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TECHNISCHEN UNIVERSITÄT BERLIN 
 

The Technische Universität Berlin (TUB or TU Berlin) is a research university 
located in Berlin, Germany. The TU Berlin was founded in 1879 and is one of the 
largest and most prestigious technical universities in Germany. The university alumni 
and professor list include National Academies elections,  two National Medal of 
Science laureates and ten Nobel Prize winners. The TU Berlin is a member of TU9, an 
incorporated society of the largest and most notable German institutes of technology 
and of the Top Industrial Managers for Europe network. It also belongs to 
the Conference of European Schools for Advanced Engineering Education and 
Research. As of 2011, TU Berlin is ranked 46th (2010: 48th) in the world in the field 
of Engineering & Technology according to QS World University Rankings. 

The internationally renowned Technische Universität Berlin is located in Germany’s 
capital city at the heart of Europe. Its activities focus on building a distinctive profile, 
exceptional performance in research and teaching, excellent qualifications for its 
graduates and a forward-looking administration. The TU Berlin strives to promote the 
dissemination of knowledge and to facilitate technological progress by adhering to the 
principles of excellence and quality. Strong regional, national and international 
networking partnerships with science and industry are an important aspect in this 
regard. 

Its research and teaching endeavors can be characterized by a broad spectrum of 
academic disciplines, ranging from engineering science to natural science, planning 
science and economics, as well as the humanities and social sciences. 

BERNSTEIN CENTER FOR COMPUATIONAL NEUROSCIENCE 
The Bernstein Center Berlin addresses one of the most challenging questions in 
computational and cognitive neuroscience: 

“How is it possible that we can react to sensory stimuli with millisecond precision if 
intermediate processing elements – on the level of single synapses, single neurons, 
small networks and even large neural systems – vary significantly in their response to 
the same repeated stimulus?” 
The Center's interdisciplinary research is executed by groups of the Charité, Freie 
Universität Berlin, Humboldt-Universität zu Berlin, Max-Delbrueck-Centrum, 
Technische Universität Berlin and the Universität Potsdam. It is part of the National 
Bernstein Network Computational Neuroscience (NNCN) and funded by the Federal 
Ministry of Eduation and Research (BMBF). 
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I.  NEURAL INFORMATION PROCESSING GROUP 

The NIP group is concerned with the principles underlying information processing 
in biological systems. On the one hand they attempt  to understand how the brain 
computes, on the other hand they want to utilize the strategies employed by 
biological systems for machine learning applications.   

A. Areas of Work 

• Models of Neuronal Systems 

In collaboration with neurobiologists and clinicians we study how the visual 
system processes visual information. Research topics include: cortical dynamics, 
the representation of visual information, adaptationand plasticity, and the role of 
feedback. More recently we became interested in how perception is linked to 
cognitive function, and we began to study computational models of decision 
making in uncertain environments, and how those processes interact with 
perception and memory.  

• Machine Learning & Neural Networks 
Here we investigate how machines can learn from examples in order to predict and 

(more recently) act. Research topics include the learning of proper representations, 
active and semisupervised learning schemes, and prototype-based methods. Motivated 
by the model-based analysis of decision making in humans we also became interested 
in reinforcement learning schemes and how these methods can be extended to cope 
with multi-objective cost functions. In collaboration with colleagues from the 
application domains, machine learning methods are applied to different problems 
ranging from computer vision, information retrieval, to chemoinformatics 

• Analysis of Neural Data 
Here we are interested to apply machine learning and statistical methods to the 
analysis of multivariate biomedical data, in particular to data which form the basis of 
our computational studies of neural systems. Research topics vary and currently 
include spike-sorting and the analysis of multi-tetrode recordings, confocal 
microscopy and 3D-reconstruction techniques, and the analysis of imaging data. 
Recently we became interested in the analysis of multimodal data, for example, 
correlating anatomical, imaging, and genetic data. 
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INTRODUCTION 
I. MOTIVATION 
Recognizing familiar faces in a crowd, detecting a ball when playing soccer, 

differentiating between cats and dogs, Classifying letters when reading. All of these 
are trivial tasks for human beings. Within 150 milliseconds the human visual system 
can detect and discriminate between an incredible diverse assortment of stimuli, in 
motion or not, patterned or un-patterned, 2-D or 3-D. As a result, the human brain 
manages the recognition of 3-D objects in an impressive way without having 
problems with variability in the appearance, due to viewpoint, illumination or 
occlusion. However, understanding the human visual processing is very complex 
because our subjective impressions tell us little about the way we accomplish these 
daily tasks. For instance, although it seems that we can recognize objects equally well 
from any viewing angle, experiments in cognitive vision do not confirm this 
assumption. Nevertheless, the goal of many scientists is to create computer vision 
systems which manage to work both, as fast and as accurate as the human visual 
system. 
 

II. OBJECT RECOGNITION IN COMPUTER VISION 
This project especially deals with recognition of 3-D objects. Therefore, first we 

will give a short overview of the object recognition process in general and second, 
commonly used methods for creating descriptions for 3-D objects will be discussed. 
In recent years much research has been done in the field of object recognition. 
Generally, in computer vision an object recognition system is divided into two parts - 
a training phase and a classification phase as illustrated in figure 1. Training is usually 
done from single images containing the respective object in different poses. From 
these images an object representation is extracted which contributes to the knowledge 
of the recognition system. The task of the classification phase is to identify learned 
objects in a given scene. Therefore initially a description of the scene is needed in 
order to make a classification, whether the object appears in the scene or not. 
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Figure 1: Scheme of common recognition application 

 
 
At this point we can already imagine that object representations are of great 
importance for each recognition system. As previously mentioned the aim of an object 
recognition system is to work fast and accurately. However, in order to be fast, it is 
necessary to have sparse representations which save memory and in addition 
accelerate classification because only a small amount of data has to be processed. 
However storing small descriptions of objects at the same time implies, the need of 
distinctive descriptions to be further on resistant against the variability in appearance 
of objects in scenes. Therefore the challenge is to extract sparse and robust 
representations. Different methods have been presented for describing 3-D objects 
from images.  

First there are shape-based methods which propose to create 3-D computer 
models from objects in images. However, the major difficulty of these approaches is 
to generate 3-D models of information available from 2-D images. Any 2-D image is 
always consistent with infinitely many 3-D interpretations. Therefore it is not possible 
to build a correct 3-D model from a single image because only information of a 
particular viewpoint is available. In other words, nothing is known about what is 
going on behind the surface. In addition, studies of numerous neuro-scientists are a 
further argument against shape-based methods. For instance, Logothetis has made 
extensive experiments with monkeys showing that learning of 3-D objects is done 
view-dependent. However shape-based methods would suggest to be capable of 
recognizing objects viewpoint-invariant which is not supported by cognitive science. 

An alternative to shape-based methods are appearance-based methods which 
create representations based on images. In other words, the intention is to avoid 
creating a 3-D model but therefore use the image itself for making a description. At 
the same time this means that each distortion appearing on the image, e.g. reflectance, 
is also stored in the representation. Nevertheless the appearance-based methods have 
turned out to be expedient for recognition of 3-D objects because successful object 
recognition systems must cope with these effects. In addition, when talking about the 
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appearance-based approach we have to distinguish between local and global methods. 
The first one tries to represent the object as a collection of local features while the 
second one uses the entire image of an object for the representation. Since global 
methods use the whole image information they are very sensitive to clutter, 
background or occlusions. Local features are usually based on the description of 
patches around distinctive points in the image. Concerning 3-D object recognition this 
means that distinctive small pieces of the object are stored for the representation and 
therefore local features are a nice approach to minimize the amount of data to be 
processed without losing most important information. To summarize, appearance-
based approaches using local features are gaining more and more importance. 

III.  REAL TIME OBJECT RECOGNITION AT TU BERLIN 
The aim of this project is to develop a recognition system that is largely scale-, 

illumination-, translation-, and rotation-invariant. The recognition system should be 
capable of being used for any object, regardless of its shape or size. Also, the system 
should be able to recognize the objects regardless of their surrounding environment. 

This research based project has three areas of focus, described below: 

• Generating ‘Proto-Objects’ i.e. Potential Objects 

The task of this process is to generate proto-objects that can then be processed 
further. It essentially involves extracting whole objects from their surrounding 
environment. It is important to ensure that the objects are retrieved regardless of their 
surrounding environment i.e. the surrounding environment should not affect the 
performance of this task.  

This is achieved by first applying a segmentation algorithm followed by a 
combination of depth based clustering and merging. Experiments have determined the 
remarkable accuracy of this approach in generating stable, near perfect objects. 

• Feature Computation & Matching 

The task of this process is to generate suitable features of the proto-objects which 
were retrieved  in the previous step. It requires a thorough evaluation of feature 
detectors and descriptors. The features so selected must ensure the invariant nature of 
the system. They must also ensure that the system is capable of performing recognition 
in real time. Once the features have been extracted, it is required that they be matched 
with the previously built Object Model in order to actually determine whether the 
object under consideration is the same as the object model or not. It is required that this 
search be carried out as efficiently as possible.  

A number of feature descriptors such as MSER, SURF, SIFT, Color Histogram, 
Opponent Color Space, Transformed Color Histogram were evaluated for this task. 
Experiments have determined the superiority of the SIFT Feature Descriptor, 
especially when it comes to ‘textured’ objects. Experiments on the aforementioned 
Color Descriptors have proven the validity of using a top-down approach i.e. using 
color to eliminate proto objects before applying SIFT to the remaining objects. As for 
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feature matching, we have implemented the randomized kd-trees approach available in 
FLANN. Experiments have proven the accuracy and efficiency of this approach. 

We are currently exploring the use of efficient region descriptors to work with 
MSER, especially in case of objects that lack texture, evaluating various color 
descriptors, exploring various preprocessing steps to improve efficiency etc. 

• Building an Object Model 

A key task of any recognition system requires building an efficient representation of 
the object. Care needs to be taken to ensure that a significant number of features of the 
training object are extracted in such a way so as to facilitate the invariant nature of the 
system. It is also important to ensure the efficiency of these features in order for the 
system to be capable of performing in real time.  

This is achieved firstly, by extracting features of the training object from multiple 
views and secondly, by creating a feature trajectory that ensures the selection of the 
best features. Experiments have proven the efficiency of this approach as the system 
was able to recognize objects despite changes in the orientation of the object and the 
viewing angle. 
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I. INTRODUCTION 

A. Purpose  
The purpose of this document is to summarize the research work done at each phase 

of the development of the software. 

B. Scope  

The scope of this SRS document encompasses the following: - 

1. It serves as a reference to study, analyze and understand methodologies to be 
designed, programmed and documented.  

2. It acts as a tool for the development of test cases which would exercise small 
conditions of the program. 

C. Audience 
Designers, Programmers, Testers, Researchers and any fellow interested in studying 

computer vision, especially Object Recognition. 

D. Definitions, Acronyms and Abbreviations 
See Appendix 

E. References & Formulae 
See Appendix 

II. IMAGE SEGMENTATION 
a.  

A. Introduction 

In computer vision, segmentation is the process of partitioning a digital image into 
multiple segments (sets of pixels, also known as superpixels). The goal of 
segmentation is to simplify and/or change the representation of an image into 
something that is more meaningful and easier to analyze. Image segmentation is 
typically used to locate objects and boundaries (lines, curves, etc.) in images.  

More precisely, image segmentation is the process of assigning a label to every 
pixel in an image such that pixels with the same label share certain visual 
characteristics. The result of image segmentation is a set of segments that 
collectively cover the entire image, or a set of contours extracted from the image 
(see edge detection). Each of the pixels in a region are similar with respect to 
some characteristic or computed property, such as color, intensity, 
or texture. Adjacent regions are significantly different with respect to the same 
characteristic(s). 

B. Characteristics of a Good Segmentation Algorithm 

• Capture perceptually important groupings or regions, which often reflect 
global aspects of the image. While there are many approaches to image 
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segmentation that are highly efficient, these methods generally fail to 
capture perceptually important non-local properties of an image 
 

• Be highly efficient, running in time nearly linear in the number of image 
pixels. In order to be of practical use, we believe that segmentation 
methods should run at speeds similar to edge detection or other low-level 
visual processing techniques, meaning nearly linear time and with low 
constant factors. For example, a segmentation technique that runs at 
several frames per second can be used in video processing applications. 
 

C. Graph Based Segmentation 

We take a graph-based approach to segmentation. Let G = (V;E) be an undirected 
graph with vertices vi  belonging to V (the set of elements to be segmented) and edges 
(vi; vj) belonging to E (corresponding to pairs of neighbouring vertices). Each edge 
(vi; vj) belonging to E has a corresponding weight w((vi; vj)), which is a non-negative 
measure of the dissimilarity between neighbouring elements vi and vj . In the case of 
image segmentation, the elements in V are pixels and the weight of an edge is some 
measure of the dissimilarity between the two pixels connected by that edge (e.g., the 
difference in intensity, color, motion, location or some other local attribute). 
 
In the graph-based approach, a segmentation S is a partition of V into components 
such that each component (or region) C belonging to S corresponds to a connected 
component in a graph G0 = (V;E0), where E0 is a subset of E. In other words, any 
segmentation is induced by a subset of the edges in E. There are different ways to 
measure the quality of segmentation but in general we want the elements in a 
component to be similar, and elements in different components to be dissimilar. This 
means that edges between two vertices in the same component should have relatively 
low weights, and edges between vertices in different components should have higher 
weights. 
 

D. Efficient Graph Based Image Segmentation [1] 
 
A  predicate D is defined for evaluating whether or not there is evidence for a 
boundary between two components in a segmentation (two regions of an image).This 
predicate is based on measuring the dissimilarity between elements along the 
boundary of the two components relative to a measure of the dissimilarity among 
neighboring elements within each of the two components. The resulting predicate 
compares the inter-component differences to the within component differences and is 
thereby adaptive with respect to the local characteristics of the data. 
 
Int(C) is defined as the internal difference of a component C ⊑ V to be the largest 
weight in the minimum spanning tree of the component. 
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Dif (C1,C2) is defined as the difference between two components 𝐶𝐶1 ,𝐶𝐶2 ⊆ 𝑉𝑉 to be 
the minimum weight edge connecting the two components. 
 
The region comparison predicate evaluates if there is evidence for a boundary 
between a pair or components by checking if the difference between the components, 
Dif (C1,C2), is large relative to the internal difference within at least one of the 
components, Int(C1) and Int(C2). A threshold function is used to control the degree to 
which the difference between components must be larger than minimum internal 
difference. 
We use the following threshold function based on the size of the component : 

𝛤𝛤(𝐶𝐶) =
𝑘𝑘

|𝐶𝐶|
 

where |C| denotes the size of C, and k is some constant parameter. 
 

We define the pairwise comparison predicate as, 

𝐷𝐷(𝐶𝐶1 ,𝐶𝐶2) = �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝐷𝐷𝑖𝑖𝑖𝑖 (𝐶𝐶1,𝐶𝐶2) > 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡(𝐶𝐶1,𝐶𝐶2)
𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 𝑜𝑜𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑤𝑤𝑖𝑖𝑓𝑓𝑡𝑡

� 

where the minimum internal difference, MInt, is defined as, 
𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 (𝐶𝐶1,𝐶𝐶2) =  min⁡((𝑀𝑀𝑀𝑀𝑡𝑡(𝐶𝐶1) + 𝛤𝛤(𝐶𝐶1), 𝑀𝑀𝑀𝑀𝑡𝑡(𝐶𝐶2) +  𝛤𝛤(𝐶𝐶2)) 

 
E. Parameters 

• Gaussian Smoothing Function σ 
A Gaussian filter is used to smooth the image slightly before computing the edge 
weights, in order to compensate for digitization artifacts. We always use a Gaussian 
with σ = 0.8, which does not produce any visible change to the image but helps 
remove artifacts. 
• Threshold Parameter k 
There is one runtime parameter for the algorithm, which is the value of k that 
is used to compute the threshold function Γ. It effectively sets a scale of 
observation, in that a larger k causes a preference for larger components. 
 

F. Example 
 

 
Figure 2 : Original Image 
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Figure 3 : Segmented Image 

Image Size : 320 x 240  
σ : 0.8 
k : 300 
 
 

G. Summary 
The segmentation algorithm makes simple greedy decisions, and yet produces 
segmentations that obey the global properties of being not too coarse and not too fine 
according to a particular region comparison function. The method runs in 𝑂𝑂( 𝑚𝑚 ∗
𝑓𝑓𝑜𝑜𝑙𝑙𝑚𝑚) time for m graph edges and is also fast in practice, generally running in a 
fraction of a second. 

 

III. FEATURE EXTRACTORS AND DESCRIPTORS 
In pattern recognition and in image processing, feature extraction is a special form 
of dimensionality reduction. When the input data to an algorithm is too large to be 
processed and it is suspected to be notoriously redundant (e.g. the same measurement 
in both feet and meters) then the input data will be transformed into a reduced 
representation set of features (also named features vector). Transforming the input 
data into the set of features is called feature extraction. If the features extracted are 
carefully chosen it is expected that the features set will extract the relevant 
information from the input data in order to perform the desired task using this reduced 
representation instead of the full size input. 

In Image Processing, Feature Extraction can be thought of as a two step process : 

1. Interest Point Detector. Reliable point-features will be detected. 

2. Local Image Descriptor. Each point feature will be described by its local 
region from which a feature vector is computed. 

 

For any object in an image, interesting points on the object can be extracted to provide 
a "feature description" of the object. This description, extracted from a training image, 
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can then be used to identify the object when attempting to locate the object in a test 
image containing many other objects. To perform reliable recognition, it is important 
that the features extracted from the training image be detectable even under changes 
in image scale, noise and illumination. Such points usually lie on high-contrast 
regions of the image, such as object edges. 

 

A. SIFT 
 
Scale-invariant feature transform (or SIFT) [2][3] is an algorithm in computer 
vision to detect and describe local features in images. The algorithm was published 
by David Lowe in 1999. SIFT can be split up into two parts - a difference-of-Gaussian 
point detector and a local image descriptor providing the SIFT features. 
The following steps describe SIFT in detail [Web][1] 
 

1. Constructing a scale space 
In the first step of SIFT, you generate several octaves of the original image. Each 
octave’s image size is half the previous one. Within an octave, images are 
progressively blurred using the Gaussian Blur operator. 
 
 
 

2. LoG Approximation 
This refers to the computation of second order derivatives ( or the “laplacian”) of the 
blurred images generated in the previous step. This is vital for locating edges and 
corners on the image. These edges and corners are good for finding keypoints. 
Blurring is important as it smoothes out the noise and stabilizes the second order 
derivative. 
Since Laplacian of Gaussian is computationally expensive, SIFT computes the 
difference between consecutive scales or, the Difference of Gaussians which is 
approximately the same as the Laplacian of Gaussian. This effectively reduces the 
computation time and also leads to scale invariance. 
 

3. Finding Keypoints 
Finding key points is a two part process 

• Locate maxima/minima in DoG images 
SIFT iterates through each pixel (X) in a image and checks all its neighbors. The 
check is done within the current image, and also the one above and below it in the 
scale space. This way, a total of 26 checks are made. X is marked as a “key point” if it 
is the greatest or least of all 26 neighbors. 
 
• Find subpixel maxima/minima 
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The marked points are the approximate maxima and minima. They are “approximate” 
because the maxima/minima almost never lies exactly on a pixel. It lies somewhere 
between the pixel. But we simply cannot access data “between” pixels. So, we must 
mathematically locate the subpixel location. Subpixel values are generated by first 
using Taylor expansion of the image around the approximate key point and then 
finding the extreme points of the resulting equation. 
 

4. Eliminating Bad Keypoint 
Key points generated in the previous step produce a lot of key points. Some of them 
lie along an edge, or they don’t have enough contrast. In both cases, they are not 
useful as features. So SIFT gets rid of them. 
 

5. Assigning Orientation to Keypoints 
In order to achieve rotation invariance, SIFT assigns an orientation to each keypoint. 
To do so, it first collects gradient directions and magnitudes around each keypoint. It 
then generates a histogram for this data. Using the histogram, the most prominent 
gradient orientation(s) are identified. If there is only one peak, it is assigned to the 
keypoint. If there are multiple peaks above the 80% mark, they are all converted into 
a new keypoint (with their respective orientations). 
 

6. Generating SIFT Features 
SIFT takes a 16×16 window of pixels around the keypoint. It then splits that window 
into sixteen 4×4 windows. From each 4×4 window, it generates a histogram of 8 bins 
where each bin corresponds to 0-44 degrees, 45-89 degrees, etc. Gradient orientations 
from the 4×4 are put into these bins. This is done for all 4×4 blocks. Finally, it 
normalizes the 128 values so generated. Hence, a unique feature vector consisting of 
128 values is generated for each keypoint. 

 
 

 
Figure 4 SIFT Matching : Exhibiting Scale & Orientation Invariance 
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B. MSER 
Maximally Stable Extremal Regions (MSER) was proposed by Matas et al. [4] to 
find correspondences between image elements from two images with different 
viewpoints. Extremal regions have two desirable properties. Firstly, the set is closed 
under continuous (and thus perspective) transformation of image coordinates and, 
secondly, it is closed under monotonic transformation of image intensities. 

Informally, MSER can be explained as follows : 
Imagine all possible thresholdings of a gray-level image I. We will refer to the pixels 
below a threshold as ’black’ and to those above or equal as ’white’. If we were shown 
a movie of thresholded images, with frame t corresponding to threshold t, we would 
see first a white image. Subsequently black spots corresponding to local intensity 
minima will appear and grow. At some point regions corresponding to two local 
minima will merge. Finally, the last image will be black. The set of all connected 
components of all frames of the movie is the set of all maximal regions. 
Such regions are of interest since they posses the following properties: 
 
• Invariance to affine transformation of image intensities. 
• Covariance to adjacency preserving (continuous) transformation T : D → D on 
the image domain. 
• Stability, since only extremal regions whose support is virtually unchanged over a 
range of thresholds is selected. 
• Multi-scale detection. Since no smoothing is involved, both very fine and very 
large structure is detected. 
• The set of all extremal regions can be enumerated in O(n log log n), where n is 
the number of pixels in the image. 

 
Comparison to other Region Descriptors 
In Mikolajczyk et al. [6], six region detectors are studied (Harris-affine, Hessian-affine, 
MSER, edge-based regions, intensity extrema, and salient regions). A summary of 
MSER performance in comparison to the other five follows. 

 Region density - in comparison to the others MSER offers the most variety detecting 
about 2600 regions for a textured blur scene and 230 for a light changed scene, and 
variety is generally considered to be good. Also MSER had a repeatability of 92% for 
this test. 

 Region size - MSER tended to detect many small regions, versus large regions 
which are more likely to be occluded or to not cover a planar part of the scene. 
Though large regions may be slightly easier to match. 

 Viewpoint change - MSER outperforms the five other region detectors in both the 
original images and those with repeated texture motifs. 

 Scale change - Following Hessian-affine detector, MSER comes in second under a 
scale change and in-plane rotation. 
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 Blur - MSER proved to be the most sensitive to this type of change in image, which 
is the only area that this type of detection is lacking in. 
Note however that this evaluation did not make use of multi-resolution detection, 
which has been shown to improve repeatability under blur. 

 Light change - MSER showed the highest repeatability score for this type of scene, 
with all the other having good robustness as well. 

MSER consistently resulted in the highest score through many tests, proving it to be a 
reliable region detector. 

IV. COLOR 
 
So far, intensity-based descriptors have been widely used for feature extraction at 
salient points. To increase illumination invariance and discriminative power, color 
descriptors have been proposed. 
 

A. RGB Histogram 
The RGB histogram is a combination of three 1-D histograms based on the R, G and 
B channels of the RGB color space. This histogram possesses no invariance 
properties. 
 

B. Opponent Histogram 
Opponent histogram The opponent histogram is a combination of three 1-D 
histograms based on the channels of the opponent color space.The channels of the 
opponent color space can be computed by transforming the RGB channels as shown 
below : 

�
𝑂𝑂1
𝑂𝑂2
𝑂𝑂3
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⎝

⎜
⎜
⎜
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𝑅𝑅 − 𝐺𝐺
√2
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√6

𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵
√3 ⎠

⎟
⎟
⎟
⎞

 

The intensity information is represented by channel O3 and the color information by 
O1 and O2. Due to the subtraction in O1 and O2, the offsets will cancel out if they are 
equal for all channels (e.g. a white light source). 
 O1 and O2 are shift-invariant with respect to light intensity and the intensity channel 
O3 has no invariance properties. 
 

C. Transformed Color Distribution 
An RGB histogram is not invariant to changes in lighting conditions. However, by 
normalizing the pixel value distributions, scale-invariance and shift invariance is 
achieved with respect to light intensity. Because each channel is normalized 
independently, the descriptor is also normalized against changes in light color and 
arbitrary offsets: 
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where μC  represents the mean and σC the standard deviation of the distribution in 
channel C computed over the area under consideration (e.g. a patch or image). This 
yields for every channel a distribution where μ = 0 and σ= 1. 

 
 

Table 1 Invariance of Descriptors ( Indicated by + ) 
 Light 

Intensity 
Change 

Light 
Intensity 
Shift 

Light 
Intensity 
Change & 
Shift 

Light 
Color 
Change 

Light 
Color 
Change 
& Shift 

RGB 
Histogram 

- - - - - 

O1 ,O2 
 

- + - - - 

O3, Intensity 
 

- - - - - 

Transformed 
Color 

+ + + + + 

 
 
 

V. OBJECT MODEL GENERATION 
 

A desire of each object recognition system is that it is capable of detecting a trained 
object in any scene and thus be able to cope with different poses of the object or 
varying lighting conditions or possible occlusions. Clearly, it is impossible to keep a 
database that has examples of each view of an object under each possible pose and 
lighting condition. Therefore the challenge is to extract distinctive features in order to 
get a robust object representation which should overcome these requirements. 
Consequently object representations are of great importance. 

A. Single View Based Method 
Most object recognition systems determine the identity of an object on the basis of the 
information gathered from a single image. Typically, a set of features is extracted 
from an image and compared against the features of the training image. Using local 
features means applying an interest point detector on the training image and to extract 
for all detected keypoints a feature vector describing the local region around the 
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detected point. Finally these feature vectors fi will form the representation M of the 
object in the training image. 
M = [f1, f2, f3, ..., fn] 
 

 
Figure 5 The Single View method uses features extracted from a single image of the desired 
object for forming object representations  
 

B. Multiple View Based Method 
When thinking of 3D objects you can easily imagine that it is not sufficient to learn 
from a single image in order to recognize it in all possible poses. Furthermore a 
common problem is the sensitivity of local image descriptors against viewpoint 
changes. As a result multiple images from different views of the same object will 
overcome these problems. However, it will also result in a representation where the 
number of features will increase proportional to the number of gathered views. For 
each training image you will apply the Single View method and all extracted feature 
vectors will be combined to a representation M of the object as shown in figure 3.2. 
Formally, 
M = [f11, f12, ..., f1n1, f21, f22, ..., f2n2, ..., fm1, f12, ..., fmnm],  
where fij represents the j-th feature vector of the i-th image. 
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Figure 6 Multiple View method uses features extracted from multiple images depicting multiple 

views of the desired object for forming object descriptions 
 

C. Continuous View Based Method 
In computer vision we have to work with discrete signals and therefore we even have 
a discrete image sequence that consists of a finite number of frames. We can find 
correspondence between successive image frames and thereby form a feature 
trajectory in order to get a robust description of the object. So our approach for 
creating an object description out of an image sequence 
can be split up into 3 steps : 

1. Extraction of local feature trajectories. Tracking of local features will 
give correspondences between keypoints of successive frames which 
will finally form trajectories. 

2. Selection of robust feature trajectories. Decide which trajectories 
are useful for object recognition. 

3. Combining descriptors of trajectories to an object representation. A 
trajectory consists of many continuously changing feature vectors and 
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therefore contain much redundant information. So the challenge is find 
representatives for all trajectories which will finally form the object 
representation. 

 
 

1. Setup for Extraction of Local Feature Trajectories 
The training object is rotated in front of a camera and the local feature detector is 
applied at regular intervals. Features of the object are continuously tracked using a 
Tracking Algorithm. These Features are either added to existing trajectories or a new 
trajectory is created for them depending on certain conditions. This method finally 
provides trajectories ti and moreover the set of all trajectories T of a given image 
sequence. Formally this can be expressed as 
T = {t1, t2, ..., tn}  
with, 
ti = [f1, f2, ..., fni ]  
 

2. Algorithm for new detected keypoints: 
1. For each new keypoint do: 
(a) Search trajectories which haven’t been allotted a keypoint from the current set of 
newly detected keypoints. Compute the 
Euclidean distance of the last feature vector of each trajectory to the current 
keypoint and take the one with closest distance. 
(b) If the Euclidean distance is smaller than a defined threshold, discard this keypoint 
from the set of newly detected keypoints and go to step 1(d). Else go to step 1(d) 
(c) Add the newly detected keypoints to the trajectory and repeat for next keypoint. 
(d) Create a new trajectory for this keypoint and repeat for next keypoint. 
 

3. Selection of Robust Feature Trajectories 
Discard trajectories that haven’t been allotted a keypoint for k consecutive frames. 
This is to ensure that only features that have been tracked for a significant number of 
frames are used to represent the object and outliers are removed. 
 

4. Combining descriptors of trajectories to an object representation. 
As already described, a feature trajectory consists of feature vectors which have been 
computed at each frame of a single tracked keypoint. However using all feature 
vectors of each robust trajectory will lead to a very huge object representation 
containing much redundant information. Therefore we seek to find an appropriate 
method for getting good representatives for a single trajectory and finally for the 
whole object. Primitive approaches for summarizing trajectories would be using 
standard methods like the following ones: 
• Mean.  
The simplest method for summarizing data is to compute the arithmetic mean feature 
vector f for a trajectory j = 1, 2, ...,m, 
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where f is the ith feature vector of the current trajectory and n corresponds to the 
length of the current trajectory. All mean feature vectors will finally form the object 
representation M, 
M = [f1, f2, ..., fm]. 
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Figure 7 The Continuous View method can extract an object representation from an image 
sequence. Trajectories are formed which will finallybe summarized to a representation of the 
object 
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VI. SIMILARITY COMPUTATION USING FLANN 
Local Feature Detectors are applied on each proto object to extract a feature vector. 
This feature vector is then used to find the closest nearest neighbor from the object 
recognition. An object is said to ‘found’ or recognized only if the nearest neighbor 
distance is less than a certain threshold. FLANN ( Fast Library for Approximate 
Nearest Neighbor) [8] is used to find the nearest neighbor. 

 
 

A. Introduction 
FLANN is a library for performing fast approximate nearest neighbor searches in high 
dimensional spaces. It contains a collection of algorithms we found to work best for 
nearest neighbor search and a system for automatically choosing the best algorithm 
and optimum parameters depending on the dataset. FLANN introduces an algorithm 
which modifies the previous method of using hierarchical k-means trees. While 
previous methods for searching k-means trees have used a branch-and-bound 
approach that searches in depth-first order, FLANN uses a priority queue to expand 
the search in order according to the distance of each k-means domain from the query. 
In addition, FLANN is able to reduce the tree construction time by about an order of 
magnitude by limiting the number of iterations for which the k-means clustering is 
performed.  FLANN also introduces another approach that uses multiple randomized 
kd-trees which is a modification of the widely used kd tree approach. 
 

 
B. Problem Description 

We can define the nearest neighbor search problem as follows: given a set of points P 
= {p1,..., pn} in a vector space X, these points must be preprocessed  in such a way 
that given a new query point q ∈ X, finding the points in P that are nearest to q can be 
performed efficiently. It is assumed that X is an Euclidean vector space, which is 
appropriate for most problems in computer vision. 
For high-dimensional spaces, there are often no known algorithms for nearest 
neighbor search that are more efficient than simple linear search. As linear search is 
too costly for many applications, this has generated an interest in algorithms that 
perform approximate nearest neighbor search, in which non optimal neighbors are 
sometimes returned. Such approximate algorithms can be orders of magnitude faster 
than exact search, while still providing near optimal accuracy. 

 
C. Randomized KD-Trees Approach 

The classical kd-tree algorithm (Freidman et al.,1977) is efficient in low dimensions, 
but in high dimensions the performance rapidly degrades. To obtain a speedup over 
linear search it becomes necessary to settle for an approximate nearest-neighbor. This 
improves the search speed at the cost of the algorithm though not always returning the 
exact nearest neighbors. Silpa-Anan and Hartley (Silpa-Anan and Hartley, 2008) have 
recently proposed an improved version of the kd-tree algorithm in which multiple 
randomized kd-trees are created. The original kd-tree algorithm splits the data in half 
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at each level of the tree on the dimension for which the data exhibits the greatest 
variance. By comparison, the randomized trees are built by choosing the split 
dimension randomly from the first D dimensions on which data has the greatest 
variance. FLANN uses the fixed value D = 5 in its implementation. 
When searching the trees, a single priority queue is maintained across all the 
randomized trees so that 
search can be ordered by increasing distance to each bin boundary. The degree of 
approximation is determined by examining a fixed number of leaf nodes, at which 
point the search is terminated and the best candidates returned. The user specifies only 
the desired search precision, which is used during training to select the number of leaf 
nodes that will be examined in order to achieve this precision. 
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EXPERIMENTAL RESULTS 
 

I. OFFLINE TRAINING PHASE  
A.     Setup 
The test object is placed on a rotating table with a black background. The object is 
then rotated a little more than 360. The rotation video is captured using the Microsoft 
Kinect.  
B. Creating Object Model 
• Frames at regular intervals are extracted from the video thereby generating a stack 

of images which depict the object at varying rotations.  
• The region of interest (ROI) from these images is manually selected for 

processing.  
• Feature Trajectories are created using SIFT Features. 
• The end of rotation is identified by finding the highest number of nearest neighbor 

matches between the SIFT descriptors in the 1st frame and the following frames. 
The graph in Fig 8 depicts this wherein the y-axis depicts the number of nearest 
neighbor matches and x-axis the frame numbers. The second peak in the graph 
signifies the end of rotation.

 
Figure 8 

 
• The feature trajectories are then stored in a Yaml file. 
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II.  ONLINE CLASSIFICATION PHASE  
A. Input 

1. Object Model (yaml file) 

2. Depth Stream from Kinect (PCL) 

3. Video Stream from Kinect (@ 15Hz with resolution 1240*1080 

B. Output 
Identified Objects labelled as found 

C. Parameters  
 See appendix for a list of runtime parameters 

D. Hardware Configuration 

Memory: 11.8 GiB 

Processor: Intel 12-core i7 CPU X980@ 3.33 GHz 

Operating System: Ubuntue Release 11.10 (oneiric) Kernal Linuz 3.0.0.36-generic 

E. Object 1 
Timing:  

Procedure Time Taken (in ms) 

Segmentation 245.28 

NN Clustering 149.39 

Merging  1101.85 

Recognition 3363.31 

         SIFT computation 3280.38 

         FLANN Search 43.75 

Total Time 4859.83 

Table 5 Average elapsed time over 20 frames 
 

 



29 
 

 

Figure 9: Object in testing environment 

 

Figure 10: Object in Real Environment 
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Figure 11: Segmented Image 

 

Figure 12: Image after Nearest Neighbor Clustering 
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Figure 13: Image after Merging 

 

Figure 14: Recognition Results  
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F. Object 2 
Timing:  

Procedure Time Taken (in ms) 

Segmentation 248.14 

NN Clustering 138.75 

Merging  1206.47 

Recognition 3185.24 

        SIFT computation 3107.44 

        FLANN Search 41.79 

Total Time 4778.6 

Table 6 Average elapsed time over 20 frames 
 

 

Figure 15: Object in training environment 
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Figure 16: Object in Real Environment 
 

 
Figure 17: Segmented Image 
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Figure 18: Image after Nearest Neighbor Clustering 

 
 

 
Figure 19: Image after Merging 
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Figure 20: Recognition Results 

 

G. Object 3 
Timing:  

Procedure Time Taken (in ms) 

Segmentation 250.98 

NN Clustering 153.24 

Merging  1166.00 

Recognition 3448.82 

           SIFT computation 3363.46 

           FLANN Search 45.29 

Total Time 5018.22 

Table 6 Average elapsed time over 20 frames 
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Figure 21: Object in training environment

 
Figure 22: Object in Real Environment 
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Figure 23: Segmented Image 

 

Figure 24: Image after Nearest Neighbor Clustering 



38 
 

 

Figure 25: Image after Merging 

 

Figure 26: Recognition Results 
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CURRENT WORK 
• Feature Descriptors for Texture Less Objects 

One of the key drawbacks of SIFT is its inefficiency in describing texture less 
objects.We plan to investigate the use of MSER for such cases. 

• Integration of Texture and Color in a top down approach 

Color can be used to as a preprocessing step to eliminate a number of proto-
objects. Only objects that satisfy the color criterion can be further processed for 
recognition using SIFT. The motivation behind this approach is the significant 
computation time associated with SIFT.  

• Extending the system to recognize multiple objects 

As of now, the system is capable of identifying only one object as specified by the 
object model. We aim to extend the system to allow multiple objects to be 
recognized at the same time. 

• Filtering False Positives 

We are currently working on different approaches to filter out the SIFT matches 
returned from the FLANN module. The idea is to use the orientation, scale and 
relative location parameters associated with SIFT keypoints to eliminate false 
positives. 

• Optimizing the Merge Step 

Timing analysis has shown the significant computation time of the merging step. 
We are currently exploring other methods to reduce this inefficiency.  

 

The preciseness of our object detection technique is better than anything we have 
come across in the published literature.  We hope to enhance our recognition 
framework in the next few months and then test our system on standardized 
datasbases in order to present a thorough evaluation. 
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APPENDIX  
RUNTIME PARAMETERS 

S.no Command 
Line 

Argument 

Type 
(Default) 

Description 

Depth Parameters 
1.  dlim Double (6) Depth Limit  
2.  dmode Bool (false) Depth Mode  
3.  hisbw Double (0.02) Depth Histogram Bin Width 

SIFT Parameters 
4.  siftsc Int (3) Scales 
5.  siftpt Double (0.04) Peak Threshold 
6.  siftis Double (1.6) Sigma 

MSER Parameters 
7.  msdelta Int( 5) Delta 
8.  msminarea Int(60) Minimum Area  
9.  msmaxarea Int (14400) Maximum Area 
10.  Msmaxvar Double (0.25) Maximum Variation 
11.  msmindiv Double (0.2) Minimum Diversity 
12.  msmaxevol Int (200) Maximum Evolution 
13.  msareathresh Double (1.01) Area Threshold  
14.  msminmargin Double 

(0.003) 
Minimum Margin 

15.  msblur Int (3) Edge Blur Size 
16.  mincontarea Int (10) Minimum Contour Area 

Graph Based Segmentation Parameters 
17.  sigma Double (1.2) Gaussian Smoothing function 
18.  gsegk Int (500) k causes a preference for larger components 
19.  minblob Int (450)  

RGB Color Histogram 
20.  ncolors Int (4) Divides each channel into ‘ncolors’ equal sized bins. 

Hence, no of bins for each channel=ncolors. 
Transformed Color Histogram 

21.  tbinstart Double (-1) Histogram range is defined by tbinstart and tbinend 
22.  tbinend Double (5)  
23.  tbinwidth Double (0.1) This is used to define the width of the bins and 

thereby the number of bins between tbinstart and 
tbinend 

Optimization Parameters 
24.  histdist Double (0) Sets a threshold for distance between histograms of 

two segments under consideration for merging 
25.  meanthresh Double (5)  
26.  boundary-

thresh 
Double (0.04) Used to remove Edges 

27.  neighbour-
thresh 

Int (0) Two pixels are considered neighbours as long as 
they are at a distance less than this threshold. Used 
while checking the neighbour criteria for merging. 

28.  nneighbour Int (0) The number of nearest neighbours returned in a 
FLANN search. 

29.  jaccardthresh Int (0) Sets a minimum value while computing Jaccard 
Index between corresponding bins of two 

histograms. Used to eliminate noise. 
30.  segsize Int (20000) Sets a threshold for segments 
31.  maxsizedif Int (5)  
32.  nnthresh Double (0) Distance threshold for the nearest neighbors found 
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using FLANN 
33.  matchcnt Int (1) The minimum number of matches required for an 

object to be set as ‘FOUND’ 
34.  matchfactor Double (6) Used to set a threshold for the ratio of closest 

distance to second closest distance in SIFT feature 
mode. 

The current object has one match if : 
100*distsq1<matchfactor*matchfactor*distsq2 

Program Flow Parameters 
35.  featuremode Int (0) 0: SIFT 

1:RGB Color Histogram 
2:Reserved 

3: Transformed Color Histogram 
36.  expmode Int (0) 0: Display All Windows 

1:Display only merged segments window 
37.  clusterseg Int (0) 0: Histogram Clustering + Fine Clustering (Jong-

Han’s old clustering method) 
1: NN Clustering 

38.  libfile String Object Library file name (including extension) 
39.  libpath String  Object Library file path 
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