
Real Time Object Recognition

Progress Report in partial fulfillment of the requirement for the degree of

Bachelor of Technology
In

Computer Science and Engineering

By
Sahil Narang

To

MAHARAJA SURAJMAL INSTITUTE OF TECHNOLOGY
Affiliated to Guru Gobind Singh Indraprastha University

Janak Puri, New Delhi-110058.

August 2012

2

Acknowledgement

I thank my respected guide, Dr. Johannes Mohr, Neural Information Processing
Group, Technischen Universität Berlin from the bottom of my heart for his excellent
guidance and supervision through all the phases of the development of this project. I
would also like to thank Mr. Jong-Han Park for his immense cooperation and work in
this project. Most importantly, I would like to thank Dr. Klaus Obermayer for
welcoming me into the NIP group.

It was due to Dr. Mohr’s toiling efforts that we tackled such a complex project. He
encouraged us to gather the professional knowledge and material for the completion of
this project. He helped us with his invaluable and finest suggestions to give shape and
finesse to the work done.

I sincerely hope that users will find this project useful. Whatever intellectual effort
may be reflected from this report is the direct result of the informative and stimulating
discussions that I have had in the course of this internship. Given the time constraint
and continuous nature of a research activity, there is always a scope to ameliorate
object recognition techniques

Note:
This project is currently in progress. Therefore, a majority of this report is not

available presently.

Sincerely,

Sahil Narang

.

3

TECHNISCHEN UNIVERSITÄT BERLIN

The Technische Universität Berlin (TUB or TU Berlin) is a research university
located in Berlin, Germany. The TU Berlin was founded in 1879 and is one of the
largest and most prestigious technical universities in Germany. The university alumni
and professor list include National Academies elections, two National Medal of
Science laureates and ten Nobel Prize winners. The TU Berlin is a member of TU9, an
incorporated society of the largest and most notable German institutes of technology
and of the Top Industrial Managers for Europe network. It also belongs to
the Conference of European Schools for Advanced Engineering Education and
Research. As of 2011, TU Berlin is ranked 46th (2010: 48th) in the world in the field
of Engineering & Technology according to QS World University Rankings.

The internationally renowned Technische Universität Berlin is located in Germany’s
capital city at the heart of Europe. Its activities focus on building a distinctive profile,
exceptional performance in research and teaching, excellent qualifications for its
graduates and a forward-looking administration. The TU Berlin strives to promote the
dissemination of knowledge and to facilitate technological progress by adhering to the
principles of excellence and quality. Strong regional, national and international
networking partnerships with science and industry are an important aspect in this
regard.

Its research and teaching endeavors can be characterized by a broad spectrum of
academic disciplines, ranging from engineering science to natural science, planning
science and economics, as well as the humanities and social sciences.

BERNSTEIN CENTER FOR COMPUATIONAL NEUROSCIENCE
The Bernstein Center Berlin addresses one of the most challenging questions in
computational and cognitive neuroscience:

“How is it possible that we can react to sensory stimuli with millisecond precision if
intermediate processing elements – on the level of single synapses, single neurons,
small networks and even large neural systems – vary significantly in their response to
the same repeated stimulus?”
The Center's interdisciplinary research is executed by groups of the Charité, Freie
Universität Berlin, Humboldt-Universität zu Berlin, Max-Delbrueck-Centrum,
Technische Universität Berlin and the Universität Potsdam. It is part of the National
Bernstein Network Computational Neuroscience (NNCN) and funded by the Federal
Ministry of Eduation and Research (BMBF).

http://en.wikipedia.org/wiki/Berlin
http://en.wikipedia.org/wiki/Germany
http://en.wikipedia.org/wiki/United_States_National_Academies
http://en.wikipedia.org/wiki/National_Medal_of_Science
http://en.wikipedia.org/wiki/National_Medal_of_Science
http://en.wikipedia.org/wiki/Nobel_Prize
http://en.wikipedia.org/wiki/Top_Industrial_Managers_for_Europe
http://en.wikipedia.org/wiki/Top_Industrial_Managers_for_Europe
http://en.wikipedia.org/wiki/CESAER_Association
http://en.wikipedia.org/wiki/CESAER_Association
http://en.wikipedia.org/wiki/QS_World_University_Rankings
http://www.nncn.de/
http://www.nncn.de/
http://www.bmbf.de/en/
http://www.bmbf.de/en/

4

I. NEURAL INFORMATION PROCESSING GROUP

The NIP group is concerned with the principles underlying information processing
in biological systems. On the one hand they attempt to understand how the brain
computes, on the other hand they want to utilize the strategies employed by
biological systems for machine learning applications.

A. Areas of Work

• Models of Neuronal Systems

In collaboration with neurobiologists and clinicians we study how the visual
system processes visual information. Research topics include: cortical dynamics,
the representation of visual information, adaptationand plasticity, and the role of
feedback. More recently we became interested in how perception is linked to
cognitive function, and we began to study computational models of decision
making in uncertain environments, and how those processes interact with
perception and memory.

• Machine Learning & Neural Networks
Here we investigate how machines can learn from examples in order to predict and

(more recently) act. Research topics include the learning of proper representations,
active and semisupervised learning schemes, and prototype-based methods. Motivated
by the model-based analysis of decision making in humans we also became interested
in reinforcement learning schemes and how these methods can be extended to cope
with multi-objective cost functions. In collaboration with colleagues from the
application domains, machine learning methods are applied to different problems
ranging from computer vision, information retrieval, to chemoinformatics

• Analysis of Neural Data
Here we are interested to apply machine learning and statistical methods to the
analysis of multivariate biomedical data, in particular to data which form the basis of
our computational studies of neural systems. Research topics vary and currently
include spike-sorting and the analysis of multi-tetrode recordings, confocal
microscopy and 3D-reconstruction techniques, and the analysis of imaging data.
Recently we became interested in the analysis of multimodal data, for example,
correlating anatomical, imaging, and genetic data.

5

Table of Contents

SERIAL. NOS. TOPICS PAGE NOS.

I Introduction 6

II Research and Exploration 10

III Experimental Results 27

IV Current Work 39

V Appendix 40

VI References 42

6

INTRODUCTION
I. MOTIVATION
Recognizing familiar faces in a crowd, detecting a ball when playing soccer,

differentiating between cats and dogs, Classifying letters when reading. All of these
are trivial tasks for human beings. Within 150 milliseconds the human visual system
can detect and discriminate between an incredible diverse assortment of stimuli, in
motion or not, patterned or un-patterned, 2-D or 3-D. As a result, the human brain
manages the recognition of 3-D objects in an impressive way without having
problems with variability in the appearance, due to viewpoint, illumination or
occlusion. However, understanding the human visual processing is very complex
because our subjective impressions tell us little about the way we accomplish these
daily tasks. For instance, although it seems that we can recognize objects equally well
from any viewing angle, experiments in cognitive vision do not confirm this
assumption. Nevertheless, the goal of many scientists is to create computer vision
systems which manage to work both, as fast and as accurate as the human visual
system.

II. OBJECT RECOGNITION IN COMPUTER VISION
This project especially deals with recognition of 3-D objects. Therefore, first we

will give a short overview of the object recognition process in general and second,
commonly used methods for creating descriptions for 3-D objects will be discussed.
In recent years much research has been done in the field of object recognition.
Generally, in computer vision an object recognition system is divided into two parts -
a training phase and a classification phase as illustrated in figure 1. Training is usually
done from single images containing the respective object in different poses. From
these images an object representation is extracted which contributes to the knowledge
of the recognition system. The task of the classification phase is to identify learned
objects in a given scene. Therefore initially a description of the scene is needed in
order to make a classification, whether the object appears in the scene or not.

7

Figure 1: Scheme of common recognition application

At this point we can already imagine that object representations are of great
importance for each recognition system. As previously mentioned the aim of an object
recognition system is to work fast and accurately. However, in order to be fast, it is
necessary to have sparse representations which save memory and in addition
accelerate classification because only a small amount of data has to be processed.
However storing small descriptions of objects at the same time implies, the need of
distinctive descriptions to be further on resistant against the variability in appearance
of objects in scenes. Therefore the challenge is to extract sparse and robust
representations. Different methods have been presented for describing 3-D objects
from images.

First there are shape-based methods which propose to create 3-D computer
models from objects in images. However, the major difficulty of these approaches is
to generate 3-D models of information available from 2-D images. Any 2-D image is
always consistent with infinitely many 3-D interpretations. Therefore it is not possible
to build a correct 3-D model from a single image because only information of a
particular viewpoint is available. In other words, nothing is known about what is
going on behind the surface. In addition, studies of numerous neuro-scientists are a
further argument against shape-based methods. For instance, Logothetis has made
extensive experiments with monkeys showing that learning of 3-D objects is done
view-dependent. However shape-based methods would suggest to be capable of
recognizing objects viewpoint-invariant which is not supported by cognitive science.

An alternative to shape-based methods are appearance-based methods which
create representations based on images. In other words, the intention is to avoid
creating a 3-D model but therefore use the image itself for making a description. At
the same time this means that each distortion appearing on the image, e.g. reflectance,
is also stored in the representation. Nevertheless the appearance-based methods have
turned out to be expedient for recognition of 3-D objects because successful object
recognition systems must cope with these effects. In addition, when talking about the

8

appearance-based approach we have to distinguish between local and global methods.
The first one tries to represent the object as a collection of local features while the
second one uses the entire image of an object for the representation. Since global
methods use the whole image information they are very sensitive to clutter,
background or occlusions. Local features are usually based on the description of
patches around distinctive points in the image. Concerning 3-D object recognition this
means that distinctive small pieces of the object are stored for the representation and
therefore local features are a nice approach to minimize the amount of data to be
processed without losing most important information. To summarize, appearance-
based approaches using local features are gaining more and more importance.

III. REAL TIME OBJECT RECOGNITION AT TU BERLIN
The aim of this project is to develop a recognition system that is largely scale-,

illumination-, translation-, and rotation-invariant. The recognition system should be
capable of being used for any object, regardless of its shape or size. Also, the system
should be able to recognize the objects regardless of their surrounding environment.

This research based project has three areas of focus, described below:

• Generating ‘Proto-Objects’ i.e. Potential Objects

The task of this process is to generate proto-objects that can then be processed
further. It essentially involves extracting whole objects from their surrounding
environment. It is important to ensure that the objects are retrieved regardless of their
surrounding environment i.e. the surrounding environment should not affect the
performance of this task.

This is achieved by first applying a segmentation algorithm followed by a
combination of depth based clustering and merging. Experiments have determined the
remarkable accuracy of this approach in generating stable, near perfect objects.

• Feature Computation & Matching

The task of this process is to generate suitable features of the proto-objects which
were retrieved in the previous step. It requires a thorough evaluation of feature
detectors and descriptors. The features so selected must ensure the invariant nature of
the system. They must also ensure that the system is capable of performing recognition
in real time. Once the features have been extracted, it is required that they be matched
with the previously built Object Model in order to actually determine whether the
object under consideration is the same as the object model or not. It is required that this
search be carried out as efficiently as possible.

A number of feature descriptors such as MSER, SURF, SIFT, Color Histogram,
Opponent Color Space, Transformed Color Histogram were evaluated for this task.
Experiments have determined the superiority of the SIFT Feature Descriptor,
especially when it comes to ‘textured’ objects. Experiments on the aforementioned
Color Descriptors have proven the validity of using a top-down approach i.e. using
color to eliminate proto objects before applying SIFT to the remaining objects. As for

9

feature matching, we have implemented the randomized kd-trees approach available in
FLANN. Experiments have proven the accuracy and efficiency of this approach.

We are currently exploring the use of efficient region descriptors to work with
MSER, especially in case of objects that lack texture, evaluating various color
descriptors, exploring various preprocessing steps to improve efficiency etc.

• Building an Object Model

A key task of any recognition system requires building an efficient representation of
the object. Care needs to be taken to ensure that a significant number of features of the
training object are extracted in such a way so as to facilitate the invariant nature of the
system. It is also important to ensure the efficiency of these features in order for the
system to be capable of performing in real time.

This is achieved firstly, by extracting features of the training object from multiple
views and secondly, by creating a feature trajectory that ensures the selection of the
best features. Experiments have proven the efficiency of this approach as the system
was able to recognize objects despite changes in the orientation of the object and the
viewing angle.

10

RESEARCH & EXPLORATION

SERIAL. NOS. TOPICS PAGE NOS.

I Introduction 11
A Purpose 11
B Scope 11
C Audience 11
D Definitions, Acronyms & Abbreviations 11
E References & Formulae 11

II Image Segmentation 11
A Introduction 11
B Characteristics of a Good Segmentation Algorithm 12
C Graph Based Segmentation 12
D Efficient Graph Based Segmentation 12
E Parameters 13
F Example 13
G Summary 14

III Feature Extractors and Descriptors 14
A SIFT 15
B MSER 17

IV Color 18
A RGB Histogram 18
B Opponent Histogram 18
C Transformed Color Distribution 18

V Object Model Generation 19
A Single View Based Method 19
B Multiple View Based Method 20
C Continuous View Based Method 21

VI Similarity Computation using FLANN 25
A Introduction 25
B Problem Description 25
C Randomized kd-trees Approach 25

11

I. INTRODUCTION

A. Purpose
The purpose of this document is to summarize the research work done at each phase

of the development of the software.

B. Scope

The scope of this SRS document encompasses the following: -

1. It serves as a reference to study, analyze and understand methodologies to be
designed, programmed and documented.

2. It acts as a tool for the development of test cases which would exercise small
conditions of the program.

C. Audience
Designers, Programmers, Testers, Researchers and any fellow interested in studying

computer vision, especially Object Recognition.

D. Definitions, Acronyms and Abbreviations
See Appendix

E. References & Formulae
See Appendix

II. IMAGE SEGMENTATION
a.

A. Introduction

In computer vision, segmentation is the process of partitioning a digital image into
multiple segments (sets of pixels, also known as superpixels). The goal of
segmentation is to simplify and/or change the representation of an image into
something that is more meaningful and easier to analyze. Image segmentation is
typically used to locate objects and boundaries (lines, curves, etc.) in images.

More precisely, image segmentation is the process of assigning a label to every
pixel in an image such that pixels with the same label share certain visual
characteristics. The result of image segmentation is a set of segments that
collectively cover the entire image, or a set of contours extracted from the image
(see edge detection). Each of the pixels in a region are similar with respect to
some characteristic or computed property, such as color, intensity,
or texture. Adjacent regions are significantly different with respect to the same
characteristic(s).

B. Characteristics of a Good Segmentation Algorithm

• Capture perceptually important groupings or regions, which often reflect
global aspects of the image. While there are many approaches to image

12

segmentation that are highly efficient, these methods generally fail to
capture perceptually important non-local properties of an image

• Be highly efficient, running in time nearly linear in the number of image
pixels. In order to be of practical use, we believe that segmentation
methods should run at speeds similar to edge detection or other low-level
visual processing techniques, meaning nearly linear time and with low
constant factors. For example, a segmentation technique that runs at
several frames per second can be used in video processing applications.

C. Graph Based Segmentation

We take a graph-based approach to segmentation. Let G = (V;E) be an undirected
graph with vertices vi belonging to V (the set of elements to be segmented) and edges
(vi; vj) belonging to E (corresponding to pairs of neighbouring vertices). Each edge
(vi; vj) belonging to E has a corresponding weight w((vi; vj)), which is a non-negative
measure of the dissimilarity between neighbouring elements vi and vj . In the case of
image segmentation, the elements in V are pixels and the weight of an edge is some
measure of the dissimilarity between the two pixels connected by that edge (e.g., the
difference in intensity, color, motion, location or some other local attribute).

In the graph-based approach, a segmentation S is a partition of V into components
such that each component (or region) C belonging to S corresponds to a connected
component in a graph G0 = (V;E0), where E0 is a subset of E. In other words, any
segmentation is induced by a subset of the edges in E. There are different ways to
measure the quality of segmentation but in general we want the elements in a
component to be similar, and elements in different components to be dissimilar. This
means that edges between two vertices in the same component should have relatively
low weights, and edges between vertices in different components should have higher
weights.

D. Efficient Graph Based Image Segmentation [1]

A predicate D is defined for evaluating whether or not there is evidence for a
boundary between two components in a segmentation (two regions of an image).This
predicate is based on measuring the dissimilarity between elements along the
boundary of the two components relative to a measure of the dissimilarity among
neighboring elements within each of the two components. The resulting predicate
compares the inter-component differences to the within component differences and is
thereby adaptive with respect to the local characteristics of the data.

Int(C) is defined as the internal difference of a component C ⊑ V to be the largest
weight in the minimum spanning tree of the component.

13

Dif (C1,C2) is defined as the difference between two components 𝐶𝐶1 ,𝐶𝐶2 ⊆ 𝑉𝑉 to be
the minimum weight edge connecting the two components.

The region comparison predicate evaluates if there is evidence for a boundary
between a pair or components by checking if the difference between the components,
Dif (C1,C2), is large relative to the internal difference within at least one of the
components, Int(C1) and Int(C2). A threshold function is used to control the degree to
which the difference between components must be larger than minimum internal
difference.
We use the following threshold function based on the size of the component :

𝛤𝛤(𝐶𝐶) =
𝑘𝑘

|𝐶𝐶|

where |C| denotes the size of C, and k is some constant parameter.

We define the pairwise comparison predicate as,

𝐷𝐷(𝐶𝐶1 ,𝐶𝐶2) = �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑖𝑖𝑖𝑖 𝐷𝐷𝑖𝑖𝑖𝑖 (𝐶𝐶1,𝐶𝐶2) > 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡(𝐶𝐶1,𝐶𝐶2)
𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 𝑜𝑜𝑡𝑡ℎ𝑡𝑡𝑡𝑡𝑤𝑤𝑖𝑖𝑓𝑓𝑡𝑡

�

where the minimum internal difference, MInt, is defined as,
𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡 (𝐶𝐶1,𝐶𝐶2) = min⁡((𝑀𝑀𝑀𝑀𝑡𝑡(𝐶𝐶1) + 𝛤𝛤(𝐶𝐶1), 𝑀𝑀𝑀𝑀𝑡𝑡(𝐶𝐶2) + 𝛤𝛤(𝐶𝐶2))

E. Parameters

• Gaussian Smoothing Function σ
A Gaussian filter is used to smooth the image slightly before computing the edge
weights, in order to compensate for digitization artifacts. We always use a Gaussian
with σ = 0.8, which does not produce any visible change to the image but helps
remove artifacts.
• Threshold Parameter k
There is one runtime parameter for the algorithm, which is the value of k that
is used to compute the threshold function Γ. It effectively sets a scale of
observation, in that a larger k causes a preference for larger components.

F. Example

Figure 2 : Original Image

14

Figure 3 : Segmented Image

Image Size : 320 x 240
σ : 0.8
k : 300

G. Summary
The segmentation algorithm makes simple greedy decisions, and yet produces
segmentations that obey the global properties of being not too coarse and not too fine
according to a particular region comparison function. The method runs in 𝑂𝑂(𝑚𝑚 ∗
𝑓𝑓𝑜𝑜𝑙𝑙𝑚𝑚) time for m graph edges and is also fast in practice, generally running in a
fraction of a second.

III. FEATURE EXTRACTORS AND DESCRIPTORS
In pattern recognition and in image processing, feature extraction is a special form
of dimensionality reduction. When the input data to an algorithm is too large to be
processed and it is suspected to be notoriously redundant (e.g. the same measurement
in both feet and meters) then the input data will be transformed into a reduced
representation set of features (also named features vector). Transforming the input
data into the set of features is called feature extraction. If the features extracted are
carefully chosen it is expected that the features set will extract the relevant
information from the input data in order to perform the desired task using this reduced
representation instead of the full size input.

In Image Processing, Feature Extraction can be thought of as a two step process :

1. Interest Point Detector. Reliable point-features will be detected.

2. Local Image Descriptor. Each point feature will be described by its local
region from which a feature vector is computed.

For any object in an image, interesting points on the object can be extracted to provide
a "feature description" of the object. This description, extracted from a training image,

15

can then be used to identify the object when attempting to locate the object in a test
image containing many other objects. To perform reliable recognition, it is important
that the features extracted from the training image be detectable even under changes
in image scale, noise and illumination. Such points usually lie on high-contrast
regions of the image, such as object edges.

A. SIFT

Scale-invariant feature transform (or SIFT) [2][3] is an algorithm in computer
vision to detect and describe local features in images. The algorithm was published
by David Lowe in 1999. SIFT can be split up into two parts - a difference-of-Gaussian
point detector and a local image descriptor providing the SIFT features.
The following steps describe SIFT in detail [Web][1]

1. Constructing a scale space
In the first step of SIFT, you generate several octaves of the original image. Each
octave’s image size is half the previous one. Within an octave, images are
progressively blurred using the Gaussian Blur operator.

2. LoG Approximation
This refers to the computation of second order derivatives (or the “laplacian”) of the
blurred images generated in the previous step. This is vital for locating edges and
corners on the image. These edges and corners are good for finding keypoints.
Blurring is important as it smoothes out the noise and stabilizes the second order
derivative.
Since Laplacian of Gaussian is computationally expensive, SIFT computes the
difference between consecutive scales or, the Difference of Gaussians which is
approximately the same as the Laplacian of Gaussian. This effectively reduces the
computation time and also leads to scale invariance.

3. Finding Keypoints
Finding key points is a two part process

• Locate maxima/minima in DoG images
SIFT iterates through each pixel (X) in a image and checks all its neighbors. The
check is done within the current image, and also the one above and below it in the
scale space. This way, a total of 26 checks are made. X is marked as a “key point” if it
is the greatest or least of all 26 neighbors.

• Find subpixel maxima/minima

16

The marked points are the approximate maxima and minima. They are “approximate”
because the maxima/minima almost never lies exactly on a pixel. It lies somewhere
between the pixel. But we simply cannot access data “between” pixels. So, we must
mathematically locate the subpixel location. Subpixel values are generated by first
using Taylor expansion of the image around the approximate key point and then
finding the extreme points of the resulting equation.

4. Eliminating Bad Keypoint
Key points generated in the previous step produce a lot of key points. Some of them
lie along an edge, or they don’t have enough contrast. In both cases, they are not
useful as features. So SIFT gets rid of them.

5. Assigning Orientation to Keypoints
In order to achieve rotation invariance, SIFT assigns an orientation to each keypoint.
To do so, it first collects gradient directions and magnitudes around each keypoint. It
then generates a histogram for this data. Using the histogram, the most prominent
gradient orientation(s) are identified. If there is only one peak, it is assigned to the
keypoint. If there are multiple peaks above the 80% mark, they are all converted into
a new keypoint (with their respective orientations).

6. Generating SIFT Features
SIFT takes a 16×16 window of pixels around the keypoint. It then splits that window
into sixteen 4×4 windows. From each 4×4 window, it generates a histogram of 8 bins
where each bin corresponds to 0-44 degrees, 45-89 degrees, etc. Gradient orientations
from the 4×4 are put into these bins. This is done for all 4×4 blocks. Finally, it
normalizes the 128 values so generated. Hence, a unique feature vector consisting of
128 values is generated for each keypoint.

Figure 4 SIFT Matching : Exhibiting Scale & Orientation Invariance

17

B. MSER
Maximally Stable Extremal Regions (MSER) was proposed by Matas et al. [4] to
find correspondences between image elements from two images with different
viewpoints. Extremal regions have two desirable properties. Firstly, the set is closed
under continuous (and thus perspective) transformation of image coordinates and,
secondly, it is closed under monotonic transformation of image intensities.

Informally, MSER can be explained as follows :
Imagine all possible thresholdings of a gray-level image I. We will refer to the pixels
below a threshold as ’black’ and to those above or equal as ’white’. If we were shown
a movie of thresholded images, with frame t corresponding to threshold t, we would
see first a white image. Subsequently black spots corresponding to local intensity
minima will appear and grow. At some point regions corresponding to two local
minima will merge. Finally, the last image will be black. The set of all connected
components of all frames of the movie is the set of all maximal regions.
Such regions are of interest since they posses the following properties:

• Invariance to affine transformation of image intensities.
• Covariance to adjacency preserving (continuous) transformation T : D → D on
the image domain.
• Stability, since only extremal regions whose support is virtually unchanged over a
range of thresholds is selected.
• Multi-scale detection. Since no smoothing is involved, both very fine and very
large structure is detected.
• The set of all extremal regions can be enumerated in O(n log log n), where n is
the number of pixels in the image.

Comparison to other Region Descriptors
In Mikolajczyk et al. [6], six region detectors are studied (Harris-affine, Hessian-affine,
MSER, edge-based regions, intensity extrema, and salient regions). A summary of
MSER performance in comparison to the other five follows.

 Region density - in comparison to the others MSER offers the most variety detecting
about 2600 regions for a textured blur scene and 230 for a light changed scene, and
variety is generally considered to be good. Also MSER had a repeatability of 92% for
this test.

 Region size - MSER tended to detect many small regions, versus large regions
which are more likely to be occluded or to not cover a planar part of the scene.
Though large regions may be slightly easier to match.

 Viewpoint change - MSER outperforms the five other region detectors in both the
original images and those with repeated texture motifs.

 Scale change - Following Hessian-affine detector, MSER comes in second under a
scale change and in-plane rotation.

18

 Blur - MSER proved to be the most sensitive to this type of change in image, which
is the only area that this type of detection is lacking in.
Note however that this evaluation did not make use of multi-resolution detection,
which has been shown to improve repeatability under blur.

 Light change - MSER showed the highest repeatability score for this type of scene,
with all the other having good robustness as well.

MSER consistently resulted in the highest score through many tests, proving it to be a
reliable region detector.

IV. COLOR

So far, intensity-based descriptors have been widely used for feature extraction at
salient points. To increase illumination invariance and discriminative power, color
descriptors have been proposed.

A. RGB Histogram
The RGB histogram is a combination of three 1-D histograms based on the R, G and
B channels of the RGB color space. This histogram possesses no invariance
properties.

B. Opponent Histogram
Opponent histogram The opponent histogram is a combination of three 1-D
histograms based on the channels of the opponent color space.The channels of the
opponent color space can be computed by transforming the RGB channels as shown
below :

�
𝑂𝑂1
𝑂𝑂2
𝑂𝑂3
� =

⎝

⎜
⎜
⎜
⎛

𝑅𝑅 − 𝐺𝐺
√2

𝑅𝑅 + 𝐺𝐺 − 2𝐵𝐵
√6

𝑅𝑅 + 𝐺𝐺 + 𝐵𝐵
√3 ⎠

⎟
⎟
⎟
⎞

The intensity information is represented by channel O3 and the color information by
O1 and O2. Due to the subtraction in O1 and O2, the offsets will cancel out if they are
equal for all channels (e.g. a white light source).
 O1 and O2 are shift-invariant with respect to light intensity and the intensity channel
O3 has no invariance properties.

C. Transformed Color Distribution
An RGB histogram is not invariant to changes in lighting conditions. However, by
normalizing the pixel value distributions, scale-invariance and shift invariance is
achieved with respect to light intensity. Because each channel is normalized
independently, the descriptor is also normalized against changes in light color and
arbitrary offsets:

19

�
𝑅𝑅′
𝐺𝐺′
𝐵𝐵′
� =

⎝

⎜
⎜
⎛

𝑅𝑅 − µ𝑅𝑅
𝜎𝜎𝑅𝑅

𝐺𝐺 − µ𝐺𝐺
𝜎𝜎𝐺𝐺

𝐵𝐵 − µ𝐵𝐵
𝜎𝜎𝐵𝐵 ⎠

⎟
⎟
⎞

where μC represents the mean and σC the standard deviation of the distribution in
channel C computed over the area under consideration (e.g. a patch or image). This
yields for every channel a distribution where μ = 0 and σ= 1.

Table 1 Invariance of Descriptors (Indicated by +)
 Light

Intensity
Change

Light
Intensity
Shift

Light
Intensity
Change &
Shift

Light
Color
Change

Light
Color
Change
& Shift

RGB
Histogram

- - - - -

O1 ,O2

- + - - -

O3, Intensity

- - - - -

Transformed
Color

+ + + + +

V. OBJECT MODEL GENERATION

A desire of each object recognition system is that it is capable of detecting a trained
object in any scene and thus be able to cope with different poses of the object or
varying lighting conditions or possible occlusions. Clearly, it is impossible to keep a
database that has examples of each view of an object under each possible pose and
lighting condition. Therefore the challenge is to extract distinctive features in order to
get a robust object representation which should overcome these requirements.
Consequently object representations are of great importance.

A. Single View Based Method
Most object recognition systems determine the identity of an object on the basis of the
information gathered from a single image. Typically, a set of features is extracted
from an image and compared against the features of the training image. Using local
features means applying an interest point detector on the training image and to extract
for all detected keypoints a feature vector describing the local region around the

20

detected point. Finally these feature vectors fi will form the representation M of the
object in the training image.
M = [f1, f2, f3, ..., fn]

Figure 5 The Single View method uses features extracted from a single image of the desired
object for forming object representations

B. Multiple View Based Method
When thinking of 3D objects you can easily imagine that it is not sufficient to learn
from a single image in order to recognize it in all possible poses. Furthermore a
common problem is the sensitivity of local image descriptors against viewpoint
changes. As a result multiple images from different views of the same object will
overcome these problems. However, it will also result in a representation where the
number of features will increase proportional to the number of gathered views. For
each training image you will apply the Single View method and all extracted feature
vectors will be combined to a representation M of the object as shown in figure 3.2.
Formally,
M = [f11, f12, ..., f1n1, f21, f22, ..., f2n2, ..., fm1, f12, ..., fmnm],
where fij represents the j-th feature vector of the i-th image.

21

Figure 6 Multiple View method uses features extracted from multiple images depicting multiple

views of the desired object for forming object descriptions

C. Continuous View Based Method
In computer vision we have to work with discrete signals and therefore we even have
a discrete image sequence that consists of a finite number of frames. We can find
correspondence between successive image frames and thereby form a feature
trajectory in order to get a robust description of the object. So our approach for
creating an object description out of an image sequence
can be split up into 3 steps :

1. Extraction of local feature trajectories. Tracking of local features will
give correspondences between keypoints of successive frames which
will finally form trajectories.

2. Selection of robust feature trajectories. Decide which trajectories
are useful for object recognition.

3. Combining descriptors of trajectories to an object representation. A
trajectory consists of many continuously changing feature vectors and

22

therefore contain much redundant information. So the challenge is find
representatives for all trajectories which will finally form the object
representation.

1. Setup for Extraction of Local Feature Trajectories
The training object is rotated in front of a camera and the local feature detector is
applied at regular intervals. Features of the object are continuously tracked using a
Tracking Algorithm. These Features are either added to existing trajectories or a new
trajectory is created for them depending on certain conditions. This method finally
provides trajectories ti and moreover the set of all trajectories T of a given image
sequence. Formally this can be expressed as
T = {t1, t2, ..., tn}
with,
ti = [f1, f2, ..., fni]

2. Algorithm for new detected keypoints:
1. For each new keypoint do:
(a) Search trajectories which haven’t been allotted a keypoint from the current set of
newly detected keypoints. Compute the
Euclidean distance of the last feature vector of each trajectory to the current
keypoint and take the one with closest distance.
(b) If the Euclidean distance is smaller than a defined threshold, discard this keypoint
from the set of newly detected keypoints and go to step 1(d). Else go to step 1(d)
(c) Add the newly detected keypoints to the trajectory and repeat for next keypoint.
(d) Create a new trajectory for this keypoint and repeat for next keypoint.

3. Selection of Robust Feature Trajectories
Discard trajectories that haven’t been allotted a keypoint for k consecutive frames.
This is to ensure that only features that have been tracked for a significant number of
frames are used to represent the object and outliers are removed.

4. Combining descriptors of trajectories to an object representation.
As already described, a feature trajectory consists of feature vectors which have been
computed at each frame of a single tracked keypoint. However using all feature
vectors of each robust trajectory will lead to a very huge object representation
containing much redundant information. Therefore we seek to find an appropriate
method for getting good representatives for a single trajectory and finally for the
whole object. Primitive approaches for summarizing trajectories would be using
standard methods like the following ones:
• Mean.
The simplest method for summarizing data is to compute the arithmetic mean feature
vector f for a trajectory j = 1, 2, ...,m,

23

𝑖𝑖𝑗𝑗 =
1
𝑀𝑀
�𝑖𝑖𝑖𝑖
𝑀𝑀

𝑖𝑖=1

where f is the ith feature vector of the current trajectory and n corresponds to the
length of the current trajectory. All mean feature vectors will finally form the object
representation M,
M = [f1, f2, ..., fm].

24

Figure 7 The Continuous View method can extract an object representation from an image
sequence. Trajectories are formed which will finallybe summarized to a representation of the
object

25

VI. SIMILARITY COMPUTATION USING FLANN
Local Feature Detectors are applied on each proto object to extract a feature vector.
This feature vector is then used to find the closest nearest neighbor from the object
recognition. An object is said to ‘found’ or recognized only if the nearest neighbor
distance is less than a certain threshold. FLANN (Fast Library for Approximate
Nearest Neighbor) [8] is used to find the nearest neighbor.

A. Introduction
FLANN is a library for performing fast approximate nearest neighbor searches in high
dimensional spaces. It contains a collection of algorithms we found to work best for
nearest neighbor search and a system for automatically choosing the best algorithm
and optimum parameters depending on the dataset. FLANN introduces an algorithm
which modifies the previous method of using hierarchical k-means trees. While
previous methods for searching k-means trees have used a branch-and-bound
approach that searches in depth-first order, FLANN uses a priority queue to expand
the search in order according to the distance of each k-means domain from the query.
In addition, FLANN is able to reduce the tree construction time by about an order of
magnitude by limiting the number of iterations for which the k-means clustering is
performed. FLANN also introduces another approach that uses multiple randomized
kd-trees which is a modification of the widely used kd tree approach.

B. Problem Description

We can define the nearest neighbor search problem as follows: given a set of points P
= {p1,..., pn} in a vector space X, these points must be preprocessed in such a way
that given a new query point q ∈ X, finding the points in P that are nearest to q can be
performed efficiently. It is assumed that X is an Euclidean vector space, which is
appropriate for most problems in computer vision.
For high-dimensional spaces, there are often no known algorithms for nearest
neighbor search that are more efficient than simple linear search. As linear search is
too costly for many applications, this has generated an interest in algorithms that
perform approximate nearest neighbor search, in which non optimal neighbors are
sometimes returned. Such approximate algorithms can be orders of magnitude faster
than exact search, while still providing near optimal accuracy.

C. Randomized KD-Trees Approach

The classical kd-tree algorithm (Freidman et al.,1977) is efficient in low dimensions,
but in high dimensions the performance rapidly degrades. To obtain a speedup over
linear search it becomes necessary to settle for an approximate nearest-neighbor. This
improves the search speed at the cost of the algorithm though not always returning the
exact nearest neighbors. Silpa-Anan and Hartley (Silpa-Anan and Hartley, 2008) have
recently proposed an improved version of the kd-tree algorithm in which multiple
randomized kd-trees are created. The original kd-tree algorithm splits the data in half

26

at each level of the tree on the dimension for which the data exhibits the greatest
variance. By comparison, the randomized trees are built by choosing the split
dimension randomly from the first D dimensions on which data has the greatest
variance. FLANN uses the fixed value D = 5 in its implementation.
When searching the trees, a single priority queue is maintained across all the
randomized trees so that
search can be ordered by increasing distance to each bin boundary. The degree of
approximation is determined by examining a fixed number of leaf nodes, at which
point the search is terminated and the best candidates returned. The user specifies only
the desired search precision, which is used during training to select the number of leaf
nodes that will be examined in order to achieve this precision.

27

EXPERIMENTAL RESULTS

I. OFFLINE TRAINING PHASE
A. Setup
The test object is placed on a rotating table with a black background. The object is
then rotated a little more than 360. The rotation video is captured using the Microsoft
Kinect.
B. Creating Object Model
• Frames at regular intervals are extracted from the video thereby generating a stack

of images which depict the object at varying rotations.
• The region of interest (ROI) from these images is manually selected for

processing.
• Feature Trajectories are created using SIFT Features.
• The end of rotation is identified by finding the highest number of nearest neighbor

matches between the SIFT descriptors in the 1st frame and the following frames.
The graph in Fig 8 depicts this wherein the y-axis depicts the number of nearest
neighbor matches and x-axis the frame numbers. The second peak in the graph
signifies the end of rotation.

Figure 8

• The feature trajectories are then stored in a Yaml file.

28

II. ONLINE CLASSIFICATION PHASE
A. Input

1. Object Model (yaml file)

2. Depth Stream from Kinect (PCL)

3. Video Stream from Kinect (@ 15Hz with resolution 1240*1080

B. Output
Identified Objects labelled as found

C. Parameters
 See appendix for a list of runtime parameters

D. Hardware Configuration

Memory: 11.8 GiB

Processor: Intel 12-core i7 CPU X980@ 3.33 GHz

Operating System: Ubuntue Release 11.10 (oneiric) Kernal Linuz 3.0.0.36-generic

E. Object 1
Timing:

Procedure Time Taken (in ms)

Segmentation 245.28

NN Clustering 149.39

Merging 1101.85

Recognition 3363.31

 SIFT computation 3280.38

 FLANN Search 43.75

Total Time 4859.83

Table 5 Average elapsed time over 20 frames

29

Figure 9: Object in testing environment

Figure 10: Object in Real Environment

30

Figure 11: Segmented Image

Figure 12: Image after Nearest Neighbor Clustering

31

Figure 13: Image after Merging

Figure 14: Recognition Results

32

F. Object 2
Timing:

Procedure Time Taken (in ms)

Segmentation 248.14

NN Clustering 138.75

Merging 1206.47

Recognition 3185.24

 SIFT computation 3107.44

 FLANN Search 41.79

Total Time 4778.6

Table 6 Average elapsed time over 20 frames

Figure 15: Object in training environment

33

Figure 16: Object in Real Environment

Figure 17: Segmented Image

34

Figure 18: Image after Nearest Neighbor Clustering

Figure 19: Image after Merging

35

Figure 20: Recognition Results

G. Object 3
Timing:

Procedure Time Taken (in ms)

Segmentation 250.98

NN Clustering 153.24

Merging 1166.00

Recognition 3448.82

 SIFT computation 3363.46

 FLANN Search 45.29

Total Time 5018.22

Table 6 Average elapsed time over 20 frames

36

Figure 21: Object in training environment

Figure 22: Object in Real Environment

37

Figure 23: Segmented Image

Figure 24: Image after Nearest Neighbor Clustering

38

Figure 25: Image after Merging

Figure 26: Recognition Results

39

CURRENT WORK
• Feature Descriptors for Texture Less Objects

One of the key drawbacks of SIFT is its inefficiency in describing texture less
objects.We plan to investigate the use of MSER for such cases.

• Integration of Texture and Color in a top down approach

Color can be used to as a preprocessing step to eliminate a number of proto-
objects. Only objects that satisfy the color criterion can be further processed for
recognition using SIFT. The motivation behind this approach is the significant
computation time associated with SIFT.

• Extending the system to recognize multiple objects

As of now, the system is capable of identifying only one object as specified by the
object model. We aim to extend the system to allow multiple objects to be
recognized at the same time.

• Filtering False Positives

We are currently working on different approaches to filter out the SIFT matches
returned from the FLANN module. The idea is to use the orientation, scale and
relative location parameters associated with SIFT keypoints to eliminate false
positives.

• Optimizing the Merge Step

Timing analysis has shown the significant computation time of the merging step.
We are currently exploring other methods to reduce this inefficiency.

The preciseness of our object detection technique is better than anything we have
come across in the published literature. We hope to enhance our recognition
framework in the next few months and then test our system on standardized
datasbases in order to present a thorough evaluation.

40

APPENDIX
RUNTIME PARAMETERS

S.no Command
Line

Argument

Type
(Default)

Description

Depth Parameters
1. dlim Double (6) Depth Limit
2. dmode Bool (false) Depth Mode
3. hisbw Double (0.02) Depth Histogram Bin Width

SIFT Parameters
4. siftsc Int (3) Scales
5. siftpt Double (0.04) Peak Threshold
6. siftis Double (1.6) Sigma

MSER Parameters
7. msdelta Int(5) Delta
8. msminarea Int(60) Minimum Area
9. msmaxarea Int (14400) Maximum Area
10. Msmaxvar Double (0.25) Maximum Variation
11. msmindiv Double (0.2) Minimum Diversity
12. msmaxevol Int (200) Maximum Evolution
13. msareathresh Double (1.01) Area Threshold
14. msminmargin Double

(0.003)
Minimum Margin

15. msblur Int (3) Edge Blur Size
16. mincontarea Int (10) Minimum Contour Area

Graph Based Segmentation Parameters
17. sigma Double (1.2) Gaussian Smoothing function
18. gsegk Int (500) k causes a preference for larger components
19. minblob Int (450)

RGB Color Histogram
20. ncolors Int (4) Divides each channel into ‘ncolors’ equal sized bins.

Hence, no of bins for each channel=ncolors.
Transformed Color Histogram

21. tbinstart Double (-1) Histogram range is defined by tbinstart and tbinend
22. tbinend Double (5)
23. tbinwidth Double (0.1) This is used to define the width of the bins and

thereby the number of bins between tbinstart and
tbinend

Optimization Parameters
24. histdist Double (0) Sets a threshold for distance between histograms of

two segments under consideration for merging
25. meanthresh Double (5)
26. boundary-

thresh
Double (0.04) Used to remove Edges

27. neighbour-
thresh

Int (0) Two pixels are considered neighbours as long as
they are at a distance less than this threshold. Used
while checking the neighbour criteria for merging.

28. nneighbour Int (0) The number of nearest neighbours returned in a
FLANN search.

29. jaccardthresh Int (0) Sets a minimum value while computing Jaccard
Index between corresponding bins of two

histograms. Used to eliminate noise.
30. segsize Int (20000) Sets a threshold for segments
31. maxsizedif Int (5)
32. nnthresh Double (0) Distance threshold for the nearest neighbors found

41

using FLANN
33. matchcnt Int (1) The minimum number of matches required for an

object to be set as ‘FOUND’
34. matchfactor Double (6) Used to set a threshold for the ratio of closest

distance to second closest distance in SIFT feature
mode.

The current object has one match if :
100*distsq1<matchfactor*matchfactor*distsq2

Program Flow Parameters
35. featuremode Int (0) 0: SIFT

1:RGB Color Histogram
2:Reserved

3: Transformed Color Histogram
36. expmode Int (0) 0: Display All Windows

1:Display only merged segments window
37. clusterseg Int (0) 0: Histogram Clustering + Fine Clustering (Jong-

Han’s old clustering method)
1: NN Clustering

38. libfile String Object Library file name (including extension)
39. libpath String Object Library file path

42

REFERENCES

I. BOOKS

[1] Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 3rd ed.,
Pearson Education, 2008.

[2] Walter G. Kropatsch, Horst Bischof, Digital Image Analysis, Springer, 2001.

II. RESEARCH PAPERS

[1] Pedro F. Felzenszwalb, Daniel P. Huttenlocher. Efficient Graph-Based Image
Segmentation.

[2] Lowe, David G. (1999). Object recognition from local scale-invariant
features. Proc. 7th International Conference on Computer Vision
(ICCV'99) (Corfu, Greece): 1150-1157.

[3] Lowe, David G. (2004). Distinctive image features from scale-invariant key
points. International Journal of Computer Vision 60(2): 91-110.

[4] J. Matas, O. Chum, M. Urban, T. Pajdla. Robust Wide Baseline Stereo from
Maximally Stable Extremal Regions. Proc. of British Machine Vision Conference,
pages 384-396, 2002

[5] Forssen, P-E. and Lowe, D.G. "Shape Descriptors for Maximally Stable Extremal
Regions" ICCV, 2007.

[6] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, T. Kadir and L. Van
Gool: "A Comparison of Affine Region Detectors"; International Journal of
Computer Vision, Volume 65, Numbers 1-2 / November, 2005, pp 43-72

[7] Michael Grabner. Object Recognition with Local Feature Trajectories.
[8] Marius Muja and David G. Lowe, “Fast Nearest Neighbors with Automatic

Algorithm Configuration”, in International Conference on Computer Vision
Theory and Applications (VISAPP'09)

http://www.cs.ubc.ca/~perfo/papers/forssen_iccv07.pdf
http://www.cs.ubc.ca/~perfo/papers/forssen_iccv07.pdf
http://www.robots.ox.ac.uk/~vgg/publications/papers/mikolajczyk05.pdf

	Technischen Universität Berlin
	Neural Information Processing Group
	The NIP group is concerned with the principles underlying information processing in biological systems. On the one hand they attempt to understand how the brain computes, on the other hand they want to utilize the strategies employed by biological sy...
	Areas of Work
	Models of Neuronal Systems
	In collaboration with neurobiologists and clinicians we study how the visual system processes visual information. Research topics include: cortical dynamics, the representation of visual information, adaptationand plasticity, and the role of feedback....
	Machine Learning & Neural Networks
	Analysis of Neural Data

	Page Nos.
	Topics
	Serial. Nos.
	Page Nos.
	Topics
	Serial. Nos.
	Introduction
	Purpose
	Audience
	Definitions, Acronyms and Abbreviations
	References & Formulae

	Image Segmentation
	Feature Extractors and Descriptors
	SIFT
	Eliminating Bad Keypoint
	MSER
	Informally, MSER can be explained as follows :

	Color
	RGB Histogram
	Opponent Histogram
	Transformed Color Distribution

	Object Model Generation
	Single View Based Method
	Multiple View Based Method
	Continuous View Based Method

	Similarity Computation Using Flann
	The feature trajectories are then stored in a Yaml file.
	II. Online Classification Phase
	Input
	1. Object Model (yaml file)
	2. Depth Stream from Kinect (PCL)
	3. Video Stream from Kinect (@ 15Hz with resolution 1240*1080
	Output
	Identified Objects labelled as found
	Parameters
	See appendix for a list of runtime parameters
	Hardware Configuration
	Memory: 11.8 GiB
	Processor: Intel 12-core i7 CPU X980@ 3.33 GHz
	Operating System: Ubuntue Release 11.10 (oneiric) Kernal Linuz 3.0.0.36-generic
	Object 1
	Timing:
	/
	/
	/
	/
	/
	/
	Object 2
	Timing:
	/
	/
	Object 3
	Timing:
	/
	/
	/
	/
	/

	Books
	Research Papers

