 3.2. The user confidentiality advantage of an adversary

A against a source-tracking scheme 𝑆𝑇 and messaging scheme E
is defined as

Advuconf
𝑆𝑇 ,E (A) =

���Pr [𝑈𝐶𝑂𝑁𝐹A,1,ℓ
𝑆𝑇 ,E = 1

]
− Pr

[
𝑈𝐶𝑂𝑁𝐹

A,0,ℓ
𝑆𝑇 ,E = 1

] ���
where the adversary is given access to send and receive oracles for
all malicious users inU𝑚𝑎𝑙 as well as oracles getUser, goodAuth,
goodFwd, malSend, and malRecℓ,𝑏 (·, ·, ·, ·). We refer to the advan-

tage as the tree-linkable advantage if ℓ = true and as the tree-
unlinkable advantage otherwise.

Platform confidentiality. We assume that a platform for an en-

crypted messaging scheme can see that a user 𝑈𝑠 sent a message

to 𝑈𝑟 , but that it cannot learn anything about the content of that

message, or whether it was a forward. There has been research into

the possibility of metadata-hiding messaging schemes where the

sender or receiver of a message can be hidden from the platform

(e.g., [8, 17–19, 37]), but we will be aligning our confidentiality

goals with the former setting, which corresponds to most deployed

messaging schemes, and assuming that the identities of the sending

and receiving users are visible to the platform.

The platform confidentiality game operates similarly to the user

confidentiality game, except that now the adversary controls the

platform and an arbitrary number of malicious users. Similar to user

confidentiality, the game gives the adversary oracles goodSend and

goodRec for sending messages between honest users and malSend
and malRec to send a message from or to a malicious user, respec-

tively. We separate the sending and receiving of messages into

separate oracles to allow the adversary to launch attacks that in-

volve deliveringmessage data to unintended recipients or otherwise

tampering with the message delivery process. Additionally, a new

report oracle allows a user to report a message to the platform.

Finally, since the security game must ensure that the platform

adversary learns nothing about the plaintext of messages, the chal-

lenge message in the platform confidentiality game is sent to an

honest user instead of a malicious user. We formalize platform

confidentiality with the 𝑃𝐶𝑂𝑁𝐹 game, described in Appendix A.1.

Definition 3.3. The advantage of an adversary A in the 𝑃𝐶𝑂𝑁𝐹

game against a source-tracking scheme 𝑆𝑇 and messaging scheme

E is defined as

Advpconf
𝑆𝑇 ,E (A) =

���Pr [𝑃𝐶𝑂𝑁𝐹A,1
𝑆𝑇 ,E = 1

]
− Pr

[
𝑃𝐶𝑂𝑁𝐹

A,0
𝑆𝑇 ,E = 1

] ���
where the adversary is given access to the oracles in Figure 7.

Definition 3.4. We say that a source-tracking scheme 𝑆𝑇 and

associated messaging scheme E satisfy confidentiality if for all effi-

cient adversaries A𝑢 and A𝑝 , we have that both Advuconf
𝑆𝑇 ,E (A) and

Advpconf
𝑆𝑇 ,E (A𝑝 ) are negligible. If the advantage used in the𝑈𝐶𝑂𝑁𝐹

game is tree-linkable, then we say the scheme is tree-linkably con-

fidential, and likewise tree-unlinkably confidential if the advantage

is tree-unlinkable.

3.3 Accountability and Unforgeability
Accountability and unforgeability ensure that a source-tracking

scheme can provide the platform with useful and accurate informa-

tion when a message is reported. We present security games for

both properties in Figure 2.

The 𝑠𝑟𝑐𝐵𝐼𝑁𝐷 game addresses accountability by allowing a user

to send and receive anymessages it would like, and then challenging

the adversary to send a message that is received by an honest user,

but fails when the honest user tries to report it to the platform.

The 𝑢𝑛𝐹𝑂𝑅𝐺𝐸 game addresses unforgeability by challenging an

adversary who can see the result of receiving and sending messages

to malicious users to create a report that is validated by the platform

but implicates an honest user in sending a message it never sent.

Both games give the adversary a set of oracles which allow it to

send and receive messages between arbitrary users and control the

sending and receiving on a set of users that it controls. The oracle

getUser allows an adversary to add honest and malicious users.

Oracles goodAuth and goodFwd allow sending messages from hon-

est users, and malSend allows malicious users to send messages to

honest users. The adversary is also given access to a reporting ora-

cle ⟨·, 𝑃𝑟𝑒𝑝 (sk)⟩(·, pk) and oracles for sending messages between

malicious users in the underlying messaging scheme.

We assume the oracle has an associatedM𝑠𝑒𝑛𝑡 set that keeps

track of the messages that have been sent by honest users. As in

the confidentiality games (Section 3.2), we use unique message ids

(𝑚𝑖𝑑) to refer to message transactions between honest users, use a

table𝑇𝑎𝑢𝑡ℎ to keep track of the authoring data for honest users, and

use a table𝑇𝑟𝑒𝑐 indexed by𝑚𝑖𝑑 to keep track of the data associated

with messages received by honest users.

Definition 3.5. We define the advantage of an adversaryA in the

𝑠𝑟𝑐𝐵𝐼𝑁𝐷 game for a source-tracking scheme 𝑆𝑇 and messaging

scheme E as

Advsrc−bind
𝑆𝑇 ,E (A) = Pr[𝑠𝑟𝑐𝐵𝐼𝑁𝐷A

𝑆𝑇 ,E = 1] .

We say that 𝑆𝑇 is accountable or has accountability ifAdvsrc−bind
𝑆𝑇 ,E (A)

is negligible for all efficient adversaries A.

Definition 3.6. We define the advantage of an adversaryA in the

𝑢𝑛𝐹𝑂𝑅𝐺𝐸 game for a source-tracking scheme 𝑆𝑇 and messaging

scheme E as

Advunforge
𝑆𝑇 ,E (A) = Pr[𝑢𝑛𝐹𝑂𝑅𝐺𝐸A

𝑆𝑇 ,E = 1] .

We say that 𝑆𝑇 is unforgeable if Advunforge
𝑆𝑇 ,E (A) is negligible for all

efficient adversaries A.

We note that our unforgeability and accountability requirements

do not apply to the platform, only to users. As observed by [32],

requiring that a scheme be secure against platform-produced forg-

eries would conflict with the deniability properties discussed below.

3.4 Deniability
We require that a source-tracking scheme satisfies two types of

deniability to protect users if the messaging system is compromised:

• universal deniability: Users should be able to deny participating

in a forwarding path of a reported message.

• platform compromise deniability: If the platform’s secret key sk is
leaked publicly, a user should still be able to deny participating

in a reported forwarding path.

Motivated by the approach of [32], we capture these goals by re-

quiring the existence of efficient protocols UForge and PForge that
can be executed by any user (with access to the platform’s secret



𝑠𝑟𝑐𝐵𝐼𝑁𝐷A
𝑆𝑇 ,E

(sk, pk) ← KGen(𝑝𝑎𝑟𝑎𝑚𝑠)

(𝑈𝑠 ,𝑈𝑟 ,md, 𝑠𝑡 ) ← AO
1
(pk)

if 𝑈𝑟 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 : return 0

(𝑝𝑑, 𝑒) ← ⟨A2 (𝑠𝑡 ), 𝑃𝑠𝑒𝑛𝑑 (sk,md) ⟩ (𝑈𝑠 ,𝑈𝑟 , pk)
(𝑚, fd) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (𝑝𝑑, sk) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
if fd = ⊥ : return 0

(𝑠𝑟𝑐,md) ← ⟨𝑈𝑟𝑒𝑝 (fd), 𝑃𝑟𝑒𝑝 (sk) ⟩ (𝑚, pk)
if (𝑠𝑟𝑐,md) = ⊥ : return 1

else : return 0

𝑢𝑛𝐹𝑂𝑅𝐺𝐸A
𝑆𝑇 ,E

(sk, pk) ← KGen(𝑝𝑎𝑟𝑎𝑚𝑠)

(𝑚,𝑠𝑡,M𝑠𝑒𝑛𝑡 ) ← AO1 (pk)
(𝑠𝑟𝑐,md) ← ⟨A2 (𝑠𝑡 ), 𝑃𝑟𝑒𝑝 (sk) ⟩ (𝑚, pk)
if (𝑠𝑟𝑐,md) = ⊥ : return 0

if 𝑠𝑟𝑐 ∉ U𝑚𝑎𝑙 ∧ (𝑠𝑟𝑐,md,𝑚) ∉ M𝑠𝑒𝑛𝑡 :

return 1

else : return 0

goodAuth(𝑚,md,𝑈𝑠 ,𝑈𝑟 )
if 𝑈𝑠 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 : return ⊥
ad ← 𝑇𝑎𝑢𝑡ℎ [𝑈𝑠 ]
𝑚𝑠𝑔 ← (𝑚, ad)
(𝑎𝑑′, 𝑝𝑑, 𝑒) ← ⟨𝑈𝑎𝑢𝑡ℎ (𝑚𝑠𝑔), 𝑃𝑠𝑒𝑛𝑑 (sk,md) ⟩ (𝑈𝑠 ,𝑈𝑟 , pk)
𝑇𝑎𝑢𝑡ℎ [𝑈𝑠 ] ← ad′,M𝑠𝑒𝑛𝑡 .𝑎𝑑𝑑 ( (𝑈𝑠 ,md,𝑚))
if 𝑈𝑟 ∈ U𝑚𝑎𝑙 :

return ⟨A, 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
(𝑚, fd) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
𝑚𝑖𝑑 ←R {0, 1}𝑛

𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ] ← (𝑈𝑠 ,𝑈𝑟 ,𝑚, fd)
return𝑚𝑖𝑑

goodFwd(𝑚𝑖𝑑,md,𝑈𝑟 )
if 𝑚𝑖𝑑 ∉ 𝑇𝑟𝑒𝑐 : return ⊥
(𝑈 ′𝑠 ,𝑈𝑠 ,𝑚, fd) ← 𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ]
𝑚𝑠𝑔 ← (𝑚, fd)
(fd′, 𝑝𝑑, 𝑒) ← ⟨𝑈𝑓 𝑤𝑑 (𝑚𝑠𝑔), 𝑃𝑠𝑒𝑛𝑑 (sk,md) ⟩ (𝑈𝑠 ,𝑈𝑟 , pk)
𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ] ← (𝑈 ′𝑠 ,𝑈𝑠 ,𝑚, fd′)
if 𝑈𝑟 ∈ U𝑚𝑎𝑙 :

return ⟨A, 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
(𝑚, fd′′) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
𝑚𝑖𝑑′ ←R {0, 1}𝑛

𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑′] ← (𝑈𝑠 ,𝑈𝑟 ,𝑚, fd′′)
return𝑚𝑖𝑑′

getUser(𝑈 , 𝑖𝑠𝑀𝑎𝑙)
U ← Uℎ𝑜𝑛𝑒𝑠𝑡 ∪ U𝑚𝑎𝑙

if 𝑈 ∈ U : return ⊥
if 𝑖𝑠𝑀𝑎𝑙 :

U′ ← ⟨A, 𝑃𝑛𝑒𝑤 (sk,U)⟩(𝑈 , pk)
if U′ = ⊥ : return ⊥
return U𝑚𝑎𝑙 .𝑎𝑑𝑑 (𝑈 )
(𝑎𝑑,U′) ← ⟨𝑈𝑛𝑒𝑤 , 𝑃𝑛𝑒𝑤 (sk,U)⟩(𝑈 , pk)
if (𝑎𝑑,U′) = ⊥ : return ⊥
Uℎ𝑜𝑛𝑒𝑠𝑡 .𝑎𝑑𝑑 (𝑈 )
𝑇𝑎𝑢𝑡ℎ [𝑈 ] ← ad

malSend(𝑈𝑠 ,𝑈𝑟 ,md)
if 𝑈𝑠 ∉ U𝑚𝑎𝑙 : return ⊥
(𝑝𝑑, 𝑒) ← ⟨A, 𝑃𝑠𝑒𝑛𝑑 (sk,md) ⟩ (𝑈𝑠 ,𝑈𝑟 , pk)
if 𝑈𝑟 ∈ U𝑚𝑎𝑙 :

return ⟨A, 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
(𝑚, fd) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
if fd = ⊥ : return ⊥
𝑚𝑖𝑑 ←R {0, 1}𝑛

𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ] ← (𝑈𝑠 ,𝑈𝑟 ,𝑚, fd)
return𝑚𝑖𝑑

Figure 2: Unforgeability and accountability games with their accompanying oracles. The adversary is also given access to send( ·,𝑈 , ·)
and receive( ·, ·,𝑈 ) oracles for the underlying encrypted messaging scheme for all adversary-controlled users 𝑈 ∈ U𝑚𝑎𝑙 , as well a
reporting oracle ⟨·, 𝑃𝑟𝑒𝑝 (sk) ⟩ ( ·, pk) .

keys in the case of PForge). These protocols must successfully create

a set of forged transcripts and forwarding data indistinguishable to

a third party from the actual transcripts resulting from the path and

subsequent report of a forwarded message. In universal deniability,

the party tasked with differentiating transcripts has access to the

platform’s public keys and the secret keys of all users in the system,

while for platform compromise deniability, they are given access to

the platform’s secret keys as well. We discuss the space of potential

deniability definitions and formalize security games for univer-

sal deniability (𝑈𝑛𝑖𝑣𝐷𝐸𝑁 ) and platform-compromise deniability

(𝑃𝑙𝑎𝑡𝐷𝐸𝑁 ) in Appendix A.2.

Definition 3.7. For a deniability game 𝐷𝐸𝑁 and forgery algo-

rithm Forge, the advantage of an adversary A against this game,

Advden
𝑆𝑇 ,E,Forge (A), is defined as

Advden
𝑆𝑇 ,E,Forge (A) =

���Pr [𝐷𝐸𝑁A,1

𝑆𝑇 ,E,Forge = 1

]
− Pr

[
𝐷𝐸𝑁

A,0

𝑆𝑇 ,E,Forge = 1

] ��� .
Definition 3.8. We say that a source-tracking scheme 𝑆𝑇 is deni-
able if there exist efficient (possibly interactive) algorithms UForge
and PForge such that for any efficient adversaries A𝑢 and A𝑝 ,
Advunivden

𝑆𝑇 ,E,UForge (A𝑢 ) and Advplatden
𝑆𝑇 ,E,PForge (A𝑝 ) are both negligible.

4 TREE-LINKABLE SOURCE TRACKING
Straw-man scheme. A first straw-man attempt at tree-linkable

source-tracking could have the identity 𝑈𝑆 of the original sender

of a message included with the message plaintext, so the final mes-

sage becomes an encryption of (𝑈𝑠 ,𝑚). While this approach would

satisfy platform confidentiality and deniability requirements, it

does not satisfy user confidentiality, accountability, or unforgeabil-

ity, as nothing would prevent malicious users from observing or

tampering with the sender identity included in the message.

Our scheme. Instead, the starting point for our approach is to

have the platform append a signature on (Enc(𝑘,𝑈𝑠 ), 𝑐𝑚) to each

message, where 𝑘 is an encryption key known only to the platform

and 𝑐𝑚 is a commitment to the message plaintext, provided by

the sender. This signature is passed along whenever a message is

forwarded, and the signature is checked by each message recipient

using the platform’s public key and commitment randomness 𝑟

included by the sender alongside the end-to-end encrypted plain-

text. This scheme enforces user confidentiality, unforgeability, and

accountability, but it does not yet provide platform confidentiality

because the platform can always decrypt the sender identity that is

sent alongside each message.

Our final scheme combines the construction thus far with the

straw-man construction. When a message is forwarded for the



first time, the forwarder includes the signature, commitment, and

commitment randomness alongside the message plaintext that is

end-to-end encrypted and hidden from the platform, i.e., it encrypts

and sends (𝑚, Enc(𝑘,𝑈𝑆 ), 𝑐𝑚, 𝑟 ). Subsequent forwards pass along
the same information inside the end-to-end encrypted ciphertext,

with each recipient checking that the signature and commitment

match the provided message and encrypted sender pair. Fresh mes-

sages include padding to hide the fact that they do not contain

forwarding information, and forwarded messages send the server

a commitment to an empty message to hide the fact that they are

forwards. Users report messages by sending the message plain-

text, commitment, randomness, and signature to the platform, who

checks the signature and decrypts the identity of the original sender.

In terms of security, hiding the forwarding information inside the

end-to-end encrypted message provides platform confidentiality,

while encrypting the original sender provides user confidentiality.

The fact that the forwarding information a user sees does not change

when a message is forwarded makes the scheme tree-linkable: a

user can tell when the same original message has been forwarded

to it twice. Accountability and unforgeability are provided by the

platform being the one to include the sender identity and signing

it, and deniability results from the sender identity being encrypted

and therefore hidden from everyone except the platform (and being

trivial to forge if the platform keys are known).

Our scheme, formalized in Figure 3, makes use of the underly-

ing messaging scheme E = (send(𝑚,𝑈𝑠 ,𝑈𝑟 ), receive(𝑐𝑡,𝑈𝑠 ,𝑈𝑟 )) as
well as the following cryptographic tools.

• A symmetric encryption scheme

P = (KGen𝑠𝑦𝑚 → k, Enc(k,𝑚) → 𝑐𝑡, Dec(k, 𝑐𝑡) →𝑚) .

• A signature scheme

S = (KGen𝑠𝑖𝑔 → (vk𝑠 , sk𝑠 ), Sig(sk𝑠 ,𝑚) → 𝜎,

Vf (vk𝑠 , 𝜎,𝑚) → {0, 1}.
• A commitment scheme

C = (Commit(𝑚) → (𝑐𝑚, 𝑟 ), Open(𝑐𝑚,𝑚, 𝑟 ) → {0, 1}) .

One of the merits of the scheme in Figure 3 is that it is non-

interactive. The communication for each protocol only consists of

a single message sent from the user to the platform in the case of

a send, or from the platform to the user in the case of a receipt,

though optional status messages could be added to let a platform

or user know if an operation succeeds.

We prove the following security theorems in Appendix B. Defi-

nitions of CPA- and AE-security can be found in [2].

Theorem 4.1. Assuming that the platform encryption scheme P
is CPA-secure, the commitment scheme C is hiding, and that the
messaging encryption scheme E is AE-secure, then Scheme 1 is tree-
linkably confidential (Definition 3.4).

Theorem 4.2. Assuming that the platform’s signature scheme S
is secure against any efficient adversary A, then Scheme 1 satisfies
accountability (Definition 3.5).

Theorem 4.3. Assuming that the signature scheme S is unforge-
able and the commitment scheme C is binding against any efficient
adversary A, then Scheme 1 is unforgeable (Definition 3.6).

KGen(params)

k← KGen𝑠𝑦𝑚
(sk𝑠 , vk𝑠 ) ← KGen𝑠𝑖𝑔
pk← vk𝑠 , sk← (k, sk𝑠 )
return (pk, sk)

newUser(𝑈𝑖 , sk)
if 𝑈𝑖 ∈ U :

return ⊥
U .𝑎𝑑𝑑 (𝑈𝑖 )
return U

Report(𝑚, pk)
𝑈𝑟𝑒𝑝 (fd) 𝑃𝑟𝑒𝑝 (sk = (k, sk𝑠 ))

fd

(𝜎, 𝑠𝑟𝑐, 𝑐𝑚, 𝑟 ) ← fd

if ¬Open(𝑐𝑚,𝑚, 𝑟 ) :
return ⊥

if ¬Vf (pk, 𝜎, (𝑐𝑚, 𝑠𝑟𝑐)) :
return ⊥

return Dec(k, 𝑠𝑟𝑐)

AuthMsg(𝑈𝑠 ,𝑈𝑟 , pk)
𝑈𝑎𝑢𝑡ℎ (𝑚𝑠𝑔) 𝑃𝑠𝑒𝑛𝑑 (sk = (k, sk𝑠 ),md)
(𝑚,⊥) ←𝑚𝑠𝑔

(𝑐𝑚, 𝑟 ) ← Commit(𝑚)
//send (m,data) via underlying msg scheme

𝑒 ← send( (𝑚,⊥, 𝑐𝑚, 𝑟 ),𝑈𝑠 ,𝑈𝑟 )

(𝑐𝑚, 𝑒)

return 𝑒 𝑠𝑟𝑐 ← Enc(k, (𝑈𝑠 ,md))
𝜎 ← Sig(sk𝑠 , (𝑐𝑚, 𝑠𝑟𝑐))
return (𝑝𝑑 = (𝜎, 𝑠𝑟𝑐), 𝑒)

FwdMsg(𝑈𝑠 ,𝑈𝑟 , pk)
𝑈𝑓 𝑤𝑑 (𝑚𝑠𝑔) 𝑃𝑠𝑒𝑛𝑑 (sk = (k, sk𝑠 ),md)
(𝑚, fd) ←𝑚𝑠𝑔

(𝑐𝑚, 𝑟 ) ← Commit(⊥)
𝑒 ← send( (𝑚, fd, 𝑐𝑚, 𝑟 ),𝑈𝑠 ,𝑈𝑟 )

(𝑐𝑚, 𝑒)

𝑠𝑟𝑐 ← Enc(k, (𝑈𝑠 ,md))
𝜎 ← Sig(sk𝑠 , (𝑐𝑚, 𝑠𝑟𝑐))
return (𝑝𝑑 = (𝜎, 𝑠𝑟𝑐), 𝑒)

RecMsg(𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
𝑈𝑟𝑒𝑐 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑)

𝑝𝑑

(𝜎, 𝑠𝑟𝑐) ← 𝑝𝑑

(𝑚, fd′, 𝑐𝑚, 𝑟 ) ← receive(𝑒,𝑈𝑠 ,𝑈𝑟 )
//verify platform signature

if ¬Vf (pk, 𝜎, (𝑐𝑚, 𝑠𝑟𝑐)) : return ⊥
if fd′ = ⊥ : //If message is new

if ¬Open(𝑐𝑚,𝑚, 𝑟 ) : return ⊥
return𝑚, fd ← (𝜎, 𝑠𝑟𝑐, 𝑐𝑚, 𝑟 )

else : (𝜎′, 𝑠𝑟𝑐′, 𝑐′𝑚, 𝑟 ′) ← fd′

if ¬Open(𝑐𝑚,⊥, 𝑟 ) : return ⊥
if ¬Open(𝑐′𝑚,𝑚, 𝑟 ′) : return ⊥
if ¬Vf (pk, 𝜎′, (𝑐′𝑚, 𝑠𝑟𝑐′)) : return ⊥ //verify platform signature

return (𝑚, fd′) //𝑚𝑠𝑔 = (𝑚, 𝑓 𝑑′) will be used to forward the message

Figure 3: Tree-linkable construction.



Theorem 4.4. If for any efficient adversary, the messaging sys-
tem’s encryption scheme E satisfies deniability1 and the platform’s
encryption scheme P is CPA-secure, then the scheme is deniable (Def-
inition 3.8).

5 TREE-UNLINKABLE SOURCE-TRACKING
Intuitively, we could achieve tree-unlinkability in the scheme de-

scribed in Section 4 if there was a way to re-randomize the for-

warding data fd each time a message is forwarded. However, such

a re-randomization is not easily achieved because re-randomizing

the platform’s signature is not sufficient to make forwarding data

unlinkable. Both the signature and the signed contents need to be

re-randomized without revealing the contents to the platform.

Our tree-unlinkable construction preserves the basic framework

of the tree-linkable scheme in that forwarding data consists of a

“signature” (in this case a MAC) on a commitment to the message

and an encryption of the source user and optional metadata. Users

re-randomize this forwarding data by re-randomizing the contents

of the signature and proving the validity of the re-randomized

values in zero-knowledge to the platform, which then issues the

user a fresh signature on those values.

Our scheme can be thought of as similar to a keyed-verification

anonymous credential scheme [4–6] that we modify to allow for

anonymous and unlinkable credential delegation via forwarding.

The attributes included in each credential are an encryption of

the source identity and metadata as well as a hash of the mes-

sage content. Since our attributes are a mix of group elements and

scalars and we need users to efficiently prove properties about these

attributes to the platform in zero-knowledge, we use the keyed-

verification anonymous credential scheme presented in [5]. This

construction relies on an algebraic MAC rather than a signature

for the credential. This is fine for us because only the platform will

need to distribute and verify forwarding credentials.

5.1 Tools
Zero Knowledge Proofs.We use zero knowledge proofs, denoted

with the standard Camenisch-Stadler notation ( [3]), i.e.,

𝜋 ← 𝑃𝐾{(secrets) : expressions with secret and public vals}

When verifying a proof 𝜋 , we use the notation Vf (𝜋, [optional: 𝑃1,
𝑃2, ...]), where 𝑃1, 𝑃2, ... are any public values used in the proof.

Algebraic MAC. The main building block of our scheme is an

algebraic MAC construction from Chase et al. [5]. Our particular

instantiation requires a MAC on three attributes, two of which are

group elements encoding the source information about a message

(𝐸1 and 𝐸2), and the other a scalar corresponding to a hash of the

message plaintext𝑚, which we refer to by 𝑑 ← 𝐻 (𝑚).
This MAC requires a groupG of prime order 𝑞 where the discrete

log problem is hard and 10 (public) fixed group elements. Because

we use most of the MAC functionality as a black-box in our scheme,

we will only deal with five of these parameters explicitly, and refer

to them as 𝐺,𝐺𝑑 ,𝐺𝑦1 ,𝐺𝑦2 ,𝐺𝑦3 . These parameters correspond to

the parameters of the same name described in Section 3.1 of [5].

1
See Appendix A.2 for a formal definition of deniability for encrypted messaging

schemes.

In an effort to reduce redundancy and keep our scheme simple,

we use this MAC as a black-box via the following functions:

• KGen𝑀𝐴𝐶 (𝑝𝑎𝑟𝑎𝑚𝑠) → sk𝑀𝐴𝐶 : Generates a MAC key.

• issue(𝑑, 𝐸1, 𝐸2, sk𝑀𝐴𝐶 ) → 𝜎, 𝜋𝑖𝑠𝑠𝑢𝑒 : This function issues a MAC,

𝜎 , on the attributes 𝑑, 𝐸1, and 𝐸2, which are provided in the clear,

as well as a proof that the MAC has been computed correctly,

𝜋𝑖𝑠𝑠𝑢𝑒 (See [5], Section 3.2). When verifying the unblinded MAC

on attributes 𝑖𝑛𝑓 𝑜 = (𝑑, 𝐸1, 𝐸2), we use the verification function

Vf(𝜎, 𝜋𝑖𝑠𝑠𝑢𝑒 , 𝑖𝑛𝑓 𝑜).
• blindIssue(𝑐𝑡𝑑 , 𝑐𝑡𝐸1 , 𝑐𝑡𝐸2 , pk, sk𝑀𝐴𝐶 ) → 𝑐𝑡𝜎 , 𝜋𝑖𝑠𝑠𝑢𝑒 : Given ElGa-

mal ciphertexts of each attribute encrypted under pk, this func-
tion blindly issues an encrypted MAC 𝑐𝑡𝜎 encrypted under the

same key. 𝜋𝑖𝑠𝑠𝑢𝑒 is a proof that the MAC is well-formed. (See [5],

Section 5.10).

• Vf𝑖𝑠𝑠𝑢𝑒 (𝜋𝑖𝑠𝑠𝑢𝑒 , 𝑐𝑡𝜎 , 𝑐𝑡𝑑 , 𝑐𝑡𝐸1 , 𝑐𝑡𝐸2 , sk) → 𝜎 or ⊥ : This is called by

a user to verify that a blindly issued MAC is well-formed. If the

proof is correct, the function returns the decrypted MAC. (See [5],

Section 5.10).

• prepPresent(𝜎,𝑑, 𝐸1, 𝐸2) → 𝐶𝑑 ,𝐶𝐸1 ,𝐶𝐸2 , 𝑧, 𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 : When a

user wants to prove to a platform that it has a valid MAC, it uses

this function to commit to its attributes and MAC with opening

𝑧, and a proof 𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 that it has a valid MAC for these com-

mitments. The commitments have the form 𝐶𝐸1 = 𝐺
𝑧
𝑦1
𝐸1,𝐶𝐸2 =

𝐺𝑧𝑦2𝐸2,𝐶𝑑 = 𝐺𝑧𝑦3𝐺
𝑑
𝑑
. We include these commitments separately

because they are later used for a second proof of the MAC con-

tents, but assume all necessary commitments are included in

𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 . (See [5], Section 3.2).

• blindVf (𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 ,𝐶𝐹 , sk𝑀𝐴𝐶 ) → valid or ⊥ : Verifies that𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡
is a valid proof that the user holds a MAC on the committed at-

tributes 𝐶𝐹 . (See [5], Section 3.2).

Protocols using El-Gamal Encryption. Chase et al.’s algebraic
MAC (Section 5.1) relies on a number of protocols based on manip-

ulating El-Gamal ciphertexts, variants of which will also be used

in our scheme. These protocols all rely on the homomorphic prop-

erties of El-Gamal encryption, which allow users to re-randomize

ciphertexts without knowledge of the platform’s secret key.

Similarly to the Chase et al. scheme, re-randomizing El-Gamal

ciphertexts will enable blind issuance and unlinkable presentation

of a MAC on hidden attributes in our scheme. We will use their

techniques to prove that a user possesses valid credentials to for-

ward a message. Whereas the original Chase et al. paper shows how

to prove that a commitment commits to the same value as a given

ciphertext, our protocol will augment theirs and show that a com-

mitment commits to a re-randomization of a given ciphertext. We

need the re-randomization to render the encryption of a message

author’s identity unlinkable to past forwards of the same message.

5.2 Our Construction
Our scheme requires a group G of prime order 𝑞 in which the dis-

crete log problem is hard and the 10 fixed group elements required

by the MAC described in Section 5.1.

We assume that each message𝑚 can be hashed to a representa-

tion in Z𝑞 , which we denote as 𝑑 ← 𝐻 (𝑚). We also assume that

each (𝑠𝑟𝑐,md) pair corresponding to a source user and metadata

value have a reversible representation in G. Our scheme can easily



present(𝑑, 𝐸1, 𝐸2, 𝜎, pk = 𝑌 )
(𝐶𝑑 ,𝐶𝐸1 ,𝐶𝐸2 , 𝑧, 𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 ) ← prepPresent(𝜎,𝑑, 𝐸1, 𝐸2)
//Additional commitments for proving re-randomization

(𝑧′, 𝑟𝑛𝑑) ←R Z2𝑞
𝐶′
𝑑
← 𝐶𝑑𝐺

𝑧′
𝑦3

𝐶′𝐸1 ← 𝐺𝑧′
𝑦1
𝐺𝑟𝑛𝑑𝐶𝐸1 ,𝐶

′
𝐸2
← 𝐺𝑧′

𝑦2
𝑌 𝑟𝑛𝑑𝐶𝐸2

𝜋𝑟𝑒𝑟𝑎𝑛𝑑 = 𝑃𝐾 {(𝑧′, 𝑟𝑛𝑑) : 𝐶′
𝑑
/𝐶𝑑 = 𝐺𝑧′

𝑦3

∧𝐶′𝐸1/𝐶𝐸1 = 𝐺𝑧′
𝑦1
𝐺𝑟𝑛𝑑 ∧𝐶′𝐸2/𝐶𝐸2 = 𝐺𝑧′

𝑦2
𝑌 𝑟𝑛𝑑 }

𝐶𝐹 ← (𝐶𝑑 ,𝐶𝐸1 ,𝐶𝐸2 )
𝐶′𝐹 ← (𝐶

′
𝑑
,𝐶′𝐸1 ,𝐶

′
𝐸2
)

𝑜 𝑓 ← (𝑧 + 𝑧′, 𝑑, (𝐸1𝐺𝑟𝑛𝑑 , 𝐸2𝑌
𝑟𝑛𝑑 ))

return (𝐶𝑓 ,𝐶
′
𝑓
, 𝑜 𝑓 , 𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , 𝜋𝑟𝑒𝑟𝑎𝑛𝑑 )

Figure 4: Construction of a sender’s proof in our tree-
unlinkable scheme. This function constructs a proof that a user
has a valid forwarding credential, and additionally that 𝐶′

𝐹
is a

commitment to the samemessage and a re-randomization of the
source of the forwarding credential in question.

redeem(𝐶𝐴, 𝑠𝑟𝑐, 𝑜𝐴,𝐶𝐹 , 𝑜𝐹 , 𝑡𝑦𝑝𝑒, pk = 𝑌 )
(𝐶𝑑 ,𝐶𝐸1 ,𝐶𝐸2 ) ← 𝐶𝐹 , (𝐸 (𝐴)

1
, 𝐸
(𝐴)
2
) ← 𝑠𝑟𝑐

(𝑧𝐹 , 𝑑𝐹 , 𝐸 (𝐹 )
1
, 𝐸
(𝐹 )
2
) ← 𝑜𝐹 , (𝑧𝐴, 𝑑𝐴) ← 𝑜𝐴

ℎ, 𝑟1, 𝑟2, 𝑟3, 𝑟𝑛𝑑 ←R Z𝑞, 𝐻 ← 𝐺ℎ

(𝐴1, 𝐴2) ← (𝐺𝑟1 , 𝐻𝑟1𝐺
𝑑𝑡𝑦𝑝𝑒

𝑑
)

(𝐵1, 𝐵2) ← (𝐺𝑟2 , 𝐻𝑟2𝐸
(𝑡𝑦𝑝𝑒 )
1

𝐺𝑟𝑛𝑑 )

(𝐶1,𝐶2) ← (𝐺𝑟3 , 𝐻𝑟3𝐸
(𝑡𝑦𝑝𝑒 )
2

𝑌 𝑟𝑛𝑑 )

𝑃1 ← 𝐻 = 𝐺ℎ ∧𝐴1 = 𝐺
𝑟1 ∧ 𝐵1 = 𝐺𝑟2 ∧𝐶1 = 𝐺

𝑟3

∧𝐶𝐴 = 𝐺
𝑑𝐴
𝑑
𝐺

𝑧𝐴
𝑦3
∧𝐶𝑑 = 𝐺

𝑑𝐹
𝑑
𝐺

𝑧𝐹
𝑦3

𝑃𝐴 ← 𝐴2 = 𝐻
𝑟1𝐺

𝑑𝐴
𝑑
∧ 𝐵2/𝐸 (𝐴)

1
= 𝐻𝑟2𝐺𝑟𝑛𝑑

∧𝐶2/𝐸 (𝐴)
2

= 𝐻𝑟3𝑌 𝑟𝑛𝑑

𝑃𝐹 ← 𝐴2 = 𝐻
𝑟1𝐺

𝑑𝐹
𝑑
∧ 𝐵2/𝐶𝐸1 = 𝐻𝑟2𝐺𝑟𝑛𝑑/𝐺𝑧𝐹

𝑦1

∧𝐶2/𝐶𝐸2 = 𝐻𝑟3𝑌 𝑟𝑛𝑑/𝐺𝑧𝐹
𝑦2

𝜋 ← 𝑃𝐾 {(ℎ, 𝑟1, 𝑟2, 𝑟3, 𝑟𝑛𝑑,𝑑𝐴, 𝑧𝐴, 𝑑𝐹 , 𝑧𝐹 ) :
𝑃1 ∧ (𝑃𝐴 ∨ 𝑃𝐹 ) }

𝑖𝑛𝑓 𝑜 ← (𝐻, (𝐴1, 𝐴2), (𝐵1, 𝐵2), (𝐶1,𝐶2))

return (𝜋, 𝑖𝑛𝑓 𝑜,ℎ, 𝐸 (𝑡𝑦𝑝𝑒 )
1

𝐺𝑟𝑛𝑑 , 𝐸
(𝑡𝑦𝑝𝑒 )
2

𝑌 𝑟𝑛𝑑 )

Figure 5: Proof to receive a message in our tree-unlinkable
scheme. This function constructs a proof that the provided ci-
phertexts to be used for blind issuance of forwarding credentials
encrypt either 1) the same message and re-randomized source
as are committed to in𝐶𝐹 , or 2) commit to the same message as
committed to in𝐶𝐴 and a re-randomization of 𝑠𝑟𝑐.

be extended if more than one element is needed to represent these

values.

Keys. Our scheme assumes that a platform has an El-Gamal key

pair (𝑦,𝑌 = 𝐺𝑦) for 𝑦 ∈ Z𝑞 . This is used for encrypting source

ciphertexts. The platform also has a MAC key sk𝑀𝐴𝐶 .

Authoring and forwarding data structure. Forwarding data fd
held by a user consists of a tuple (𝑚, (𝐸1, 𝐸2), 𝜎), where𝑚 corre-

sponds to the message plaintext, (𝐸1, 𝐸2) is an ElGamal encryp-

tion of some (𝑠𝑟𝑐,md) pair 𝑆 ∈ G, and 𝜎 is a MAC on attributes

𝑑 ← 𝐻 (𝑚), 𝐸1, 𝐸2.
Users also store an authoring credential ad, which has the same

form as the forwarding data, but for an unused message ⊥. The au-
thoring data is given to the user by the platform when the new user

is created. The authoring data is used by the user to prove creden-

tials on a new message so that new messages are indistinguishable

from forwarded messages to the platform.

Once a user gets forwarding data after receiving a message, the

forwarding data stays constant for the rest of its sending activity for

that message. The MAC is presented blindly during future forwards,

and so the possession of a valid forwarding credential can be proved

to a platform multiple times unlinkably.

Sending a message. To send a message, the sender provides au-

thoring information𝐶𝐴 and forwarding information (𝐶𝐹 ,𝐶 ′𝐹 , 𝜋𝑝 , 𝜋𝑟 ).
Only one of these is filled with useful information, depending on

the type of message that the user wants to send. If the message

is an authored message, the authoring information 𝐶𝐴 is for the

actual message plaintext, and the forwarding information is for an

unused message ⊥ (created from the user’s authoring data ad). If
the message is a forward, the message contents are swapped, and

the relevant forwarding data fd is used to create the forwarding

information.

The authoring information is a commitment, 𝐶𝐴 , to the Z𝑞 rep-

resentation of the message, while the forwarding information is

constructed in the present sub-protocol (Figure 4) and consists of

𝐶𝐹 , which is a commitment to the forwarded message’s Z𝑞 rep-

resentation and source ciphertext, as well as 𝐶 ′
𝐹
, which is a new

commitment to the same message and a re-randomization of the

source ciphertexts. The forwarding information also includes 𝜋𝑝 , a

proof that the user holds a valid MAC on the values stored in 𝐶𝐹 ,

and 𝜋𝑟 , which proves that 𝐶 ′
𝐹
commits to the same message and

(re-randomized) source as 𝐶𝐹 . We note that these two proofs can

easily be combined into a single statement, but we’ve written them

out separately to distinguish between scheme-specific statements

and the standard MAC issuance proof.

The authoring commitment to a hash of a message𝑑 ∈ Z𝑞 has the
form of a standard Pedersen commitment [24] with bases 𝐺𝑦3 and

𝐺𝑑 : 𝐶𝐴 = 𝐺𝑟𝑦3𝐺
𝑑
𝑑
for a random 𝑟 ←R Z𝑞 . A forwarding commitment

takes the form of a multi-attribute Pedersen commitment on 𝑑

and two group elements 𝐸1 and 𝐸2 with bases 𝐺𝑦3 ,𝐺𝑦1 ,𝐺𝑦2 ,𝐺𝑑 :

𝐶𝐹 = (𝐺𝑟𝑦1𝐸1,𝐺
𝑟
𝑦2
𝐸2,𝐺

𝑟
𝑦3
𝐺𝑑
𝑑
). Hashing the plaintext to an element

in Z𝑞 ensures that these schemes are binding without the need

for an additional group element to fix the opening to a particular

value of 𝑟 . We note that this structure can easily be extended to

commit to multiple additional attributes that may be required to

store additional metadata.

The sending user encrypts openings to 𝐶𝐴 and 𝐶 ′
𝐹
alongside the

message plaintext and passes that information on to the receiver.

Processing a message. To process a sent message, the platform

first checks that the proofs 𝜋𝑝 and 𝜋𝑟 are valid for the provided

commitments. If this is the case, it creates a new encryption 𝑠𝑟𝑐

of the sending user’s identity and some associated metadata to be



KGen(𝑝𝑎𝑟𝑎𝑚𝑠)
(𝑦,𝑌 ← 𝐺𝑦 ) ←R KGenP (𝑝𝑎𝑟𝑎𝑚𝑠)
sk𝑀𝐴𝐶 ← KGen𝑀𝐴𝐶 (𝑝𝑎𝑟𝑎𝑚𝑠)
return (pk = 𝑌, sk = (𝑦, sk𝑀𝐴𝐶 ))

newUser(𝑈𝑖 , sk, pk = 𝑌 )
𝑈𝑛𝑒𝑤 𝑃𝑛𝑒𝑤 (sk,U)

if 𝑈𝑖 ∈ U : return ⊥
𝑟 ←R Z𝑞, (𝐸1, 𝐸2) ← (𝐺𝑟 ,𝑈𝑖𝑌

𝑟 )
(𝜎, 𝜋𝑖𝑠𝑠𝑢𝑒 ) ← issue(⊥, 𝐸1, 𝐸2, sk𝑀𝐴𝐶 )

𝑖𝑛𝑓 𝑜 ← (⊥, 𝐸1, 𝐸2) 𝜎, 𝜋𝑖𝑠𝑠𝑢𝑒 , (𝐸1, 𝐸2)

if Vf (𝜎, 𝜋𝑖𝑠𝑠𝑢𝑒 , 𝑖𝑛𝑓 𝑜) :
ad ← (𝐻 (⊥), 𝜎, (𝐸1, 𝐸2))
return ad U .𝑎𝑑𝑑 (𝑈𝑖 )

return ⊥ return U

AuthMsg(𝑈𝑠 ,𝑈𝑟 , pk = 𝑌 )
𝑈𝑎𝑢𝑡ℎ (𝑚𝑠𝑔) 𝑃𝑠𝑒𝑛𝑑 (sk,md)
𝑚, ad ←𝑚𝑠𝑔

//create proof sender has valid authoring data

𝑜𝑢𝑡 ← present(ad, pk)
(𝐶𝐹 ,𝐶

′
𝐹 , 𝑜𝐹 , 𝜋𝑝 , 𝜋𝑟 ) ← 𝑜𝑢𝑡

𝑧 ←R Z𝑞, 𝑑 ← 𝐻 (𝑚)
𝑜𝐴 ← (𝑧,𝑑)

𝐶𝐴 ← 𝐺𝑧
𝑦3
𝐺𝑑
𝑑

//commit to new message

//send via underlying msg scheme

𝑒 ← send( (𝑚,𝑜𝐴, 𝑜𝐹 ),𝑈𝑠 ,𝑈𝑟 )

𝑒,𝐶𝐴,𝐶𝐹 ,𝐶
′
𝐹 , 𝜋𝑝 , 𝜋𝑟 if !blindVf (𝜋𝑝 ,𝐶𝐹 , sk𝑀𝐴𝐶 )

∨ !Vf (𝜋𝑟 ,𝐶𝐹 ,𝐶
′
𝐹 ) : return ⊥

𝑟 ←R Z𝑞, 𝑆 ← (𝑈𝑠 ,md)
𝑠𝑟𝑐 ← (𝐺𝑟 , 𝑆𝑌 𝑟 )

return 𝑒 return (𝑝𝑑 = (𝐶𝐴, 𝑠𝑟𝑐,𝐶
′
𝐹 ), 𝑒)

FwdMsg(𝑈𝑠 ,𝑈𝑟 , pk = 𝑌 )
𝑈𝑓 𝑤𝑑 (𝑚𝑠𝑔) 𝑃𝑠𝑒𝑛𝑑 (sk,md)
(𝑚, fd) ←𝑚𝑠𝑔

𝑜𝑢𝑡 ← present(fd, pk)
(𝐶𝐹 ,𝐶

′
𝐹 , 𝑜𝐹 , 𝜋𝑝 , 𝜋𝑟 ) ← 𝑜𝑢𝑡

𝑧 ←R Z𝑞,𝐶𝐴 ← 𝐺𝑧
𝑦3
𝐺⊥
𝑑

𝑜𝐴 ← (𝑧,⊥)
𝑒 ← send( (𝑚,𝑜𝐴, 𝑜𝐹 ),𝑈𝑠 ,𝑈𝑟 )

𝑒,𝐶𝐴,𝐶𝐹 ,𝐶
′
𝐹 , 𝜋𝑝 , 𝜋𝑟 if !blindVf (𝜋𝑝 ,𝐶𝐹 , sk𝑀𝐴𝐶 )

∨!Vf (𝜋𝑟 ,𝐶𝐹 ,𝐶
′
𝐹 ) : return ⊥

𝑟 ←R Z𝑞, 𝑆 ← (𝑈𝑠 ,md)
𝑠𝑟𝑐 ← (𝐺𝑟 , 𝑆𝑌 𝑟 )

return 𝑒 return (𝑝𝑑 = (𝐶𝐴, 𝑠𝑟𝑐,𝐶
′
𝐹 ), 𝑒)

RecMsg(𝑈𝑠 ,𝑈𝑟 , 𝑒, pk = 𝑌 )
𝑈𝑟𝑒𝑐 𝑃𝑟𝑒𝑐 (sk = (𝑦, sk𝑀𝐴𝐶 ), 𝑝𝑑)

𝑝𝑑

(𝐶𝐴, 𝑠𝑟𝑐,𝐶𝐹 ) ← 𝑝𝑑

(𝑚,𝑜𝐴, 𝑜𝐹 ) ← receive(𝑒,𝑈𝑠 ,𝑈𝑟 )
(𝑧𝐴, 𝑑𝐴) ← 𝑜𝐴

if 𝐶𝐴 ≠ 𝐺
𝑧𝐴
𝑦3
𝐺
𝑑𝐴
𝑑

: return ⊥
(𝑧𝐹 , 𝑑𝐹 , 𝐸1, 𝐸2) ← 𝑜𝐹

(𝐶𝑑 ,𝐶𝐸1 ,𝐶𝐸2 ) ← 𝐶𝐹

if 𝐶𝑑 ≠ 𝐺
𝑍𝐹
𝑦3
𝐺
𝑑𝐹
𝑑
∨𝐶𝐸1 ≠ 𝐺

𝑧𝐹
𝑦1
𝐸1

∨𝐶𝐸2 ≠ 𝐺
𝑧𝐹
𝑦2
𝐸2 : return ⊥

if 𝑑 = 𝑑𝐴 ≠ ⊥ ∧ 𝑑𝐹 = ⊥ :

𝑡𝑦𝑝𝑒 ← 𝐴 //new message

elseif 𝑑𝐴 = ⊥ ∧ 𝑑𝐹 = 𝑑 ≠ ⊥ :

𝑡𝑦𝑝𝑒 ← 𝐹 //forwarded message

else : return ⊥
//prove rerandomizations commit to 𝑜𝑎 or 𝑜 𝑓

𝑜 ← redeem(𝐶𝐴, 𝑠𝑟𝑐, 𝑜𝐴,𝐶𝐹 , 𝑜𝐹 , 𝑡𝑦𝑝𝑒, pk)
(𝜋, 𝑖𝑛𝑓 𝑜,ℎ, 𝐸′

1
, 𝐸′

2
) ← 𝑜

𝜋, 𝑖𝑛𝑓 𝑜

(𝐶𝐴, 𝑠𝑟𝑐,𝐶𝐹 ) ← 𝑝𝑑

//verify proof that rerandomizations are valid

if !Vf (𝜋, 𝑖𝑛𝑓 𝑜,𝐶𝐴, 𝑠𝑟𝑐,𝐶𝐹 ) :
return ⊥

//blindly issue MAC on rerandomized values

(𝑐𝑡𝜎 , 𝜋 ) ← blindIssue(𝑖𝑛𝑓 𝑜, sk𝑀𝐴𝐶 )

𝑐𝑡𝜎 , 𝜋

//verify proof that the new MAC is valid

𝜎 ← Vf𝑖𝑠𝑠𝑢𝑒 (𝜋, 𝑐𝑡𝜎 , 𝑖𝑛𝑓 𝑜,ℎ)
if 𝜎 == ⊥ : return ⊥
return (𝑚, fd = (𝐻 (𝑚), (𝐸′

1
, 𝐸′

2
), 𝜎)) //(m, fd) used to forward the message

Report(𝑚, pk = 𝑌 )
𝑈𝑟𝑒𝑝 (fd) 𝑃𝑟𝑒𝑝 (sk = (𝑦, sk𝑀𝐴𝐶 ))
//prove knowledge of valid fd

𝑜𝑢𝑡 ← present(fd, pk)

𝑜𝑢𝑡
𝐶𝐹 , (𝐶′𝐹 , 𝑜𝐹 , 𝜋𝑝 , 𝜋𝑟 ) ← 𝑜𝑢𝑡

if !(blindVf (𝜋𝑝 ,𝐶𝐹 , sk𝑀𝐴𝐶 ) ∧ Vf (𝜋𝑟 ,𝐶𝐹 ,𝐶
′
𝐹 )) :

return ⊥
(𝑧,𝑑′, 𝐸1, 𝐸2) ← 𝑜𝐹

𝑑 ← 𝐻 (𝑚)

if 𝐶′𝐹 ≠ (𝐺𝑧
𝑦3
𝐺𝑑
𝑑
,𝐺𝑧

𝑦1
𝐸1,𝐺

𝑧
𝑦2
𝐸2)

∨ 𝑑 ≠ 𝑑′ ∨ 𝑑 = ⊥ : return ⊥
return 𝐸2/𝐸𝑦

1
//decrypt to recover (𝑠𝑟𝑐,md)

Figure 6: Protocols for Scheme 2.



used if the message is new. It then passes along the platform data

𝑝𝑑 = 𝐶𝐴,𝐶
′
𝐹
, 𝑠𝑟𝑐 to the receiver.

Receiving amessage.During the receipt of amessage, the receiver

presents encryptions of a message plaintext and 𝑠𝑟𝑐 ciphertext and

proves that these are either (re-randomizations of) the forward-

ing information committed to in 𝐶 ′
𝐹
or of the authored message

committed to in 𝐶𝐴 and the new 𝑠𝑟𝑐 ciphertext. The platform then

blindly issues the receiver a new MAC on those attributes. The

helper function redeem (Figure 5), is used by the receiver to con-

struct a proof to the platform that the values it would like to get a

MAC on are valid.

Reporting a message. To report a message, a user presents the

platform with the message plaintext, a re-randomization of the

source ciphertext it would like to report, and a proof that it has

a valid credential on those values. This proof is created in the

same manner as when sending a message by calling the helper

function present (Figure 4). After verifying the proof, the platform

can decrypt the ciphertext to reveal the identity of the source.

Security.We prove the following theorems in Appendix C.

Theorem 5.1. Assuming that the MAC of [5] satisfies blind issuance
and anonymity as defined in [5], the platform’s El Gamal encryption
scheme is CPA-secure, the proof system employed is zero-knowledge,
and E is an AE-secure encryption scheme, then Scheme 2 satisfies
tree-unlinkable confidentiality.

Theorem 5.2. Assuming the correctness of the MAC’s blind presen-
tation protocol [5] and the completeness of the zero-knowledge proof
system, Scheme 2 satisfies accountability.

Theorem 5.3. Assuming that the MAC presentation and issuance
protocols of [5] satisfy unforgeability, the proof of knowledge system
satisfies a strong extractability property, and the discrete log problem
is hard in G, then Scheme 2 is unforgeable.

Theorem 5.4. Assuming that the El Gamal encryption scheme P is
CPA-secure and E is deniable, Scheme 2 is deniable.

6 IMPLEMENTATION AND EVALUATION
We implemented both our constructions in Rust using the double-
ratchet crate, an implementation of Signal’s Double Ratchet proto-

col, as a baseline implementation of a messaging scheme [39]. The

implementation of our tree-linkable scheme relies on the ed25519-
dalek crate, which provides an implementation of ed25519 sign-

ing and verification [20]. For the tree-unlinkable scheme, we used

curve25519-dalek’s implementation of curve25519 [21] to imple-

ment the algebraicMAC of Chase et al. [5], El-Gamal encryption and

verification, and the necessary zero-knowledge proofs, whichwe im-

plemented using the zkp crate [9]. The zkp crate does not currently
provide functionality to prove disjunctions of statements, so to

implement the receive proof (Figure 5), we modified the zkp prover
and verifier to support the OR-protocol for Schnorr proofs [2]. Only

our tree-linkable implementation includes report metadata, which

we set to be a UNIX timestamp.

We evaluated our implementations on a variety of message

lengths, ranging from 10 to 8000 bytes. Because we found that in-

creased message lengths impacted runtime by <1% over this range,

we only provide data for 1KB messages. Evaluation was performed

using Criterion on an Intel i7-6700 processor @ 3.40GHz running

No Tracking Tree-Linkable Tree-Unlinkable

Send 175 𝜇s 201 𝜇s 2.7 ms

Rec. (fresh) 116 𝜇s 181 𝜇s 6.4 ms

Rec. (forward) 116 𝜇s 237 𝜇s 6.3 ms

Server N/A 20 𝜇s 4.1 ms

Report N/A 57 𝜇s 2.6 ms

Table 1: Computation time for using our constructions to send
1KBmessages compared to a standard double ratchet end-to-end
encrypted message. Although the cost of sending a message in-
creaseswithmessage size, we found that the increasewas always
less than 1% when going from 10B to 1KB messages.

Tree-Linkable Tree-Unlinkable

Send 256B 712B

Rec. 320B 1688B

Report 160B 648B

Table 2: Additional communication incurred to send a message
using our constructions compared to sending the message via a
standard double ratchet end-to-end encrypted message.

Ubuntu Linux, and all estimates are computed from the average of

at least 300 trials, where the number of iterations was determined

by the number sufficient to achieve a <1% margin of error (p = 0.05).

We conclude that our tree-linkable scheme does not significantly

increase computation or communication costs in comparison to

schemes deployed today that do not support source-tracking.

We compare our schemes to a baseline messaging scheme with-

out source-tracking in Table 1. The times for server-side computa-

tion and reporting reflect the additional computations incurred by

our scheme. We do not include a baseline time for a scheme with

no tracking for these values, as there are no server-side operations

to support source-tracking in the baseline.

While our tree-linkable scheme results in increased client-side

costs, the overall client-side cost is still on the same order of mag-

nitude as a scheme without source-tracking, and costs remain con-

cretely very low. The costs on the server-side, where cost increases

are much more sensitive, are minimal by comparison. The majority

of the cost of sending messages in this scheme is the necessary cost

of delivering a message in the underlying messaging scheme. Note

that we separately report receiving times for fresh and forwarded

messages. The different times do not open a timing side channel, as

the components of each protocol that involve interaction with the

server are identical. A constant-time implementation would incur

the greater of the two costs for each message.

Our tree-unlinkable scheme has costs that are an order of magni-

tude higher than the linkable scheme, but concrete costs still remain

on the order of milliseconds for each operation.

Table 2 Shows the additional communication we incur com-

pared to a standard double ratchet end-to-end encrypted messaging

scheme that does not use source-tracking. The increase in com-

munication costs across our two schemes mirrors the increase in

computation costs. Although the greatest communication increase

is in the process of receiving a message, the data that clients must

keep in order to report a message is only 128 Bytes in the tree-

linkable scheme and 136 Bytes in the tree-unlinkable scheme.



Comparison to prior work. The only prior work that considers

finding the source of a forwarded message is the traceback scheme

of Tyagi et al. [33]. Whereas their work considers the setting where

the system wishes to reveal all the users who received a particu-

lar message, we explicitly aim to prevent leaking this information.

Despite the difference in security properties, it is worthwhile to com-

pare our tree-linkable scheme to the path-traceback of Tyagi et al.

(their more efficient scheme) to understand the performance trade-

offs between the two approaches.

Traceback incurs lower client overhead than our scheme, re-

quiring less than 8𝜇s overhead to send a message and less than

2𝜇s to receive one, meaning their client-side sending and receiving

costs almost match the performance of a messaging scheme with

no tracking as shown in Table 1. Per-message communication costs

for traceback are also lower. Sending and receiving a message re-

quire an additional 64 and 48 bytes of communication, respectively

(compared to 256 and 320 bytes for tree-linkable tracing), while a

report consists of only 16 bytes in addition to the message plaintext.

A report in our tree-linkable scheme requires 160 additional bytes.

The lower client costs to support message traceback come at the

cost of increased server side storage and report verification costs.

First, finding the source of a reported message using traceback

requires computation linear in the length of the forwarding chain.

At approximately 90𝜇s per forward, the report verification cost is

comparable to ours (57𝜇s on a slightly faster processor) for a fresh

message but becomes worse if a message is forwarded several times.

The time to find the source of a reported message in our schemes

is constant, regardless of the number of forwards.

More importantly, the traceback scheme requires the server to

store 36 Bytes per message sent. The server cannot know when a

client has read or deleted a message, so it must conservatively store

tracing information for as long as the message should be traceable.

At the scale of a messaging system like WhatsApp that delivers

on the order of 100 billion messages a day [29], this requires an

additional 3.6 Terabytes of storage per day. On the other hand, our

source-tracking schemes require no persistent server-side storage.
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A DEFERRED DEFINITIONS
A.1 Platform Confidentiality
The platform confidentiality game gives the adversary oracles

goodSend and goodRec for sending messages between honest users

and malSend and malRec to send a malicious from or to a mali-

cious user, respectively. We separate the sending and receiving of

messages into separate oracles to allow the adversary to launch

attacks that involve delivering message data to unintended recip-

ients or otherwise tampering with the message delivery process.

Additionally, the report oracle allows a user to report a message to

the platform.

To further strengthen the adversary, we allow for a platform

to create a setU𝑚𝑎𝑙 of platform-controlled users that can collude

with the platform using the getUser oracle passed with𝑚𝑎𝑙𝑈𝑠𝑒𝑟

set to true. We define the set of honest users Uℎ𝑜𝑛𝑒𝑠𝑡 as the set
of users not controlled by the adversary, each created by a call to

getUserwith𝑚𝑎𝑙𝑈𝑠𝑒𝑟 set to false. These honest users are created by
running the newUser protocol with the adversary as the platform,

and adding the new user to the set of users only if the protocol is

successful. The adversary is given access to oracles send(·,𝑈 , ·) and
receive(·, ·,𝑈 ) for 𝑈 ∈ U𝑚𝑎𝑙 to send and receive messages from

malicious users in the underlying messaging scheme.

As in the user confidentiality game, messages are identified by a

unique identifier𝑚𝑖𝑑 , trees are identified by 𝑡𝑖𝑑 , the identifier of

the message at their root. When set to ⊥, the 𝑡𝑖𝑑 value acts as a

flag for messages that can’t be revealed to be the adversary without

allowing it to trivially win the confidentiality game.

The game keeps track of messages sent and received in tables

𝑇𝑠𝑒𝑛𝑑 and𝑇𝑟𝑒𝑐 , respectively. The table𝑇𝑎𝑢𝑡ℎ additionally keeps track

of authoring data (ad) received by honest users when they author

a new message. The goodSend oracle represents the challenge por-

tion of the game. It allows the adversary to choose two messages

𝑐0 and 𝑐1, one of which will actually be sent between two honest

users, and the adversary must guess which message was sent. The

𝑐𝑖s include an associated value 𝑐𝑖 [type] that determines whether

they are new messages or forwarded messages. If the type is new,
then 𝑐𝑖 is simply a message plaintext to be sent. Otherwise, 𝑐𝑖 is

the𝑚𝑖𝑑 value for a message to be forwarded.

A.2 Deniability
Here, we present an extended discussion of our deniability def-

initions discussed in Section 3.4, and present formalizations of

deniability for source-tracking schemes.

Deniability, or the guarantee that only the messaging platform

can prove that a sender sent a message, is a common goal of many

secure messaging applications [22]. Because source-tracking is de-

signed to be applied on top of these existing messaging applications,

it is important that source-tracking schemes preserve themessaging

application’s deniability guarantees.

One of the key settings where deniability is important is pro-

tection for whistleblowers who use the messaging application to

anonymously relay sensitive information. From this perspective,

deniability for source-tracking schemes becomes particularly im-

portant because we want to guarantee that not only the source of

the forwarded message can deny sending it, but also that interme-

diate users along the path who may have reported or forwarded

the message to an authority can deny this action if their messages

are compromised.

Prior works [10, 11, 13, 32, 34] have investigated the large space

of potential deniability definitions and their associated tradeoffs

with notions of authentication and unforgeability.

While there are many different flavors of deniability definitions

that could be extended to source-tracking, we chose to focus on def-

initions that were reasonable with respect to the current deniability

guarantees offered by secure messaging systems. Online deniabil-
ity, which guarantees a user can maintain deniability even when a

third party interacts with it during the protocol to gain evidence

of the user’s participation, is a strong form of deniability that has

been shown not to hold for the Signal messaging protocol [35, 36].

Instead, we focus on offline deniability, which guarantees a user can

deny participating in a conversation in the event that a transcript

of the exchange is provided to a third party. This form of deniabil-

ity has been shown to hold for the Signal protocol under strong

assumptions [34, 38]. We show that our source-tracking schemes

satisfy the strongest form of offline deniability using the simulated

transcript approach of [11], meaning that any user can forge a

transcript of a forwarding path and report that is indistinguishable

from a real transcript to a third party who holds the long-term keys

for all involved users, assuming that the underlying messaging

scheme satisfies this guarantee as well. This is stated formally in

the following definition:

Definition A.1 (Deniability of an Encrypted Messaging Scheme).
We say an encrypted messaging scheme

E = (send(𝑚,𝑈𝑠 ,𝑈𝑟 ), receive(𝑐𝑡,𝑈𝑠 ,𝑈𝑟 ))
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𝑃𝐶𝑂𝑁𝐹
A,𝑏
𝑆𝑇 ,E

(pk, sk) ← KGen(𝑝𝑎𝑟𝑎𝑚𝑠)

𝑏′ ← AO (pk, sk)
return 𝑏′

getUser(𝑈 , 𝑖𝑠𝑀𝑎𝑙)
if 𝑈 ∈ Uℎ𝑜𝑛𝑒𝑠𝑡 ∪𝑈𝑚𝑎𝑙 :

return ⊥
if 𝑖𝑠𝑀𝑎𝑙 :

return𝑈𝑚𝑎𝑙 .𝑎𝑑𝑑 (𝑈 )
ad ← ⟨𝑈𝑛𝑒𝑤 ,A⟩(𝑈 , pk)
if ad = ⊥ : return ⊥
𝑇𝑎𝑢𝑡ℎ [𝑈 ] ← ad

return𝑈ℎ𝑜𝑛𝑒𝑠𝑡 .𝑎𝑑𝑑 (𝑈 )

report(𝑚𝑖𝑑)
if 𝑚𝑖𝑑 ∉ 𝑇𝑟𝑒𝑐 : return ⊥
(𝑈𝑠 ,𝑈𝑟 ,𝑚, fd, 𝑡𝑖𝑑) ← 𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ]
//check if report contents can be revealed

if 𝑡𝑖𝑑 = ⊥ : return ⊥
return ⟨𝑈𝑟𝑒𝑝 (fd),A⟩(𝑚, pk)

goodRec(𝑚𝑖𝑑, 𝑒)
if 𝑚𝑖𝑑 ∉ 𝑇𝑠𝑒𝑛𝑑 : return ⊥
(𝑈𝑠 ,𝑈𝑟 ,𝑚, 𝑒

′, 𝑡𝑖𝑑) ← 𝑇𝑠𝑒𝑛𝑑 [𝑚𝑖𝑑 ]
if 𝑈𝑠 ∨𝑈𝑟 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 : return ⊥
(𝑚′, fd) ← ⟨𝑈𝑟𝑒𝑐 ,A⟩(𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
if fd = ⊥ : return ⊥
𝑚𝑖𝑑′ ←R {0, 1}𝑛, if 𝑒 ≠ 𝑒′ : 𝑡𝑖𝑑 ← ⊥
𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑′] ← (𝑈𝑠 ,𝑈𝑟 ,𝑚, fd, 𝑡𝑖𝑑)
return𝑚𝑖𝑑′

goodSend(𝑈𝑠 ,𝑈𝑟 , 𝑐0, 𝑐1)
if 𝑈𝑠 ∨𝑈𝑟 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 : return ⊥
𝑚𝑖𝑑 ←R {0, 1}𝑛

for 𝑖 ∈ {0, 1} :
if 𝑐𝑖 [type] = new :

𝑚𝑖 ← 𝑐𝑖

𝑡𝑖𝑑𝑖 ←𝑚𝑖𝑑

else :

𝑚𝑖𝑑𝑖 ← 𝑐𝑖

if 𝑚𝑖𝑑𝑖 ∉ 𝑇𝑟𝑒𝑐 : return ⊥

(𝑈 (𝑖 )𝑠 ,𝑈
(𝑖 )
𝑟 ,𝑚𝑖 , fd𝑖 , 𝑡𝑖𝑑𝑖 ) ← 𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑𝑖 ]

if 𝑈 (𝑖 )𝑟 ≠ 𝑈𝑠 : return ⊥
if 𝑚0 ≠𝑚1 ∨ 𝑡𝑖𝑑0 ≠ 𝑡𝑖𝑑1 ∨ 𝑡𝑖𝑑0 = ⊥ ∨ 𝑡𝑖𝑑1 = ⊥ :

𝑡𝑖𝑑 ← ⊥
if 𝑐𝑏 [𝑡𝑦𝑝𝑒 ] = new :

ad ← 𝑇𝑎𝑢𝑡ℎ [𝑈𝑠 ],𝑚𝑠𝑔 ← (𝑚𝑏 , ad)
(ad′, 𝑒) ← ⟨𝑈𝑎𝑢𝑡ℎ (𝑚𝑠𝑔),A⟩(𝑈𝑠 ,𝑈𝑟 , pk)
𝑇𝑎𝑢𝑡ℎ [𝑈𝑠 ] ← ad′

else :

𝑚𝑠𝑔 ← (𝑚𝑏 , fd𝑏 )
(fd, 𝑒) ← ⟨𝑈𝑓 𝑤𝑑 (𝑚𝑠𝑔),A⟩(𝑈𝑠 ,𝑈𝑟 , pk)

𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑𝑏 ] ← (𝑈 (𝑏)𝑠 ,𝑈𝑠 ,𝑚𝑏 , fd, 𝑡𝑖𝑑𝑏 )
𝑇𝑠𝑒𝑛𝑑 [𝑚𝑖𝑑 ] ← (𝑈𝑠 ,𝑈𝑟 , 𝑒,𝑚𝑏 , 𝑡𝑖𝑑)
return𝑚𝑖𝑑

malSend(𝑈𝑠 ,𝑈𝑟 , 𝑒)
if 𝑈𝑠 ∉ U𝑚𝑎𝑙 ∨𝑈𝑟 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 : return ⊥
(𝑚, fd) ← ⟨𝑈𝑟𝑒𝑐 ,A⟩(𝑈𝑠 ,𝑈𝑟 , 𝑒, pk)
if fd = ⊥ : return ⊥
𝑚𝑖𝑑 ←R {0, 1}𝑛

𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ] ← (𝑈𝑠 ,𝑈𝑟 ,𝑚, fd,𝑚𝑖𝑑)
return𝑚𝑖𝑑

malRec(𝑈𝑠 ,𝑈𝑟 , 𝑐)
if 𝑈𝑠 ∉ Uℎ𝑜𝑛𝑒𝑠𝑡 ∨𝑈𝑟 ∉ U𝑚𝑎𝑙 : return ⊥
//case 1: c corresponds to a new message

if 𝑐 [𝑡𝑦𝑝𝑒 ] = 𝑛𝑒𝑤 : 𝑚 ← 𝑐

ad ← 𝑇𝑎𝑢𝑡ℎ [𝑈𝑠 ],𝑚𝑠𝑔 ← (𝑚, ad)
(ad′, 𝑒) ← ⟨𝑈𝑎𝑢𝑡ℎ (𝑚𝑠𝑔),A⟩(𝑈𝑠 ,𝑈𝑟 , pk)
𝑇𝑎𝑢𝑡ℎ [𝑈𝑠 ] ← ad′

//case 2: c corresponds to a forward

else : 𝑚𝑖𝑑 ← 𝑐

if 𝑚𝑖𝑑 ∉ 𝑇𝑟𝑒𝑐 : return ⊥
(𝑈 ′𝑠 ,𝑈 ′𝑟 ,𝑚, fd, 𝑡𝑖𝑑) ← 𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ]
if 𝑈 ′𝑟 ≠ 𝑈𝑠 ∨ 𝑡𝑖𝑑 = ⊥ : return ⊥
𝑚𝑠𝑔 ← (𝑚, fd)
fd′, 𝑒 ← ⟨𝑈𝑓 𝑤𝑑 (𝑚𝑠𝑔),A⟩(𝑈𝑠 ,𝑈𝑟 , pk)
𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ] ← (𝑈 ′𝑠 ,𝑈 ′𝑟 ,𝑚, fd′, 𝑡𝑖𝑑)

Figure 7: Platform confidentiality game and oracles. The adversary is also given access to send( ·,𝑈 , ·) and receive( ·, ·,𝑈 ) oracles for the
underlying encrypted messaging scheme for all adversary-controlled users𝑈 ∈ U𝑚𝑎𝑙 .

satisfies deniability if there exists an efficient simulation algorithm

SimE (𝑈𝑠 ,𝑈𝑟 ,𝑚) that produces a transcript of 𝑈𝑠 sending the mes-

sage𝑚 using E to 𝑈𝑟 without access to the private keys of 𝑈𝑠 or

𝑈𝑟 such that this simulated transcript is indistinguishable from a

real transcript to any efficient distinguisher with access to𝑈𝑠 and

𝑈𝑟 ’s secret keys.

Substituting in a weaker assumption on the messaging scheme

would just result in the same weakened guarantee for the overall

system, so using this approach means that we can guarantee a

source-tracking scheme preserves the offline deniability of any

messaging scheme it is built on top of.

Following the approach of [32], we additionally show that in

addition to universal deniability, where the forger has access to an

arbitrary third party user and the discerning party has access to

the long-term keys of all involved users, our schemes also satisfy

platform-compromise deniability, which gives the forger and dis-

cerning party additional access to the platform’s keys. This second

form of deniability ensures that even in the event that the platform

was compromised and its secret keys exposed, deniability can be

preserved.

While not required in our definition for deniable source-tracking

schemes, it is worth noting that our scheme constructions provide

strong deniability protections for reporters of malicious messages,

regardless of the deniability guarantees of the underlyingmessaging

scheme. Neither scheme makes use of the messaging oracles or

users’ secret keys while making a report, and additionally anyone

with knowledge of the forwarding data for a particular message

can report it even if they themselves did not receive it, meaning

that the pool of users who could have reported a message is not



restricted to the users on the forwarding path of the message in

question.

We present two security games to address each of these types of

deniability:𝑈𝑛𝑖𝑣𝐷𝐸𝑁 and 𝑃𝑙𝑎𝑡𝐷𝑒𝑛 (Figure 8). Each game accepts

the corresponding forgery algorithm that simulates a forwarding

path’s transcripts as a parameter. The games get access to a chal-

lenge oracle Chal(·, ·, ·, 𝑡𝑦𝑝𝑒), where the value of 𝑡𝑦𝑝𝑒 is either u
(universal) or p (platform) depending on the type of game, as well

as the ability to create new users of their choice.

The deniability challenge consists of the adversary presenting a

query that consists of a message𝑚, a path of users 𝑝 , a forging user

𝑈𝐷 , and a list of metadata mds. The challenge will either output
the actual transcripts (𝑇𝑟𝑟 , 𝑇𝑟 𝑓 , and 𝑇𝑟𝑟𝑒𝑝 ) and forwarding data

resulting from sending the message along the path and then being

reported by the last user, or a forged version constructed by in-

putting the query into the forgery algorithm, which is given access

to the sending and receiving capabilities of 𝑈𝐷 and a simulator

for the underlying messaging scheme, SimE . The functions of this
oracle are presented in Figure 8 as interactive protocols where F is

the portion of the interaction that the forger can control.

Note that some of our security games are defined with interactive

oracle functions. When using these functions as a sub-protocol

in our proofs, we write the name of the function with its public

parameters, and then a double headed arrow with ⟨𝑃1 (𝑠𝑒𝑐𝑟𝑒𝑡𝑠),O𝑠 ⟩
above it for each interaction, where 𝑃1 (𝑠𝑒𝑐𝑟𝑒𝑡𝑠) is the protocol

that the adversary follows, and O𝑠 represents whatever behavior is
defined for the oracle (See Figures 9 and 10).

B SECURITY PROOFS FOR TREE-LINKABLE
SOURCE-TRACKING

B.1 Confidentiality – Proof of Theorem 4.1
Proof. The proof of this statement follows immediately from

combining the results of Lemmas B.1 and B.2, which prove user

and platform confidentiality, respectively. □

Lemma B.1. Assuming that P is CPA-secure, and the commitment
and signatures schemes C and S are correct, the advantage of any
efficient adversary against the 𝑙𝑈𝐶𝑂𝑁𝐹 game for Scheme 1 is negli-
gible.

Proof. We construct a series of hybrid games to show that

𝑙𝑈𝐶𝑂𝑁𝐹 1 is indistinguishable from 𝑙𝑈𝐶𝑂𝑁𝐹 0 to any efficient ad-

versary. This proves that the scheme satisfies tree-linkable user

confidentiality.

G0: This game is identical to the standard𝑈𝐶𝑂𝑁𝐹 game when

𝑏 = 0.

G1: We modify goodAuth (oracle function for authoring a mes-

sage between two honest users) and malSend (oracle func-

tion for sending a message from a malicious user) so that

the 𝑠𝑟𝑐 the platform computes and includes in the platform

data is an encryption of some default user and metadata

𝑈𝐷 | |md𝐷 rather than the actual author of the message (the

default data can, for example, be an all-zero string). Because

the adversary does not have the secret key, and this value is

never decrypted by the platform, this version of the game is

indistinguishable from Game 0 by the CPA-security of the

platform’s encryption scheme, P.
G2: We modify goodFwd (oracle function for forwarding a mes-

sage between two honest users) to immediately abort if the

user provides an𝑚𝑖𝑑 ∈ 𝑇𝑟𝑒𝑐 such that the signature or com-

mitment included in the forwarding data for the associated

message is invalid. By the definition of the scheme, any mes-

sage stored in 𝑇𝑟𝑒𝑐 that’s associated with an honest receiver

was received successfully by that honest user who checked

the correctly formed signature and commitment, so this will

never happen, and this game is indistinguishable from Game

1.

G3: We again modify goodFwd so that after checking that

the users associated with the given 𝑚𝑖𝑑 are correct and

that 𝑚𝑖𝑑 ∈ 𝑇𝑟𝑒𝑐 , if 𝑚, fd, 𝑡𝑖𝑑 is the data associated with

the provided 𝑚𝑖𝑑 , the oracle doesn’t actually forward the

message but instead just adds a new entry 𝑇𝑟𝑒𝑐 [𝑚𝑖𝑑 ′] =

(𝑈𝑠 ,𝑈𝑟 ,𝑚, fd, 𝑡𝑖𝑑) to the table. By definition of the scheme,

the resulting entry in 𝑇𝑟𝑒𝑐 is identical to the entry if the

message had actually been forwarded, and so this game is

indistinguishable from Game 2 as the oracle does not modify

any other persistent state outside of the table 𝑇𝑟𝑒𝑐 .

We note that after these modifications, the output of malRec
(oracle function for forwarding a message to a malicious receiver,

the function gets two potential forwards and uses the value of 𝑏 to

determine which one the adversary sees), which is the only oracle

function that uses 𝑏 to decide what to output, no longer depends on

𝑏 because the forwarding data of all honestly sent messages have

the same contents. This means that applying and identical series of

hybrid steps to those described in G0 to G3 starting at 𝑙𝑈𝐶𝑂𝑁𝐹 1

instead of 𝑙𝑈𝐶𝑂𝑁𝐹 0 gets us to a game identical to Game 3 that is

indistinguishable from 𝑙𝑈𝐶𝑂𝑁𝐹 1 to an efficient adversary.

Thuswe have shown thatwe can go from 𝑙𝑈𝐶𝑂𝑁𝐹 0 to 𝑙𝑈𝐶𝑂𝑁𝐹 1

through a series of indistinguishable hybrids, and we can con-

clude that any adversary’s advantage against the 𝑙𝑈𝐶𝑂𝑁𝐹 game

for Scheme 1 must be negligible. □

Lemma B.2. Assuming that the commitment scheme is hiding and
the messaging encryption scheme E is AE-secure, the advantage of
any efficient adversary A against the 𝑃𝐶𝑂𝑁𝐹 game for Scheme 1 is
negligible.

Note that the lemma requires that the messaging scheme guar-

antee authenticated encryption. This sort of guarantee is common

among most encrypted messaging schemes, such as Signal’s Double

Ratchet Protocol [23].

Proof. We first present a series of hybrid games that show an

adversary cannot gain advantage by tampering with messages be-

tween honest users. By definition of the scheme, the platform is

tasked with passing on the platform data (𝜎, 𝑠𝑟𝑐) to the receiving

user, and the security game additionally gives the option for the

platform to choose the message identifier 𝑒 that the receiver gets

as input. The platform could stray from the correct protocol by

calling goodRec (oracle function for receiving a message between

honest users) with an 𝑒 that wasn’t the same as the one outputted

by the sending interaction associated with the𝑚𝑖𝑑 , or by signing



𝑈𝑛𝑖𝑣𝐷𝐸𝑁
A,𝑏
𝑆𝑇 ,E,UForge

(pk, sk) ←R KGen(𝑝𝑎𝑟𝑎𝑚𝑠)

𝑏′ ← AOu (pk)
return 𝑏′

𝑃𝑙𝑎𝑡𝐷𝐸𝑁
A,𝑏
𝑆𝑇 ,E,PForge

(pk, sk) ←R KGen(𝑝𝑎𝑟𝑎𝑚𝑠)

𝑏′ ← AOp (pk, sk)
return 𝑏′

Chal(𝑝𝑎𝑡ℎ,𝑈𝐷 ,𝑚,mds, 𝑡𝑦𝑝𝑒)
//Construct path

(𝑈0, ...,𝑈𝑘 ) ← 𝑝𝑎𝑡ℎ

if 𝑈𝐷 ,𝑈0, ...,𝑈𝑘 ∉ U : return ⊥
ad ← 𝑇𝑎𝑢𝑡ℎ [𝑈0 ],𝑚𝑠𝑔 ← (𝑚, ad)
(ad′, 𝑝𝑑, 𝑒) ← ⟨𝑈𝑎𝑢𝑡ℎ (𝑚𝑠𝑔), 𝑃𝑠𝑒𝑛𝑑 (sk,mds [0]) ⟩ (𝑈0,𝑈1, pk)
(𝑚, fd,𝑇𝑟𝑟 ) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈0,𝑈1, 𝑒, pk)
𝑜𝑢𝑡𝑝𝑢𝑡0 .𝑎𝑝𝑝𝑒𝑛𝑑 ( (𝑇𝑟𝑟 , fd)),𝑇𝑎𝑢𝑡ℎ [𝑈0 ] ← ad′

for 𝑖 = 1, ..., 𝑘 − 1 :
𝑚𝑠𝑔 ← (𝑚, fd)
(fd′, 𝑝𝑑, 𝑒,𝑇𝑟 𝑓 ) ← ⟨𝑈𝑓 𝑤𝑑 (𝑚𝑠𝑔), 𝑃𝑠𝑒𝑛𝑑 (sk,mds [𝑖 ]) ⟩ (𝑈𝑖 ,𝑈𝑖+1, pk)
(𝑚, fd,𝑇𝑟𝑟 ) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝑖 ,𝑈𝑖+1, 𝑒, pk)
𝑜𝑢𝑡𝑝𝑢𝑡0 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟 𝑓 , fd′,𝑇𝑟𝑟 , fd)
( (𝑠𝑟𝑐,md),𝑇𝑟𝑟𝑒𝑝 ) ← ⟨𝑈𝑟𝑒𝑝 (fd), 𝑃𝑟𝑒𝑝 (sk) ⟩ (𝑚, pk)
𝑜𝑢𝑡𝑝𝑢𝑡0 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑟𝑒𝑝 , (𝑠𝑟𝑐,md))
//construct forgery

if 𝑡𝑦𝑝𝑒 = u : 𝑜𝑢𝑡𝑝𝑢𝑡1 ← UForgeO(𝑈𝐷 ) (𝑝𝑎𝑡ℎ,𝑚,mds, pk)

if 𝑡𝑦𝑝𝑒 = p : 𝑜𝑢𝑡𝑝𝑢𝑡1 ← PForgeO(𝑈𝐷 ) (𝑝𝑎𝑡ℎ,𝑚,mds, pk, sk)
return 𝑜𝑢𝑡𝑝𝑢𝑡𝑏

getUser(𝑈 )
if 𝑈 ∈ U : return ⊥
(ad,U′) ← ⟨𝑈𝑛𝑒𝑤 , 𝑃𝑛𝑒𝑤 (U, sk) ⟩ (𝑈 , pk)
𝑇𝑎𝑢𝑡ℎ [𝑈 ] ← ad,U .𝑎𝑑𝑑 (𝑈 )
return ad

ForgeSend(𝑈𝑟 ,md)
(𝑝𝑑, 𝑒) ← ⟨F, 𝑃𝑠𝑒𝑛𝑑 (sk,md) ⟩ (𝑈𝐷 ,𝑈𝑟 , pk)
if 𝑈𝑟 ≠ 𝑈𝐷 : return

⟨F, 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝐷 ,𝑈𝐷 , 𝑒, pk)

Report(𝑚)
⟨F, 𝑃𝑟𝑒𝑝 (sk) ⟩ (𝑚, pk)

𝑒 ← SimE (𝑈𝑠 ,𝑈𝑟 ,𝑚)
Oracle functions O( ·) for forgery algorithms. SimE

simulates a transcript of the messaging scheme using
the simulator guaranteed to exist by the deniability of

the messaging scheme.

Figure 8:Deniability games and oracle functions. Oracles O𝑡𝑦𝑝𝑒 for 𝑡𝑦𝑝𝑒 = u or p give the adversary access to the functions getUser( ·, ·) ,
Chal( ·, ·, ·, ·, 𝑡𝑦𝑝𝑒) , and send( ·,𝑈 , ·) and receive( ·, ·,𝑈 ) oracles for the underlying messaging scheme for all users 𝑈 ∈ U. Oracle O(𝑈𝐷 )
gives the forgery algorithms access to the Send and Report functions.

a value other than the 𝑠𝑟𝑐 value chosen by the platform and the

commitment presented by the sender.

G0: This initial game is identical to 𝑃𝐶𝑂𝑁𝐹
A,0
𝑆𝑇 ,E , the game when

𝑏 = 0.

G1: We add the additional condition to goodRec to abort imme-

diately if the inputted 𝑒 value has never been outputted by

the sender𝑈𝑠 as part of a message to the receiver𝑈𝑟 at any

point in the game. By definition, this can only happen dur-

ing a call to goodSend because 𝑈𝑠 and 𝑈𝑟 are honest. This

is indistinguishable from G0 because finding a valid 𝑒 that

was not sent from 𝑈𝑠 to 𝑈𝑟 contradicts the authenticated

encryption properties of the messaging scheme, specifically

its ciphertext integrity, and can therefore happen with only

negligible probability.

We note that if the adversary presents a different 𝑒 but the

game does not abort due to the above condition, 𝑒 must have

resulted from a call to goodSend between𝑈𝑠 and𝑈𝑟 earlier

in the game, and so there exists some 𝑚𝑖𝑑 ′′ in 𝑇𝑠𝑒𝑛𝑑 that

stores 𝑒 . The only difference between calling goodRec with
the correct pair (𝑚𝑖𝑑 ′′, 𝑒) instead of (𝑚𝑖𝑑, 𝑒) is that the 𝑡𝑖𝑑
will always be⊥, which only weakens the adversary’s power
because it can no longer see the message contents by having

the message reported and so we can assume that 𝑒 = 𝑒 ′ in
all other cases.

G2: In this game, if during goodRec the platform presents an

honest user with platform data (𝜎, 𝑠𝑟𝑐) and a message iden-

tifier 𝑒 such that 𝜎 is a signature on the pair (𝑐𝑚, 𝑠𝑟𝑐), but
(𝑐𝑚, 𝑒) was never sent by the sending user, the game aborts.

By the properties of Game 1, we know that the 𝑒 must have

been created by the sending user and so contains an encryp-

tion of the commitment 𝑐𝑚 that the sender linked to 𝑒 , and

therefore the receipt of the message will fail when the re-

ceiving user compares the commitment that is signed by the

platform to the value encrypted in 𝑒 . Therefore, this game is

indistinguishable from Game 3 because an adversary cannot

create an otherwise valid message that fails for this reason.

Similarly, the 𝑠𝑟𝑐 value is chosen by the platform and sent

over in the clear, so the platform gains no advantage by

signing a value other than the correct 𝑠𝑟𝑐 , because it already

knows it will cause the signature verification to fail.

We conclude that a platform gains no advantage by passing a

receiver something other than the platform data and message iden-

tifier outputted by following the honest protocol. We now present

two hybrids that show forwarded messages are indistinguishable

from authored messages.



G3: Game 3 is identical to Game 2, except that during goodSend,
a forwarded message 𝑚 with forwarding data 𝜎, 𝑠𝑟𝑐, 𝑐𝑚, 𝑟

that would normally be forwarded as 𝑒, 𝑐⊥ where 𝑐⊥ is a

commitment to ⊥ is instead forwarded with 𝑒, 𝑐 ′𝑚 where 𝑐 ′𝑚
is a new commitment to𝑚. The honest receiver evaluates the

message as if 𝑐 ′𝑚 was the original commitment to ⊥ (tracked

by the oracle). By the hiding properties of the commitment,

this is indistinguishable to an efficient adversary.

G4: Game 4 is identical to Game 3, but during goodSend, 𝑒 is
encrypted as (𝑚0,⊥, 𝑐 ′𝑚0

, 𝑟 ) rather than (𝑚0, fd, 𝑐⊥, 𝑟 ). This
is indistinguishable to an efficient adversary because of the

authenticated encryption properties of E.

The messages and associated data of Game 4 are all identically

distributed to authored messages. We now show that message con-

tents are hidden from the adversary as well.

G5: In this game, modify Game 4 so that when messages are sent

via goodSend, the associated message identifier corresponds

to an encryption of (𝑚1,⊥, 𝑐𝑚1
, 𝑟 ) and the commitment is

still the original commitment to𝑚0. The oracle keeps a ta-

ble of the corresponding (𝑚0,⊥, 𝑐𝑚0
, 𝑟 ) that should have

been sent and evaluates the results based on that value. By

the authenticated encryption properties of E, this is indis-
tinguishable from Game 4 because all that changes is the

decryption of 𝑒 .

G6: In this game, we switch the commitment sent in the clear,

𝑐𝑚0
, to instead be 𝑐𝑚1

, the commitment contained in 𝑒 that

commits to 𝑚1. The message is evaluated in the standard

way using the decryption of 𝑒 . This is indistinguishable from

Game 5 by the hiding properties of the commitment.

We now note that applying the same game hops 1 - 4 starting

from the game where 𝑏 = 1 instead of 0 are each indistinguishable

by the same arguments, and result in a game identically distributed

to Game 6. Therefore we have shown that both 𝑃𝐶𝑂𝑁𝐹 1
𝑆𝑇 ,E and

𝑃𝐶𝑂𝑁𝐹 0
𝑆𝑇 ,E are indistinguishable from Game 7 to an efficient ad-

versary, and so they are also indistinguishable from each other.

This means an efficient adversary can gain at most negligible

advantage in the PCONF game, and so Scheme 1 satisfies platform

confidentiality. □

B.2 Accountability – Proof of Theorem 4.2
Proof. Suppose for purposes of contradiction we have an ad-

versary that can win the 𝑠𝑟𝑐𝐵𝐼𝑁𝐷 game against Scheme 1 with

non-negligible probability. This means that an honest user suc-

cessfully received a message, but then the report of that message

failed.

First, we consider the conditions that would cause a report to

fail, and then show that each can happen with only negligible

probability assuming that the receipt was successful:

(1) The opening for the provided commitment was invalid.

This is checked by the receive protocol, and the protocol fails

if the opening is invalid, so this will happen with probability

zero on a message that was received successfully.

(2) The signature verification on the source and commitment

fails.

This exact check is also performed by the receive protocol,

so again there is zero probability that this check will fail on

a report of a validly received message.

(3) The decryption of the source ciphertext fails.

By definition of the scheme, the platform only ever signs

ciphertexts that it created, and can therefore be sure of their

validity. Therefore, the probability that this occurs is upper

bounded by the probability that an adversary could create a

valid signature without the keys of the platform. By the un-

forgeability properties of the signature scheme, this happens

with at most negligible probability.

We therefore conclude that the scheme satisfies accountability

because if a message is received successfully, all three possibilities

for a report failure happen with negligible probability. □

B.3 Unforgeability – Proof of Theorem 4.3
Proof. First, we remind ourselves of the conditions that must

be met for an adversary to win the 𝑢𝑛𝐹𝑂𝑅𝐺𝐸 game. After sending

some amount of messages between honest and malicious users,

the adversary must present forwarding data (𝜎, 𝑠𝑟𝑐, 𝑐𝑚, 𝑟 ) and a

message𝑚 to the platform such that:

(1) 𝑐𝑚 is a valid commitment with opening (𝑚, 𝑟 )
(2) 𝜎 is a valid signature on 𝑠𝑟𝑐 and 𝑐𝑚
(3) 𝑠𝑟𝑐 decrypts to an honest user𝑈 and metadatamd such that

𝑈 never sent𝑚 with metadata md during the adversary’s

initial queries.

We show that the probability an adversary can construct such

an output is negligible via a series of hybrid games.

G0: This is identical to the original 𝑢𝑛𝐹𝑂𝑅𝐺𝐸 game.

G1: We modify G0 to abort immediately and return 0 if 𝜎 was not

created by the platform oracle during the query portion of the

game. By the unforgeability of the signature, the probability

that the adversary can create a new valid signature without

the platform’s secret keys is negligible, and so this game is

indistinguishable from G0 to efficient adversaries.

G2: Suppose that the 𝑠𝑟𝑐 value decrypts to 𝑈 ,md. We modify

G1 to abort immediately if𝑈 did not send some message𝑚′

with commitment 𝑐𝑚 and metadata md. By definition of the

scheme, the platform would only create a valid signature

linking 𝑈 and md to the commitment 𝑐𝑚 that 𝑈 provided.

By G1, the signature must have been created by the platform,

so this additional condition happens with zero probability,

and we conclude G2 is indistinguishable from G1.

G3: Wemodify G2 to immediately abort if𝑚was not the plaintext

of the message sent when𝑈 sent 𝑐𝑚 and md. This can only

happen if an adversary can find a second opening (𝑚′, 𝑟 ′)
for 𝑐𝑚 that is different from the original opening created by

𝑈 . By the binding property of the commitment scheme, this

can happen with only negligible probability, and so G3 is

indistinguishable from G2 to an efficient adversary.

In a series of three hops, we have reached a game where if the

first two requirements described above are met and the 𝑈 revealed

is honest, then 𝑈 must have sent 𝑚 with metadata md at some

point during the adversary’s initial queries. This violates the third

requirement, and so we conclude that there is no way to win Game



3. We have shown that 𝑢𝑛𝐹𝑂𝑅𝐺𝐸 is indistinguishable from Game

3 to any efficient adversary, and so we can conclude that any ef-

ficient adversary can gain at most negligible advantage against

the 𝑢𝑛𝐹𝑂𝑅𝐺𝐸 game for Scheme 1, and therefore the scheme is

unforgeable. □

B.4 Deniability – Proof of Theorem 4.4
Proof. The 𝑈𝐹𝑜𝑟𝑔𝑒 and 𝑃𝐹𝑜𝑟𝑔𝑒 algorithms for this scheme are

presented in Figure 9.

Universal DeniabilityWe note that the forwarding data and tran-

script contents created during any particular query to the challenge

are discarded by definition of the scheme, so the output of any

particular challenge query is independent of the queries that came

before it. An efficient adversary can make at most a polynomial

number of challenge queries, and so it suffices to show that no

efficient adversary can gain a non-negligible advantage against

the 𝑈𝑛𝑖𝑣𝐷𝑒𝑛 game after seeing the output of a single query to the

challenge. First, we review the form of the forged and unforged

outputs of a query consisting of the path 𝑝𝑎𝑡ℎ = 𝑈0, ...,𝑈𝑘 , forging

user 𝑈𝐷 , metadata mds = md0, ...,md𝑘−1, and a message𝑚. The

output to this query will have the form

𝑜𝑢𝑡𝑝𝑢𝑡 = (𝑇𝑟𝑟,0, fd0,𝑇𝑟𝑠,0, fd ′0, ...,𝑇𝑟𝑟,𝑘−1, fd𝑘−1,𝑇𝑟𝑟𝑒𝑝 , (𝑠𝑟𝑐,md)) .
In the unforged version, we have that

𝑇𝑟𝑟,0, fd0 = (𝜎0, 𝑠𝑟𝑐0), (𝜎0, 𝑠𝑟𝑐0, 𝑐𝑚,0, 𝑟0)
where 𝑠𝑟𝑐0 ← Enc(k, (𝑈0,md0)), 𝑐𝑚,0, 𝑟0 ← Commit(𝑚), and
𝜎0 ← Sig(sk𝑠 , (𝑐𝑚,0, 𝑠𝑟𝑐0)).

All the forwarding data is the same for our scheme, so we have

fd
0
= fd ′

0
= ... = fd𝑘−1 = (𝜎0, 𝑠𝑟𝑐0, 𝑐𝑚,0, 𝑟0)

Then, for each 𝑖 = 1, ..., 𝑘 − 1, we have
𝑇𝑟𝑠,𝑖−1,𝑇𝑟𝑟,𝑖 = (𝑐𝑚,𝑖 , 𝑒𝑖 ), (𝜎𝑖 , 𝑠𝑟𝑐𝑖 )

Where 𝑐𝑚,𝑖 ← Commit(⊥), 𝑠𝑟𝑐𝑖 ← Enc(k, (𝑈𝑖 ,md𝑖 )), 𝜎𝑖 ←
Sig(sk𝑠 , (𝑐𝑚,𝑖 , 𝑠𝑟𝑐𝑖 )), and 𝑒𝑖 ← send((𝑚, fd

0
, 𝑐𝑚,𝑖 , 𝑟𝑖 ),𝑈𝑖 ,𝑈𝑖+1).

Finally, the report consists of (𝑇𝑟𝑟𝑒𝑝 , (𝑠𝑟𝑐,md)) where 𝑇𝑟𝑟𝑒𝑝 is

just the forwarding data, fd
0
, and (𝑠𝑟𝑐,md) = (𝑈0,md0).

The forged version is constructed in the exact same way, but each

𝑠𝑟𝑐𝑖 for 𝑖 = 0, ..., 𝑘 is instead computed from Enc(k, (𝑈𝐷 ,md𝑖 )), and
𝑒𝑖 ← SimE (𝑈𝑖 ,𝑈𝑖+1, (𝑚, fd0, 𝑐𝑚,𝑖 , 𝑟𝑖 )) (where fd0 is replaced with

⊥ for 𝑖 = 0).

We note that this means that except for the values of 𝑠𝑟𝑐𝑖 and 𝑒𝑖
for 𝑖 = 0, ..., 𝑘 − 1, the forged and unforged outputs are identical.

We now present a hybrid argument to show that the distributions

of the forged and unforged 𝑠𝑟𝑐𝑖s and 𝑒𝑖s are indistinguishable.

G0: This is identical to𝑈𝑛𝑖𝑣𝐷𝑒𝑛0, the unforged version of the game.

G1: We modify each 𝑒𝑖 to be outputted by SimE (𝑈𝑖 ,𝑈𝑖+1, ·) instead of
the output of an actual send from𝑈𝑖 to𝑈𝑖+1. By the deniability of
the messaging scheme E (Definition 3.8), this is indistinguishable

to any efficient adversary.

G2: We change the platform’s protocol so that each 𝑠𝑟𝑐𝑖 is an en-

cryption of 𝑈𝐷 ,md𝑖 rather than 𝑈𝑖 ,md𝑖 . By the CPA-security

of the platform’s encryption scheme P, these two ciphertexts

are indistinguishable to an efficient adversary, and therefore G1

is indistinguishable from G2. We further note that this game is

identical to𝑈𝑛𝑖𝑣𝐷𝐸𝑁 1
, the forged version of the game.

We can therefore conclude that Game 0, or 𝑈𝑛𝑖𝑣𝐷𝑒𝑛0 is indis-

tinguishable from Game 2, or𝑈𝑛𝑖𝑣𝐷𝑒𝑛1, to any efficient adversary,

and therefore any efficient adversary can have at most negligible

advantage against the𝑈𝑛𝑖𝑣𝐷𝑒𝑛 game for Scheme 1.

PlatformCompromiseDeniability Similar to universal deniabil-

ity, we note that it suffices to show that the advantage of an efficient

adversary who makes a single query to the challenge oracle must

be negligible.

We again consider a query of 𝑚, 𝑝𝑎𝑡ℎ = (𝑈0, ...,𝑈𝑘 ), forger
𝑈𝐷 , and mds = md0, ...,md𝑘−1 that results in the output 𝑇𝑟𝑟,0,

fd
0
,𝑇𝑟𝑠,0, fd ′

0
, ...,𝑇𝑟𝑟,𝑘−1, fd𝑘−1,𝑇𝑟𝑟𝑒𝑝 , (𝑠𝑟𝑐,md).

The output of the unforged version of the game is the same as

described in the Universal Deniability proof.

Intuitively, the scheme should satisfy platform compromise de-

niability because the behavior of the platform can be perfectly

imitated by anyone who has access to a leaked platform key. In this

case, by definition of the PForge algorithm (Figure 9) the output

follows the exact same distribution as the unforged version except

that each 𝑒𝑖 is the output of the simulator SimE (𝑈𝑖 ,𝑈𝑖+1, ·) rather
than actually being sent by the messaging scheme from𝑈𝑖 to𝑈𝑖+1.
By the deniability of the messaging scheme, this difference is indis-

tinguishable to any efficient adversary, and so we conclude that for

any efficient adversary A,

Advplatden
𝑆𝑇 ,E,PForge (A) ≤ negl (𝜆 ) .

Therefore, the scheme is deniable because it satisfies universal

and platform-compromise deniability.

□

C SECURITY PROOFS FOR
TREE-UNLINKABLE SOURCE-TRACKING

C.1 Confidentiality – Proof of Theorem 5.1
Proof. The proof follows immediately from the results of Lem-

mas C.1 and C.2. □

C.1.1 User Confidentiality.

Lemma C.1. Assuming the CPA-security of the platform’s El Gamal
scheme, any efficient adversary has negligible tree-unlinkable advan-
tage against the𝑈𝐶𝑂𝑁𝐹 game.

Proof. We note that conditioned on the 𝑠𝑟𝑐 ciphertext values

(𝐸1, 𝐸2) used in the forwarding data of messages sent via malRec,
the adversary’s view in𝑈𝐶𝑂𝑁𝐹 0 and𝑈𝐶𝑂𝑁𝐹 1 is identical.

It therefore suffices to show that the difference in ciphertexts

doesn’t provide the adversary with a non-negligible advantage. We

do this below by constructing a series of hybrid games to show

that 𝑈𝐶𝑂𝑁𝐹 0 and 𝑈𝐶𝑂𝑁𝐹 1 are indistinguishable to an efficient

adversary.

G0: This game is identical to the standard𝑈𝐶𝑂𝑁𝐹 0 game (when

𝑏 = 0).

G1: We modify malRec (oracle function that sends one of two

messages from an honest sender to a malicious receiver) so

that if the message would normally be sent with forwarding

data that includes the source ciphertext (𝐸1, 𝐸2), which is

an encryption of the source information 𝑆0 ∈ G, we instead



UForge(𝑝𝑎𝑡ℎ, 𝑝𝑎𝑡ℎ,𝑚,mds, pk)
(𝑈0, ...,𝑈𝑘 ) ← 𝑝𝑎𝑡ℎ

Send(𝑈𝐷 ,mds [0]) :

𝑇𝑟𝑠
⟨𝑈𝑎𝑢𝑡ℎ (𝑚,⊥), O𝑠 ) ⟩

fd,𝑇𝑟𝑟 ⟨𝑈𝑟𝑒𝑐 , O𝑠 ⟩

𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑟 , fd)
for 𝑗 = 1, ..., 𝑘 − 1 :
Send(𝑈𝐷 ,mds [ 𝑗 ]) :

𝑇𝑟𝑠
⟨Fwd(𝑈 𝑗 ,𝑈 𝑗+1,𝑚, fd), O𝑠 ) ⟩

𝑇𝑟𝑟
⟨Rec, O𝑠 ⟩

𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑠 , fd,𝑇𝑟𝑟 , fd)
Report(𝑚) :

𝑇𝑟𝑟𝑒𝑝
⟨𝑈𝑟𝑒𝑝 (fd), O𝑠 ⟩

𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑟𝑒𝑝 , (𝑈0,mds [0]))
return 𝑜𝑢𝑡𝑝𝑢𝑡

Rec
// Does nothing other than add 𝑝𝑑 to the transcript.

𝑝𝑑

Fwd(𝑈𝑠 ,𝑈𝑟 ,𝑚, fd)
(𝑐𝑚, 𝑟 ) ← Commit(⊥)
𝑒 ← SimE (𝑈𝑠 ,𝑈𝑟 , (𝑚, fd, 𝑐𝑚, 𝑟 ))

(𝑐𝑚, 𝑒)

Fwd and Rec are helper functions defin-
ing how the forger interacts with the
Send oracle during UForge.

PForge(𝑝𝑎𝑡ℎ,𝑚,mds, pk, sk)
(𝑈0, ...,𝑈𝑘 ) ← 𝑝𝑎𝑡ℎ

𝑠𝑟𝑐 ← Enc(k, (𝑈0,mds [0]))
(𝑐𝑚, 𝑟 ) ← Commit(𝑚)
𝜎 ← Sig(sk𝑠 , (𝑐𝑚, 𝑠𝑟𝑐)
𝑒 ← SimE (𝑈0,𝑈1, (𝑚,⊥, 𝑐𝑚, 𝑟 ))
𝑇𝑟𝑟 ← (𝜎, 𝑠𝑟𝑐)
fd ← (𝜎, 𝑠𝑟𝑐, 𝑐𝑚, 𝑟 )
𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑟 , fd)
for 𝑖 = 1, ..., 𝑘 − 1 :
𝑠𝑟𝑐′ ← Enc(k, (𝑈𝑖 ,mds [𝑖 ]))
(𝑐′𝑚, 𝑟 ′) ← Commit(⊥)
𝜎′ ← Sig(sk𝑠 , (𝑐′𝑚, 𝑠𝑟𝑐′)
𝑒 ← SimE (𝑈𝑖 ,𝑈𝑖+1, (𝑚, fd, 𝑐′𝑚, 𝑟 ′))
𝑇𝑟𝑠 ← (𝑐′𝑚, 𝑒),𝑇𝑟𝑟 ← (𝜎′, 𝑠𝑟𝑐′)
𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑠 , fd,𝑇𝑟𝑟 , fd)

𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (fd, (𝑈0,mds [0]))
return 𝑜𝑢𝑡𝑝𝑢𝑡

Figure 9: Forgery Algorithms for Scheme 1.

replace (𝐸1, 𝐸2) with a fresh encryption of 𝑆0, (𝐸 ′
1
, 𝐸 ′

2
), before

sending.

This means that the only difference between G0 and G1

is that instead of seeing a re-randomization of the orig-

inal source ciphertext upon receipt, the adversary sees a

re-randomization of a fresh encryption of the same value.

These two ciphertexts follow the same distribution, and are

therefore indistinguishable to the adversary.

G2: We further modify malRec so that instead of a fresh en-

cryption of the original source 𝑆0, we make 𝐸 ′
1
, 𝐸 ′

2
a fresh

encryption of 𝑆1, the user/metadata pair that would have

been used in the case that 𝑏 = 1. Because the adversary does

not know the platform’s secret key, this is indistinguishable

from Game 1 by the CPA security of El Gamal encryption.

G3: This is the standard 𝑈𝐶𝑂𝑁𝐹 1 game. The only difference

in the adversary’s view between Games 2 and 3 is that the

source stored in the forwarding data used to send the mes-

sage that the adversary receives during a call to malRec is
a fresh encryption of 𝑆1 in the case of Game 2, and a re-

randomized encryption of 𝑆1 in the case of Game 3. By the

same argument as the hop from Game 0 to Game 1, this

difference is indistinguishable to an efficient adversary.

We have shown that in each hop, the two consecutive games

are indistinguishable to an efficient adversary. We can therefore

conclude that 𝑈𝐶𝑂𝑁𝐹 0 is indistinguishable from𝑈𝐶𝑂𝑁𝐹 1 to an

efficient adversary, and therefore Scheme 2 satisfies tree-unlinkable

user confidentiality. □

C.1.2 Platform Confidentiality.

Lemma C.2. Assuming that the messaging system’s encryption
scheme E is a secure authenticated encryption scheme, the proof sys-
tem used to prove attribute values on messages is zero-knowledge, and

the algebraic MAC presented in [5] satisfies blind issuance and anony-
mous presentation properties, then the advantage of any efficient
platform-confidentiality adversary for Scheme 2 is negligible.

Note that the proof relies on the blind issuance and anonymity

properties of the algebraic MAC presented in [5]. These are for-

mally defined in [4] and discussed in [5]. Briefly, blind issuance

guarantees that when the platform and user interact to issue a MAC

on attributes known only to the user, the interaction is a secure

two-party computation against malicious adversaries in which the

user gets a valid MAC on their attributes and the platform learns

nothing about the user’s hidden attributes or the MAC that they re-

ceive. Anonymity guarantees that a user can prove to the platform

they hold a valid MAC on particular attributes without revealing

the MAC or hidden attributes to the platform.

Proof. We show that the two 𝑃𝐶𝑂𝑁𝐹 games are indistinguish-

able to an efficient adversary via a series of game hybrids.

The first few hybrids show that the adversary can’t gain a non-

negligible advantage by not following the correct protocol. We

begin by using the same approach as in the proof of Lemma B.2 to

show that the adversary gains no advantage from calling goodRec
(oracle function to make an honest user recieve a message from an-

other honest user) with a message identifier 𝑒 that is not associated

with the inputted𝑚𝑖𝑑 or correct platform data 𝑝𝑑 .

G0: This is identical to the standard 𝑃𝐶𝑂𝑁𝐹 0 game for 𝑏 = 0.

G1: We add the additional condition to goodRec to abort imme-

diately if the inputted 𝑒 value has never been outputted by

the sender𝑈𝑠 as part of a message to the receiver𝑈𝑟 at any

point in the game. This is indistinguishable from G0 because

finding a valid 𝑒 that was not sent from𝑈𝑠 to𝑈𝑟 contradicts

the authenticated encryption properties of the messaging



scheme, and can therefore happen with only negligible prob-

ability.

We note that otherwise, 𝑒 must have resulted from a call to

goodSend (oracle function to make an honest user send a

message to another honest user) between 𝑈𝑠 and 𝑈𝑟 earlier

in the game, and so there exists some 𝑚𝑖𝑑 ′′ in 𝑇𝑠𝑒𝑛𝑑 that

stores 𝑒 . The only difference between calling goodRec with
the correct pair (𝑚𝑖𝑑 ′′, 𝑒) instead of (𝑚𝑖𝑑, 𝑒) is that the 𝑡𝑖𝑑
will always be⊥, which only weakens the adversary’s power
because it can no longer see the message contents by having

the message reported, so we can assume that 𝑒 = 𝑒 ′ in all

other cases.

G2: Consider the contents of the platform data (𝐶𝐴, 𝑠𝑟𝑐,𝐶 ′𝐹 ) that
the platform passes to the receiver. In the correct protocol,

the platform would pass over identical 𝐶𝐴 and 𝐶 ′
𝐹
values to

the ones that were presented by the sender (The 𝑠𝑟𝑐 cipher-

text is chosen by the platform and is allowed to be unique for

every new message, so it doesn’t matter what this is chosen

to be). We modify G1 to immediately abort if 𝐶𝐴 and 𝐶 ′
𝐹
are

not identical to the commitments presented by the sender.

This game is indistinguishable from Game 1, because the

openings of𝐶𝐴 and𝐶 ′
𝐹
are encrypted with the message plain-

text in 𝑒 , and so the receive function will always fail when

the receiver checks the openings against the commitments

that the platform provides.

We have ensured that the platform must act honestly and pass

the correct information between protocols. We now show that it

cannot act dishonestly during either of the interactive protocols

getUser or RecMsg.

G3: We modify G2 to immediately abort if the platform gives the

user an invalid MAC for the expected attributes in goodRec,
malSend, or getUser.
By the blind issuance properties of the MAC (with no hidden

attributes in the case ofNewUser), the adversary can achieve
this and still create a correct issuance proof with only negli-

gible probability, and so this game is indistinguishable from

Game 2.

We’ve now ensured that the platform interacts with the user

according to the expected protocol.

G4: We modify Game 3 so that each 𝑒 sent between honest users

is just an encryption of a default value of all zeroes, and the

oracle passes the actual information between the two users.

Since the adversary has non of the secrete keys for these

interactions, this game is indistinguishable from Game 3 by

the authenticated encryption properties of E.
G5: We modify G4 so that during calls to goodSend and goodRec

on an unrevealable message, i.e. one with 𝑡𝑖𝑑 set to ⊥, we
replace the receiving proof output by redeem and the re-

randomization proof 𝜋𝑟 output by present with the outputs

of the zero-knowledge simulator for the proofs. By the zero-

knowledge properties of the proof system, this is indistin-

guishable from a real proof, and so the game is indistinguish-

able from G4.

G6: We alter each call to goodSend with 𝑡𝑖𝑑 = ⊥ to use the

authoring data for the currently sending user as the MAC

that gets presented to the platform when the message is sent

rather than the correct forwarding data for the message (if it

is a forward). The commitments 𝐶𝐴 and 𝐶 ′
𝐹
still commit to

the same values that would have been used in the standard

game. By the anonymity of the MAC, the platform cannot

distinguish between a presentation of the authoring data and

the forwarding data, because both are valid MACs. Therefore

this game is indistinguishable from G5.

G7: We modify the ciphertexts (𝐴1, 𝐴2), (𝐵1, 𝐵2), (𝐶1,𝐶2) to just

be encryptions of the default values⊥,𝐺⊥,𝐺⊥ when goodRec
is called on a message with 𝑡𝑖𝑑 = ⊥. By the blind-issuance

property of the keyed-verification anonymous credentials

scheme [5], this is indistinguishable to the platform from

issuing a MAC on the expected values.

G8: Finally, we change𝐶𝐴 and𝐶 ′
𝐹
in calls to goodSendwith 𝑡𝑖𝑑 =

⊥ so that they commit to the default message ⊥ and default

source𝐺⊥,𝐺⊥. By the hiding properties of the commitment,

this is indistinguishable from commitments for the actual

message and source values.

We now note that applying the same hybrids described in Games

1-8 starting from the 𝑃𝐶𝑂𝑁𝐹 game where 𝑏 = 1 instead of 0 are

each indistinguishable by the same arguments, and result in a game

identically distributed to Game 8, because all message interactions

with 𝑡𝑖𝑑 ≠ ⊥ are identically distributed in both games by definition,

and we have altered the 𝑡𝑖𝑑 = ⊥ case to use the same authoring

data, commit to the same attributes, and receive a MAC on the

same values. Therefore we have shown that both 𝑃𝐶𝑂𝑁𝐹 1
𝑆𝑇 ,E and

𝑃𝐶𝑂𝑁𝐹 0
𝑆𝑇 ,E are indistinguishable from Game 8 to an efficient ad-

versary, and so they are also indistinguishable from each other.

This means an efficient adversary can gain at most negligible

advantage in the PCONF game, and so Scheme 2 satisfies platform

confidentiality. □

C.2 Accountability – Proof of Theorem 5.2
Intuitively, because the receiver of a message has complete control

over what commitments and attributes it receives a MAC on, our

scheme satisfies perfect accountability.

Proof. As a reminder, the 𝑠𝑟𝑐𝐵𝐼𝑁𝐷 game challenges an adver-

sary with the ability to send messages with content of their choice

between any two users and completely control some set of malicious

users to create a message and associated content that is successfully

received by an honest user, but then cannot be reported.

The tree-unlinkable scheme’s definition of Report provides five
opportunities for failure. We list these in order of occurrence:

(1) The platform’s call to blindVf fails to verify the validity of 𝜋𝑝 ,
the proof that the reporter has a valid MAC for the message

that they are reporting.

(2) The platform’s call to Vf fails to verify the validity of 𝜋𝑟 ,

the proof that the commitments provided by the reporter

contain correct re-randomizations of the original credentials.

(3) The first equality check fails (𝐶 ′
𝑓
≠ (𝐺𝑧𝑦3𝐺

𝑑
𝑑
,𝐺𝑧𝑦1𝐸1,𝐺

𝑧
𝑦2
𝐸2).

In other words, the opening 𝑜 𝑓 is not a valid opening for the

commitment 𝐶 ′
𝑓
.

(4) The second equality check fails (𝑑 ≠ 𝑑 ′).
(5) The third and final equality check fails (𝑑 = ⊥).



We’ll show that assuming the platform and reporter honestly

received the message being reported, each of these failures can

happen with zero probability.

𝜋𝑝 fails to verify. Because the platform and user honestly fol-

lowed the receipt protocol, a successful receipt guarantees that the

reporter has a valid MAC on the attributes being reported. If a user

was unable to create a valid presentation proof for this MAC, it

would contradict the correctness of the MAC presentation of [5].

We conclude that this failure happens with zero probability.

𝜋𝑟 fails to verify. All of the relationships proved in 𝜋𝑟 are con-

structed by the user during the present protocol. Because the user
is honest and follows the protocol, they ensure that all of these

relationships are valid, and so an incorrect proof would violate the

completeness of the proof scheme, so this failure also happens with

zero probability.

The opening to the commitment𝐶 ′
𝑓
is invalid. By definition of

the scheme, the reporting user must have received a valid opening

(𝑧𝐹 , 𝑑, 𝐸1, 𝐸2) for 𝐶𝐹 , meaning that

𝐶𝐹 = (𝐶𝑑 ,𝐶𝐸1 ,𝐶𝐸2 ) = (𝐺
𝑧𝐹
𝑦3
𝐺𝑑
𝑑
,𝐺
𝑧𝐹
𝑦1 𝐸1,𝐺

𝑧𝐹
𝑦2
𝐸2).

When the honest reporter follows the present protocol, 𝐶 ′
𝐹
and

𝑜𝐹 are computed as

𝐶 ′𝐹 = (𝐶𝑑𝐺𝑧
′
𝑦3,𝐶𝐸1𝐺

𝑧′
𝑦1
𝐺𝑟𝑛𝑑 ,𝐶𝐸2𝐺

𝑧′
𝑦2
𝑌 𝑟𝑛𝑑 )

= (𝐺𝑧𝐹
𝑦3
𝐺𝑑
𝑑
𝐺𝑧
′
𝑦3,𝐺

𝑧𝐹
𝑦1 𝐸1𝐺

𝑧′
𝑦1
𝐺𝑟𝑛𝑑 ,𝐺

𝑧𝐹
𝑦2
𝐸2𝐺

𝑧′
𝑦2
𝑌 𝑟𝑛𝑑 )

= (𝐺𝑧𝐹 +𝑧
′

𝑦3
𝐺𝑑
𝑑
,𝐺
𝑧𝐹 +𝑧′
𝑦1 𝐸1𝐺

𝑟𝑛𝑑 ,𝐺
𝑧𝐹 +𝑧′
𝑦2

𝐸2𝑌
𝑟𝑛𝑑 )

and 𝑜𝐹 = (𝑧𝐹 + 𝑧′, 𝑑, (𝐸1𝐺𝑟𝑛𝑑 , 𝐸2𝑌 𝑟𝑛𝑑 )), so 𝑜𝐹 is guaranteed to be

the correct opening for 𝐶 ′
𝐹
, so this check fails with zero probability

because the reporter honestly follows the protocol and successfully

received the original commitment.

𝑑 ≠ 𝑑 ′. This condition only occurs if the reporter presents a cre-

dential for a message other than the one being reported. This will

never happen because the reporter is honest.

𝑑 = ⊥. During a message receipt, the user checks that the message

being received is not equal to ⊥, and aborts otherwise, so this will

never happen because the message being reported was successfully

received.

In conclusion, we’ve shown that assuming a message was re-

ceived successfully by an honest user, a report of that message can

fail with zero probability, so the scheme satisfies perfect account-

ability. □

C.3 Unforgeability – Proof of Theorem 5.2
Proof. The unforgeability of our scheme will depend on the

extractability of the proofs used. Note that the blind issuance prop-

erties and unforgeability of the anonymous credentials used in [5]

assume that the system used for proofs of knowledge satisfies a

strong extractability property, in particular, that we can extract

the opening (𝑧, 𝑑, 𝐸1, 𝐸2) of the commitments 𝐶𝑑 ,𝐶𝐸1 ,𝐶𝐸2 used

in the MAC presentation proof 𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , which can be used to

re-compute the attributes of the MAC being presented. Since we

use their scheme, whose security relies on the random oracle and

generic group models, we inherit their use of these models in our

scheme. Other possibilities for instantiating such a proof system

are discussed in Appendix D of [4].

The proof is a bit long, so we will first lay out the high-level

intuition. Suppose an adversarywins the game and presents a report

to the platform on an (𝑚,𝑈 ,md) tuple that was never actually sent

by the honest user𝑈 .

We have two possibilities. On one hand, the adversary could have

achieved this by acting dishonestly during the last report interaction

in order to report a message that it didn’t actually have forwarding

credentials for. On the other hand, the adversary may have correctly

followed the standard report protocol, but was able to succeed

because it had valid credentials that were created dishonestly earlier

in the game.

In this second case, we can then look at the point in time when

the adversary received these credentials earlier in the game. Once

again, these could have been obtained by the adversary acting

dishonestly to create credentials that it didn’t actually have, or this

receipt could have been performed honestly because the necessary

credentials were created earlier in the game.

In this way, we can trace back through the adversary’s interac-

tions with the oracle to identify the first interaction that resulted

in a set of forwarding credentials with an honest source user that

didn’t originate from a call to goodAuth.
We consider all the places where this could have happened, and

then in the actual proof, remove these opportunities in a series of

game hops:

(1) While the adversary was sending a message.
If the incorrect credentials are created when an adversary is

sending a message (i.e., during a call to malSend), this could
happen because either the adversary is able to prove owner-

ship of a MAC that was never created by the platform (ad-

dressed in G1 in the proof below), fake a proof that the new

commitments stored in 𝐶 ′
𝐹
are correct re-randomizations of

the original attributes (G3), or find an alternate opening of

the commitments it used to prove the validity of its forward-

ing credentials, 𝐶𝐹 and 𝐶 ′
𝐹
(G4).

(2) While the adversary was receiving a message.
If the incorrect credentials are created when an adversary re-

ceives a message, this means that either the adversary found

alternate openings to the commitments of the attributes it

can receive credentials from, 𝐶𝐹 and 𝐶𝐴 (Games G4 and G5,

respectively), it faked a proof that the attribute ciphertexts

were a valid re-randomization of𝐶𝐴 or𝐶𝐹 (G2), or it received

a valid MAC on different values by acting dishonestly during

the blind issuance protocol for the MAC (G1).

(3) While the adversary was reporting the message.
A valid report follows the same approach as a send, so it has

the same opportunities for dishonest action, which we cover

above.

(4) While the adversary was creating a new adversary-controlled
user.
The last potential place where incorrect credentials could

have been created is during a call to getUser. However, the
newUser function is non-interactive, so the adversary cannot
act dishonestly in order to alter the credentials they receive.



In each game, we remove one of these opportunities for dishonest

action and show that the resulting game is indistinguishable from

the previous game to an efficient adversary. This means that in

the final game, the adversary has no opportunity to create fake

credentials, and so cannot win the game.

We present the games below.

G0: This game is identical to the standard 𝑢𝑛𝐹𝑂𝑅𝐺𝐸 game.

G1: This game is identical to the 𝑢𝑛𝐹𝑂𝑅𝐺𝐸 game, but we add

a setM𝑀𝐴𝐶 , that keeps track of all attributes that the plat-

form has issued a MAC on. To do this, we modify the re-

ceiving interaction so that when a proof 𝜋 provided by the

receiver is verified by the platform, we run the knowledge

extractor to extract witnesses (ℎ, 𝑟1, 𝑟2, 𝑟3, 𝑟𝑛𝑑, 𝑑𝐴, 𝑧𝐴, 𝑑𝐹 , 𝑧𝐹 )

and abort if extraction fails. We use these witnesses to de-

crypt (𝐴1, 𝐴2), (𝐵1, 𝐵2), (𝐶1,𝐶2) to get attributes 𝑀, 𝐸1, 𝐸2,

i.e.𝐴2/𝐴ℎ
1
, 𝐵2/𝐵ℎ

1
,𝐶2/𝐶ℎ

1
, respectively.We then add (𝑀, 𝐸1, 𝐸2)

toM𝑀𝐴𝐶 . The extractor fails with negligible probability, so

this game is indistinguishable from Game 0.

G2: We further modify so that every time a message is sent or

reported, if the proof output by present verifies, we again run
the proof of knowledge extractor on the MAC presentation

proof 𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 to extract attributes𝑀, 𝐸1, and 𝐸2 and abort if

extraction fails. Once again, failure happens with negligible

probability and this is indistinguishable from G1.

G3: After extracting the attributes𝑀, 𝐸1, 𝐸2 as described in G2,

we immediately abort if (𝑀, 𝐸1, 𝐸2) ∉M𝑀𝐴𝐶 .

If the game aborts due to the above reason, it means that the

user proved ownership of a MAC that the platform never

created. (Note that we’re not requiring that the attributes be

in any way correct at this stage, we are just looking directly

at the exact attributes of the MACs that the platform created

and comparing them to the attributes that the adversary tries

to prove it has. This can happen with negligible probability

due to the unforgeability of the anonymous credentials of

[5], and therefore G3 is indistinguishable from G2.

G4: In this next game, every time an individual presents a valid

receiving proof to the platform, we run the extractor to

get witnesses ℎ, 𝑟1, 𝑟2, 𝑟3, 𝑟𝑛𝑑, 𝑑𝐴, 𝑧𝐴, 𝑑𝐹 , 𝑧𝐹 . We immediately

abort if the extractor fails. By the extractability of the proof

system, a valid proof fails extraction with negligible prob-

ability and so this game is indistinguishable to the forgery

adversary. On success, we are guaranteed that the properties

included in the proof are guaranteed to hold, i.e. that 𝑃1∧𝑃𝐴
or 𝑃1 ∧ 𝑃𝐹 as described in Figure 5 is satisfied.

We also note that by this check, if 𝑃1 ∧ 𝑃𝐴 holds, then we

are guaranteed that:

𝐴1, 𝐴2 = 𝐺
𝑟1 , 𝐻𝑟1𝐺

𝑑𝐴
𝑑

𝐵1, 𝐵2 = 𝐺
𝑟2 , 𝐻𝑟2𝐺𝑟𝑛𝑑𝐸

(𝐴)
1

𝐶1,𝐶2 = 𝐺
𝑟3 , 𝐻𝑟3𝑌 𝑟𝑛𝑑𝐸

(𝐴)
2

𝐶𝐴 = 𝐺
𝑑𝐴
𝑑
𝐺
𝑧𝐴
𝑦3

𝐶𝑑 = 𝐺
𝑑𝐹
𝑑
𝐺
𝑧𝐹
𝑦3

So, the encryptions are valid encryptions of 𝑑𝐴 and a re-

randomization of (𝐸1, 𝐸2) under public key 𝐻 .

Similarly, if 𝑃1 ∧ 𝑃𝐹 holds, then we are guaranteed that

𝐴1, 𝐴2 = 𝐺
𝑟1 , 𝐻𝑟1𝐺

𝑑𝐹
𝑑

𝐵1, 𝐵2 = 𝐺
𝑟2 , 𝐻𝑟2𝐺𝑟𝑛𝑑𝐶𝐸1/𝐺

𝑧𝐹
𝑦1

= 𝐻𝑟2𝐺𝑟𝑛𝑑𝐺
𝑧𝐹
𝑦1 𝐸1/𝐺

𝑧𝐹
𝑦1

= 𝐻𝑟2𝐺𝑟𝑛𝑑𝐸1

𝐶1,𝐶2 = 𝐺
𝑟3 , 𝐻𝑟3𝑌 𝑟𝑛𝑑𝐶𝐸2/𝐺

𝑧𝐹
𝑦2

= 𝐻𝑟3𝑌 𝑟𝑛𝑑𝐺
𝑧𝐹
𝑦2 𝐸2/𝐺

𝑧𝐹
𝑦2

= 𝐻𝑟3𝑌 𝑟𝑛𝑑𝐸2

𝐶𝑑 = 𝐺
𝑑𝐹
𝑑
𝐺
𝑧𝐹
𝑦3

𝐶𝐴 = 𝐺
𝑑𝐴
𝑑
𝐺
𝑧𝐴
𝑦3

So, this guarantees that in the forwarded case, the encrypted

values must be an encryption of 𝑑𝐹 and a re-randomization

of (𝐸1, 𝐸2), where (𝑧𝐹 , 𝑑𝐹 , 𝐸1, 𝐸2) is a valid opening for the

commitment 𝐶𝐹 .

G5: In this game, we check the sending/reporting proofs in the

interaction. When given valid 𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 and 𝜋𝑟𝑒𝑟𝑎𝑛𝑑 proofs

associated with commitments 𝐶𝐹 = (𝐶𝑑 ,𝐶𝐸1 ,𝐶𝐸2 ) and 𝐶 ′𝐹 =

(𝐶 ′
𝑑
,𝐶 ′
𝐸1
,𝐶 ′
𝐸2
), we apply the proof extractor to extract the

witnesses (𝑧′, 𝑟𝑛𝑑) from 𝜋𝑟𝑒𝑟𝑎𝑛𝑑 , aborting on failure. By the

strong extractability property, this extraction fails with only

negligible probability and otherwise we are guaranteed that

the statement in 𝜋𝑟𝑒𝑟𝑎𝑛𝑑 holds true for the provided values

of 𝐶𝐹 and 𝐶 ′
𝐹
.

Moreover, this guarantees that if (𝑧, 𝑑, 𝐸1, 𝐸2) is the open-
ing of 𝐶𝐹 extracted from the associated presentation proof

𝜋𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , then we must have

𝐶 ′
𝑑
= 𝐶𝑑𝐺

𝑧′
𝑦3

= 𝐺𝑧+𝑧
′

𝑦3
𝐺𝑑
𝑑

𝐶 ′𝐸1 = 𝐺
𝑧′
𝑦1
𝐺𝑟𝑛𝑑𝐶𝐸1 = 𝐺

𝑧+𝑧′
𝑦1

𝐺𝑟𝑛𝑑𝐸1

𝐶 ′𝐸2 = 𝐺
𝑧′
𝑦2
𝑌 𝑟𝑛𝑑𝐶𝐸2 = 𝐺

𝑧+𝑧′
𝑦2

𝑌 𝑟𝑛𝑑𝐸2

and so (𝑧 + 𝑧′, 𝑑, 𝐸1𝐺𝑟𝑛𝑑 , 𝐸2𝑌 𝑟𝑛𝑑 ) must be a valid opening

for 𝐶 ′
𝐹
.

By the requirements of Game 3, the sending user must have

had a valid MAC on (𝑑, 𝐸1, 𝐸2), and so this ensures that the

opening 𝐶 ′
𝐹
must be a re-randomization of attributes that

the user has a valid MAC for.

G6: We have shown that the attributes used to prove and create

MACs must be internally consistent (within a send/receive

operation), but we now show that they need to consistent

across transactions too. Let G4 be identical to G3 except

for the modification that every time we have a valid pair

of sending proofs 𝜋𝑝 and 𝜋𝑟 , we extract the opening (𝑧 +
𝑧′, 𝑑, 𝐸1𝐺𝑟𝑛𝑑 , 𝐸2𝑌 𝑟𝑛𝑑 ) of 𝐶 ′𝐹 from the sending proof In the

same manner as G3. Then, during the corresponding receiv-

ing proof that uses the same 𝐶 ′
𝐹
and some arbitrary 𝐶𝐴 , we

once again extract thewitnesses (ℎ, 𝑟1, 𝑟2, 𝑟3, 𝑟𝑛𝑑, 𝑑𝐴, 𝑧𝐴, 𝑑𝐹 , 𝑧𝐹 ),
aborting on failure. By the extractability of the proof system,

extraction fails with negligible probability, making this game

indistinguishable from G5.



G7: We modify G6 so that after extracting the above witnesses,

we use them to compute the new opening (𝑧𝐹 , 𝑑𝐹 , 𝐸 ′1 =

𝐶𝐸1/𝐺
𝑧𝐹
𝑦1 , 𝐸

′
2
= 𝐶𝐸2/𝐺

𝑧𝐹
𝑦2 .

We abort if these openings are not the same, i.e. if (𝑧 +
𝑧′, 𝑑, 𝐸1𝐺𝑟𝑛𝑑 , 𝐸2𝑌 𝑟𝑛𝑑 ) ≠ (𝑧𝐹 , 𝑑𝐹 , 𝐸 ′1, 𝐸

′
2
).

We first note that 𝐸 ′
1
and 𝐸 ′

2
are completely determined by

the value of 𝑧𝐹 , so it suffices to show that we must have

(𝑧+𝑧′, 𝑑) = (𝑧𝐹 , 𝑑𝐹 ). If this is not the case, this means that the

adversary was able to find distinct pairs (𝑧1, 𝑑1) and (𝑧2, 𝑑2)
such that 𝐺

𝑧1
𝑦3𝐺

𝑑1
𝑑

= 𝐺
𝑧2
𝑦3𝐺

𝑑2
𝑑

however, this implies that the

adversary knows the discrete log of 𝐺𝑦3 with respect to 𝐺𝑑
or vice versa, both of which we assume are unknown, so we

conclude that finding two such pairs will happen with only

negligible probability, and so the game is indistinguishable

from G6.

G8: We just showed that the openings of the forwarding commit-

ment created by the sender can’t be changed by the receiver.

We will now do the same for authoring commitments. We

note that for authoring commitments, the source encryption

is chosen by the platform and verified in the clear, so we

need only ensure that the message stored in 𝐶𝐴 created by

an honest sender stays constant.

We modify G7 by adding the requirement that each time

goodAuth or goodFwd is called, we save the message 𝑚

(which could be ⊥) that is associated with the authoring

commitment𝐶𝐴 that gets presented to the platform. Then, if

the receiving proof verifies, we extract witnesses 𝑧𝐴 and 𝑑𝐴
from the proof, aborting if the extraction fails. This happens

with negligible probability, so this game is indistinguishable

from G7.

G9: After extracting witnesses 𝑧𝐴 and 𝑑𝐴 in G8, we abort if

𝐻 (𝑚) ≠ 𝑑𝐴 .
As before, if this is the case, then after being provided a valid

opening (𝑧, 𝑑) by the honest sender, the adversary found

some new (𝑧𝐴, 𝑑𝐴) such that𝐺𝑧𝑦3𝐺
𝑑
𝑑
= 𝐺

𝑧𝐴
𝑦3𝐺

𝑑𝐴
𝑑

. By the same

reasoning as the previous game, this can be achieved only

with negligible probability, and therefore this new game is

indistinguishable from G4 to an efficient adversary.

By the definition of G9, we know that if a message is success-

fully sent or reported with attributes 𝑑, 𝐸1, 𝐸2, then either the ad-

versary must have previously received a message with attributes

𝑑, 𝐸1𝐺
𝑟 , 𝐸2𝑌

𝑟
for some random 𝑟 , or in the case of sending, (𝐸1, 𝐸2)

must decrypt to the sender’s identity. (If the attributes came from

an unused forwarding or authoring commitment, we would have

𝑑 = ⊥ and the protocol would automatically fail).

Because the decryption 𝐸2𝑌
𝑟 /(𝐸1𝐺𝑟 )𝑦 will be constant for any

value of 𝑟 , we can trace back through these extracted receipts to the

first time a MAC on attributes (𝑑, 𝐸1, 𝐸2) was created. This must

either have been the result of a call to goodAuth or malSend. If it
was from malSend, then the sender wasn’t an honest user, and so

such attributes cannot be used to win the forgeability game.

Otherwise, if it was in goodAuth, then the tuple must have been

added toM𝑠𝑒𝑛𝑡 , and so similarly can’t be used to win the game.

Therefore, we have shown that there is no way for the adversary

to win Game 9. Because we showed that Game 9 was indistinguish-

able from the 𝑢𝑛𝐹𝑂𝑅𝐺𝐸 game. We can conclude that any efficient

adversary will have negligible advantage against 𝑢𝑛𝐹𝑂𝑅𝐺𝐸, and

therefore Scheme 2 is unforgeable. □

C.4 Deniability – Proof of Theorem 5.4
Proof. We present the forgery protocols in Figure 10.

Universal Deniability
As in the proof of the first scheme, we note that the forged and

unforged outputs have identical distributions conditioned on the

values of each 𝑠𝑟𝑐 , the source user’s authoring data 𝑎𝑑 , and the

message scheme ciphertexts 𝑒 .

G0: This game is identical to the standard𝑈𝑛𝑖𝑣𝐷𝑒𝑛0 game when

𝑏 = 0, and the output is unforged.

G1: We modify G0 so that each 𝑠𝑟𝑐 value created by the platform

is an encryption of𝑈𝐷 and the relevant metadata, rather than

the true unforged user (This includes the authoring data 𝑎𝑑

used to send the first message). These ciphertexts are never

decrypted by the adversary, who doesn’t have access to the

platform’s secret keys, and so this game is indistinguishable

from G1 due to the CPA-security of ElGamal encryption [31].

G2: We modify each 𝑒𝑖 to be the result of SimE (𝑈𝑖 ,𝑈𝑖+1, ·) in-
stead of using the actual messaging scheme. This is indis-

tinguishable from G1 by the deniability of the messaging

scheme.

G3: We change G2 to use the authoring data 𝑎𝑑 of the forging

user 𝑈𝐷 instead of the authoring data of 𝑈0 to author the

first message on the path. Due to the changes made in G1,

both 𝑎𝑑s have the form (𝐸1, 𝐸2), 𝜎 , where (𝐸1, 𝐸2) is an ElGa-

mal encryption of𝑈𝐷 , and 𝜎 is a MAC on ⊥. The ciphertext
portion of the authoring data appears in re-randomized form

in the commitment𝐶 ′
𝐹
, contained in the platform data. How-

ever, because both are re-randomized before appearing in

the transcript, they have the exact same distribution, and so

this game is identical to G2.

We now observe that because we have switched the 𝑠𝑟𝑐 values,

authoring data, and message scheme ciphertexts, the output of G3 is

identically distributed to the forged version of the game,𝑈𝑛𝑖𝑣𝐷𝑒𝑛1.

We conclude that the two games are indistinguishable to any effi-

cient adversary, and so Scheme 2 satisfies universal deniability.

□

Platform Compromise DeniabilityWe note that the only differ-

ences between the forged and unforged versions of the 𝑃𝑙𝑎𝑡𝐷𝑒𝑛

game is that a fresh version of the authoring data on the same

values is used to send the first message, and the 𝑒s are created using

the simulator SimE in the forged version, but are created using the

keys of users along the path in the real version.

By the same arguments as for the universal deniability case,

changing𝑈𝑛𝑖𝑣𝐷𝑒𝑛0 by swapping out the true authoring data 𝑎𝑑 of

𝑈0 for a fresh version of the authoring data results in an identical

game because the source ciphertexts are re-randomized before

appearing in the transcript, and by the deniability of the underlying

messaging scheme, replacing the 𝑒s resulting from calls to send
with simulated values output from SimE results in a game that

is indistinguishable to an efficient adversary, and also identical

to the forged version of the game, 𝑈𝑛𝑖𝑣𝐷𝑒𝑛1. We conclude that

any efficient adversary can achieve at most a negligible advantage



UForge(𝑝𝑎𝑡ℎ, 𝑝𝑎𝑡ℎ,𝑚,mds, pk)
(𝑈0, ...,𝑈𝑘 ) ← 𝑝𝑎𝑡ℎ

ad ← 𝑇𝑎𝑢𝑡ℎ [𝑈𝐷 ]
Send(𝑈𝐷 ,mds [0]) :

(𝑒,𝑇𝑟𝑠 ) ⟨𝑈𝑎𝑢𝑡ℎ (𝑚,𝑎𝑑), O𝑠 ) ⟩

(𝑚, fd
0
,𝑇𝑟𝑟 ) ⟨𝑈𝑟𝑒𝑐 , O𝑠 ⟩

𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑟 , fd0)
for 𝑗 = 1, ..., 𝑘 − 1 :
Send(𝑈𝐷 ,mds [ 𝑗 ]) :

(𝑒,𝑇𝑟𝑠 ) ⟨𝑈𝑓 𝑤𝑑 (𝑚, fd 𝑗−1), O𝑠 ) ⟩

(𝑚, fd 𝑗 ,𝑇𝑟𝑟 ) ⟨𝑈𝑟𝑒𝑐 , O𝑠 ⟩

𝑚′ ← receive(𝑈𝐷 ,𝑈𝐷 , 𝑒)
𝑒′ ← SimE (𝑈 𝑗 ,𝑈 𝑗+1,𝑚

′)
(𝑒, 𝑖𝑛𝑓 𝑜) ← 𝑇𝑟𝑠

𝑇𝑟𝑠 ← (𝑒′, 𝑖𝑛𝑓 𝑜)
𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑠 , fd 𝑗−1,𝑇𝑟𝑟 , fd 𝑗 )

Report(𝑚) :

𝑇𝑟𝑟𝑒𝑝
⟨𝑈𝑟𝑒𝑝 (fd𝑘−1), O𝑠 ⟩

𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑟𝑒𝑝 , (𝑈0,mds [0]))
return 𝑜𝑢𝑡𝑝𝑢𝑡

PForge(𝑝𝑎𝑡ℎ,𝑚,mds, pk = 𝑌, sk)
(𝑈0, ...,𝑈𝑘 ) ← 𝑝𝑎𝑡ℎ

𝑟 ←R Z𝑞, (𝐸1, 𝐸2) ← (𝐺𝑟 ,𝑈0𝑌
𝑟 )

(𝜎, 𝜋𝑖𝑠𝑠𝑢𝑒 ) ← issue(⊥, 𝐸1, 𝐸2, sk𝑀𝐴𝐶 )
ad ← (𝜎, (𝐸1, 𝐸2))
(𝑒,𝑇𝑟𝑠 , 𝑝𝑑) ← ⟨𝑈𝑎𝑢𝑡ℎ (𝑚, ad), Proc(𝑈0,mds [0]) ⟩ (𝑈𝐷 ,𝑈𝐷 , pk)
(𝑇𝑟𝑟 , fd0) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝐷 ,𝑈𝐷 , 𝑒, pk)
𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑟 , fd)
for 𝑗 = 1, ..., 𝑘 − 1 :
(𝑒, 𝑝𝑑,𝑇𝑟𝑠 ) ← ⟨𝑈𝑓 𝑤𝑑 (𝑚, fd 𝑗−1), Proc(𝑈 𝑗 ,mds [ 𝑗 ]) ⟩ (𝑈𝐷 ,𝑈𝐷 , pk)
(𝑇𝑟𝑟 , fd 𝑗 ) ← ⟨𝑈𝑟𝑒𝑐 , 𝑃𝑟𝑒𝑐 (sk, 𝑝𝑑) ⟩ (𝑈𝐷 ,𝑈𝐷 , 𝑒, pk)
(𝑒, 𝑖𝑛𝑓 𝑜) ← 𝑇𝑟𝑠 ,𝑚

′ ← receive(𝑈𝐷 ,𝑈𝐷 , 𝑒)
𝑇𝑟𝑠 ← (SimE (𝑈 𝑗 ,𝑈 𝑗+1,𝑚

′), 𝑖𝑛𝑓 𝑜)
𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑠 , fd 𝑗−1,𝑇𝑟𝑟 , fd 𝑗 )

Report(𝑚) :

𝑇𝑟𝑟𝑒𝑝
⟨𝑈𝑟𝑒𝑝 (fd𝑘−1), O𝑠 ⟩

𝑜𝑢𝑡𝑝𝑢𝑡 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑟𝑒𝑝 , (𝑈0,mds [0]))
return 𝑜𝑢𝑡𝑝𝑢𝑡

Proc(𝑈𝑠 ,md, pk = 𝑌 )
𝑒,𝐶𝐴,𝐶𝐹 ,𝐶

′
𝐹 , 𝜋𝑝 , 𝜋𝑟

𝑟 ←R Z𝑞, 𝑆 ← (𝑈𝑠 ,md)
𝑠𝑟𝑐 ← (𝐺𝑟 , 𝑆𝑌 𝑟 )
return ( (𝐶𝐴, 𝑠𝑟𝑐,𝐶

′
𝐹 ), 𝑒)

Figure 10: Forgery Algorithms for Scheme 2.

against the 𝑈𝑛𝑖𝑣𝐷𝑒𝑛 game, and so Scheme 2 satisfies platform-

compromise deniability.

We have therefore shown that the scheme satisfies universal and

platform-compromise deniability, and is therefore deniable.
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