An 1mplementation of Efficient Graph-Based
Image Segmentation

Sahil Narang
Kishore Rathinavel
University of North Carolina, Chapel Hill

Abstract

This report documents an implementation of the paper “Effective Graph-Based Image Segmentation”. The
method discussed here defines a metric for measuring the evidence of a boundary between two regions using
a graph-based representation of the image. Based on the proposed metric, an efficient image segmentation
algorithm is developed. Although this algorithm is a greedy algorithm, it respects some global properties of the
image. Some important features of the proposed algorithm are that it runs in linear time and that it has the
capability to adapt its behavior differently between regions of high-variability and low-variability. In particular,
we demonstrate that it ignores details in high-variability regions.

Index Terms

image segmentation, graph algorithm

I. INTRODUCTION

A wide range of intermediate and high level computer vision problems would benefit from a reliable segmen-
tation method. It is desirable in most computer vision problems to be able to extract regions which belong to the
same object. Some examples where image segmentation could be an important pre-processing step are object
detection, recognition tasks, content-based image retrieval etc. In order to build a reliable and useful algorithm
which can perform image segmentation, the algorithm needs to satisfy these properties:

1) Capture regions which appear to belong together. This should be consistent with the global appearance

of the object

2) High efficiency and run in time linear in the number of pixels in the image.

II. RELATED WORK

Image segmentation has been approached from a variety of ways and there exists an extremely large body of
literate to summarize and compare with all methods. Here, we describe work that has been done related to the
method we describe. This paper was published after the formulation of graph by Shi and Malik [1], Wu and
Leahy [2]] and spectral methods [3]. The work by Wu and Leahy [2] is biased towards finding small components.
This bias was addressed by the Normalized cuts by Shi and Malik [[1]. However, the normalized cuts criterion
yields an NP-hard computational problem. This can be resolved by using some approximations. However, these
approximations have not been characterized and are not well-understood. However, all graph-based are too slow
for real time implementation. The computational cost for our algorithm is nearly linear with the number of
pixels. The execution time is extremely fast and we get a very good segmentation as detailed in the following
sections.

III. OUR METHOD

In this section, we first introduce the basic concepts of graph-based segmentation, then describe our pairwise
region comparison metric, and then describe our algorithm and some properties of it.

A. Graph-based segmentation

Let G = (V, E)) be an undirected graph with vertices v € V' and edges (v;,v;) € E. Edges are between two
vertices always. The set that needs to be segmented is the set of vertices V. Each edge has a corresponding
weight w(v;, v;) which is a non-negative measure of the dissimilarity between neighboring elements v; and v;.
Dissimilarity between the edges can be measured as the difference in intensity, color, motion, depth, location or
any other local attribute. In our experiments, we define the weight to be the L2 norm between the RGB values
of the pixels. The goal of image segmentation is to find a partition of the set V' such that each component of the
partition is a connected graph G’ = (V, E’) where E’ C E. The driving forces of such a partition are that the
elements of each component are similar to other elements belonging to the same components and yet dissimilar
to elements belonging to other components. Based on our guideline that the weights measure the amount of
dissimilarity between two vertices, we can that the edges between vertices of the same component will have
low weights whereas edges between vertices belonging to different components will have high weights.

B. Pairwise region comparison metric

An absolute metric would not take into account the variability of the region. This would result in either
merging together separate regions with low variability between them or separating high variability regions into
several components. To avoid this, we propose a metric which adapts itself based on the variability of the region
under consideration. The metric is based on measuring the dissimilarity between elements along the boundary
of two components relative to the measure of dissimilarity of the elements within each component. We define
internal difference to be the largest edge weight in the minimum spanning tree of the component. That is,

Int(C) = max w(e) (D
e eMST(C,E)

where, M ST(C, E) is the Minimum Spanning Tree of the sub-graph G = (C, E)). A minimum spanning tree
is the sub-graph which connects all vertices C' and has the least sum total of weights.
We define the difference between two components to be the minimum edge weight connecting the two
components. That is,
DZf(CZ’ CJ) :v,; ECi7Ujéng:}(vi,Uj)eE ’UJ(Ui, Uj) (2)
If there is no edge connecting C; and C;, we let Dif(C;, C;) = co. While this error metric could be made more
robust to outliers by using some statistical measure like median, mean or quantile, it makes the problem NP-hard.
The proof for this claim is provided in the paper by Felzenszwalb and HuttenLocher [4] which we omit here.
The criteria for a merge between two components is to check if the difference between the two components is
lesser than the internal difference of each of the components by a threshold function. In particular we compare
Dif(C;, C;) and:
MInt(C;, Cj) = min(Int(C;) + 7(C;), Int(C;) + 7(C5)) 3)
If the former is lesser than the later, the components are merged, otherwise, the components are not merged and
we conclude that there is a strong evidence of a boundary between the two components. The threshold function

is defined as:
7(C) = k/|C] 4)

The threshold function above implies that for small components, we require a strong evidence for a boundary.
A large k prefers larger components and vice versa. Instead of defining the 7(C') based on some constants and
cardinality of the components, it is possible to define 7(C') based on prior information to favor some desired
shape.

C. Algorithm

We first form the graph G = (V, E') by considering all pixels to form the set V' and a choose a neighborhood
around each pixel to find the edges around that pixel. Generally, we could choose a 4-neighborhood or a 8-
neighborhood. For the rest of the paper, we use a 8-neighborhood. The weights of the edges are defined to be
the absolute intensity differences between the pixels forming the edge.

The Algorithm [I] returns a segmentation that is neither too fine nor too coarse. For a proof of this property,
refer to the paper by Felzenszwalb and HuttenLocher [4].

Algorithm 1 Graph-based Image segmentation
Input: G = (V, E) and w(v;,vj)Vv;,v; € V and v; # v;
1: Sort E into E' = (04, ..., 0,,) by non-decreasing edge weight
2: Start with a segmentation S° where each vertex v; is in a component by itself

3: Let o, = (v;,v;). Repeat step 3 for q = 1,...m to find S? given S9!

4: if v; and v; are in disjoint components of S9~1 then

5. if w(og) is lesser than M Int(C;, C;) where v; € C; and v; € C; then
6: Merge C; and Cj

7. end if

8: end if

Output: S™

(a) Scene (b) Author’s implementation (c) Our implementation

Fig. 1. Scene 1

1V. IMPLEMENTATION DETAILS

In this section we describe the date structure we use for the implementation of the algorithm, then describe
the metric we use to calculate weights. The implementation of graphs and components is best done by the
disjoint-set forest with union by rank and path compression [3]. Both these strategies, union by rank and path
compression are aimed at minimizing the parsing time from any node to the root node. In a tree data structure,
each node holds a reference to its parent node. In a disjoint-set forest, each set is represented by the root of
set’s tree. A merging operation is an operation that combines the trees of 2 sets into 1 tree. This raises an
interesting question of which tree’s node now becomes the root node of both sets. We use the terms depth
and rank interchangeably here. Keeping in mind that the parsing time from any node to the root node mainly
depends upon the depth of the tree, we should combine the trees in such a way that the resulting tree has the
minimum depth possible. So, the tree with the smaller depth gets added under the root of the deeper tree. If both
trees have equal depth, then the choice of root node doesn’t matter and pick either one. Whenever we traverse
from a node to its root node, we would pass through a certain order of nodes. All these nodes belong to the

(a) Scene (b) Author’s implementation (c) Our implementation

Fig. 2. Scene 3

-

(a) Scene (b) Author’s implementation (c) Our implementation

Fig. 3. Scene 4

same root and hence, they could all be attached to the node for the purposes of our algorithm. This practice is
called path compression. Step 1 of the algorithm [T] can be done in linear time for integer weights by counting
sort and in O(Slocum) for floating values. Steps 2 to 7 of the algorithm [I] take O(m(m)) time, where o is the
very slowly-growing inverse Jermain’s function.

V. RESULTS

In order to reduce the effects of noise, we use a Gaussian filter to smooth the image. We always use a
Gaussian with o = 0.8 which does not reduce any edge details but removes artifacts. Fig. [I] shows a synthetic
since for image segmentation, the author’s implementation and our implementation. Looking at the synthetic
scene, most people would say that the scene should be divided into 3 regions - the left half of the image, the
constant intensity portion of the right half of the image, and the region of high variability in the right half of
the image. Our algorithm demonstrates that if you adaptively ignore details in regions of high variability, then
it is possible to segment out such regions. Fig. 2] shows an outdoor scene. The largest components found by
the algorithm are 3 of the grassy areas behind the fence, the grassy slope, the van, and the roadway. Note that
the van is not uniform in color in the scene but these are treated as internal variations and merged together to
form 1 coherent region. Fig. [3] shows 2 baseball players. In their paper, their segmentation is very similar to
our implementation’s results. But, for some unknown reason, their code seems to work better now and is able
to segment the grass separately from the back wall in the region under the player.

VI. CONCLUSIONS

In this paper, we introduced a greedy algorithm for image segmentation which respects the global properties
of the image. We used a novel metric to compare 2 components to decide whether or not they should be merged.
This metric adapts to regions in such a way that it ignores details in regions of high variability and uses details
in regions of low variability. This algorithm is nearly linear in time - in particular it is O(nlogn where n is the
number of pixels in the image.

REFERENCES

[1] J. Shi and J. Malik, “Normalized cuts and image segmentation,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 22, no. 8, pp. 888-905, 2000.

[2] Z. Wu and R. Leahy, “An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 15, no. 11, pp. 1101-1113, 1993.

[3] Y. Weiss, “Segmentation using eigenvectors: a unifying view,” in Computer vision, 1999. The proceedings of the seventh IEEE
international conference on, vol. 2. 1EEE, 1999, pp. 975-982.

[4] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient graph-based image segmentation,” International Journal of Computer Vision,
vol. 59, no. 2, pp. 167-181, 2004.

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduction to algorithms. MIT press Cambridge, 2001, vol. 2.

	Introduction
	Related work
	Our method
	Graph-based segmentation
	Pairwise region comparison metric
	Algorithm

	Implementation details
	Results
	Conclusions
	References

