BMC+Fuzz :

Ravindra Metta
TCS Research
Pune, India
r.metta@tcs.com

TCS Research
Bangalore, India

Abstract—Coverage Guided Fuzzing (CGF) is a greybox test
generation technique. Bounded Model Checking (BMC) is a
whitebox test generation technique. Both these have been highly
successful at program coverage as well as error detection. It is well
known that CGF fails to cover complex conditionals and deeply
nested program points. BMC, on the other hand, fails to scale for
programming features such as large loops and arrays.

To alleviate the above problems, we propose (1) to combine
BMC and CGF by using BMC for a short and potentially
incomplete unwinding of a given program to generate effective
initial test prefixes, which are then extended into complete test
inputs for CGF to fuzz, and (2) in case BMC gets stuck even
for the short unwinding, we automatically identify the reason,
and rerun BMC with a corresponding remedial strategy. We call
this approach as BMCFuzz and implemented it in the VeriFuzz
framework. This implementation was experimentally evaluated
by participating in Test-Comp 2021 and the results show that
BMCFuzz is both effective and efficient at covering branches as
well as exposing errors. In this paper, we present the details of
BMCFuzz and our analysis of the experimental results.

I. INTRODUCTION

To deal with the rapidly increasing code complexity of
software systems like 5G and Machine Learning, embedded
software projects are adopting agile processes for large soft-
ware development, especially DevOps [1]. These processes are
assisted by high-degree of automation methodology of Continu-
ous Integration(CI), Continuous Deployment and/or Continuous
Delivery (CD). These connected processes, often referred to as
“CI/CD pipeline”, automate the entire software development
life cycle. A key requirement for DevOps is to integrate testing
into the software build process itself.

Fuzz testing [2] is an automated technique for detecting
defects in functionality as well as security vulnerabilities. It
works by fuzzing (mutating) a given corpus of tests to generate
more tests to achieve test objectives such as code coverage. This
fits in well with testing requirements in the CI/CD pipeline. In
particular, Coverage Guided Fuzz (CGF) is an effective testing
technique for DevOps.

Another key requirement of DevOps is quick turn around
time for testing. Sometimes automated test engines are run once
every few minutes. However, CGF performs better with longer
fuzzing time (many hours). Also, CGF’s performance depends
on program structure and initial seed inputs [3]. It is well known
that the coverage of the test inputs generated by a CGF is
poor if the Program Under Test (PUT) gets “stuck” along those
program paths that have complex conditions [4]. For example,
if a program path has a condition x == 3 where x is a 32-bit
integer input, a CGF engine is likely to fail to generate input

Raveendra Kumar Medicherla

raveendra.kumar@tcs.com

Efficient and Effective Test Generation

Samarjit Chakraborty
Department of Computer Science
University of North Carolina at Chapel Hill
samarjit@cs.unc.edu

values that satisfy this condition as the probability of generating
such inputs is quite low, 1 out of 232. Several approaches were
proposed to address this shortcoming [4] in restricted settings.

On the other hand, Bounded Model Checking (BMC) [5]
is an automated formal verification technique to automatically
check if a given system satisfies a given property within
executions whose length is bounded by some integer (bound).
Bounded model checkers use SAT and SMT solvers for solving
complex conditions to find deeper defects, which CGF struggles
to detect. But, BMC suffers from scalability problems in
presence of complex features such as loops with large or
unknown bounds and large arrays [6]. In the presence of such
features, BMC often does not terminate as any sufficiently large
bound to cover deeper parts of the program would be too big
for BMC. Further, the BMC often gets stuck or fails due to
several other reasons (explained in Sec. III-C).

To overcome the above limitations, we attempt to combine
the relative strengths of CGF and BMC in a manner that
effectively addresses the demands of frequent and fast testing.
Given a program P, we propose to unwind P to a very short
depth d. We guess a d by analyzing the program complexity
of P. We then use BMC for generating a testsuite that covers
all the branches of P that are reachable within d. Each test
in this suite would be incomplete if P has some more inputs
beyond d. So, we extend these incomplete tests into complete
tests by first computing the ranges (using [7]) of the remaining
inputs beyond d and then randomly generating values within
these ranges. We feed the testsuite thus obtained to AFL [8].

Further, if BMC gets stuck or fails while generating the
tests even for a small d (like 20) due to complex program
features as mentioned above, we automatically figure out the
reason and rerun BMC with appropriate remedial action such
as treating large arrays as uninterpreted functions (see Sec.
II-C). Our testsuite generation technique together with the
identification of causes and remedial actions for BMC getting
stuck, form the main contributions of this paper. We call this
approach as BMCFuzz and implemented it in the VeriFuzz 1.2
framework [9], by reimplementing the BMC part of the original
VeriFuzz framework of [10], and participated in Test-Comp
2021 [11]. The experimental results of Test-Comp 2021 show
that BMCFuzz is both effective (leads to better coverage) and
efficient (able to generate the testsuites within a short time).

Paper organization: Sec. II briefly introduces CGF and BMC.
Sec. III illustrates the issues with CGF and BMC, and details
our approach. Sec. IV presents tool architecture and experimen-

tal results. Sec. V discusses relevant work. Sec VI presents our 1
conclusions and future work. 2
3

II. BACKGROUND 4
A. Coverage Guided Fuzz (CGF) Testing 5

CGF is a form of Search Based Software Testing (SBST) 6
[12]. It uses evolutionary algorithms to generate new test inputs
and guides the search towards maximizing code coverage [13].
The evolutionary algorithms heuristically select the best-fit
candidates from a population. They generate the offsprings
by applying crossover and mutating operations on the selected
population. The newer offsprings are checked for their fitness |
against a given objective. The population evolves by adding
each fit offspring to the existing population. In a coverage 3
goal driven SBST, a candidate test-input plays the role of 4
an individual in a population. New test-inputs are generated 5
from an existing test-input (called seed) by repeatedly applying ¢

8

mutation operations such as flipping a bit at a random position
in the seed. The code coverage obtained by the test run on the g
new inputs serves as fitness metric for the seed.

State-of-the-art grey-box fuzzers such as AFL [8] use edge|| . . .
coverage as their fitness metric. AFL is not only simple tojq| _ _ .

use, but also an effective fuzzer that detected vulnerabilities injo
several well known libraries. We choose AFL as the fuzzer ofj3
our choice in this work.

B. Bounded Model Checking

In contrast to CGF, which tries to heuristically explore the
input space using search techniques, a Bounded Model Checker
(BMC) employs SAT/SMT techniques to check a given system
for a given property. In order to scale better, BMC unwinds
the given system only up to a given bound. For programs, this
bound denotes the length of execution till which the program
is to be analyzed. BMC then translates the unwound part of the
system, along with the property to be checked, into a Boolean
formula. It then checks if this Boolean formula is satisfiable
using SAT/SMT solvers.

If the translated Boolean formula is unsatisfiable, then the
system satisfies the property up to the given bound. If the
system violates the property within the bound, then BMC
produces a test case for which the system violates the property.
The system could be a high level model such as a UML model
or a state machine, or a program or even an executable binary.
The property could be any desired property of interest, such as
buffer overflow, absence of deadlock, any timing property etc.
In this work, we use the C Bounded Model Checker (CBMC)
[14] as CBMC is robust, scalable and successfully used in the
verification of a variety of real world embedded systems.

III. PROBLEM ILLUSTRATION AND SOLUTION APPROACH
A. Problem

The code snippet in Fig. 1 illustrates the shortcomings of
both CGF and BMC. We adopted this example from the bench-
mark loop-industry-pattern/mod3.c of Test-Comp benchmarks,
contributed by industrial researchers as a challenging task for
state of the art verification and testing engines.

int32 x=input (), y=input();
if(y == 0x0123ABCD){ // hard for fuzzer
while (%) { // unknown #iterations

if(x $ 3 ==1) // easy for both
else
} // hard for BMC
int32 z=input();
if(z $ 3 == 2) // easy for both

Fig. 1: Motivating Example

x=input () ; y=input ();
if (%) { // unwinding#l of the loop
if(x $ 3 == 1)
else
} else goto loop_end;
if () { // unwinding#2 of the loop
if(x 3 == 1)
else
9]} else goto loop_end;
// #unwinding = ? (termination)
// 2" #unwinding paths (explosion)
loop_end:
if(x & 3 == 2)

Fig. 2: BMC : unwinding of loop on line#3 of Fig. 1

This code takes three 32-bit integer inputs (lines 1 and 7):
x, v, and z. On line-2, it checks if y is equal to the constant
0x0123ABCD. Then, on line-3, there is a loop that iterates an
unknown number of times with an if-condition inside (line-4).
Lastly, there is an if-condition on line-7 that can be reached
only after the loop terminates.

Now, suppose we need to generate a testsuite to cover all the
branches in this code snippet. CGF finds it hard to generate the
input value 0x0123ABCD for the variable y, as the likelihood
of generating this particular value is 1 out of 232, as v is a 32-
bit integer. Therefore, CGF is likely to fail to generate input that
can cause the test run to cover the true branch of the condition
on line 2. However, given a test input for y that exercises the
true branch, CGF easily generates test inputs for x and z that
exercise both the true and false branches of the if-conditions
on lines 4 and 8, as the probability of generating such inputs is
1/3 for the true branches, and 2/3 for the false branches. Lastly,
a fuzzer does not have to deal with loop-termination as it just
needs to produce random test inputs, unlike BMC that needs
to unwind each loop a sufficient number of times.

However, in contrast to CGE, BMC can generate test inputs
that cover the true branch on line-2 within a fraction of a
second, as it uses a SAT/SMT solver as its backend. However,
BMC has to completely unwind the loop (line-3), as shown in
Fig. 2, as it needs to model the entire program as a SAT/SMT
formula. This poses two key challenges: (1) there is no way
to know how many times to unwind a loop in any arbitrary
program and hence when to terminate the unwinding, and (2)

the number of program paths are exponential in the number
of unwindings. For example, in Fig. 2 the if-statements on
lines 2 and 6 represent unwindings 1 and 2 of the loop.
Notice that there are 32 paths from line 2 to line 10 (3
paths through the if-statement on line-2, followed by 3-paths
through the if-statement on line-6). So, k-unwindings of the
loop will lead to k if-else statements and hence to 3* paths.
Such exponential explosion makes the model checking task
intractable. Therefore, even though it is easy for BMC to
produce test inputs that cover the true and false branches of the
if-condition on line-7 of Fig. 1, it will not be able to produce the
test-data due to the termination and path-explosion problems.

This shows that there could be parts of a program that are
hard for CGF and parts that are hard for BMC, inhibiting both
the techniques from producing complete test inputs. Further,
DevOps requires the testing to be done in a short time period.

Therefore, our problem statement is: effectively combine
the relative strengths of BMC and CGF to generate a testsuite
that achieves better coverage in a practically acceptable time.

B. Solution Step 1: Good Seed Input Generation for CGF
Using BMC

As illustrated in Sec. III-A, complex programming features
such as big arrays and complex conditional statements cause
randomly generated inputs to not satisfy the requisite precon-
ditions leading to poor coverage during fuzzing. However, given
an the initial corpus of test inputs (seeds) that cover the complex
conditions, fuzzing such inputs is more likely to generate newer
test inputs that achieve better coverage [4]. Therefore, we
propose to employ BMC in the following way to generate the
initial corpus of seed inputs.

While BMC is effective at solving complex constraints
to generate test inputs, it suffers from scalability issues as
mentioned earlier, especially in the presence of complex loops
and arrays [6]. The benchmark programs in [11] are spread
across many categories such as Loops, and Combinations of
programs of different complex features. These are specifically
crafted by researchers from the academia and the industry to
be challenging for formal verification engines as well as test
generation engines. So, a direct application of BMC for an
entire program does not scale well for these benchmarks and a
direct application of CGF will lead to poor coverage.

Therefore, for a given program P, we analyze P’s program
complexity to guess a short depth d, depending on the number
of loops, their nesting levels and iteration count. Our guessed
bound typically ranges from 2 to 10 for complex programs.
Then, using CBMC [14], we generate an under-approximate
program P, by unwinding P only till the execution depth d. If
this unwinding is incomplete (i.e. P requires more unwinding),
then rest of P will be unreachable. This allows BMC to scale
much better to this potentially incomplete, but small P,. We
then use CBMC to produce test input sequences that cover the
branches of P,. Such test inputs cater only to P,, and not to
P (a complete unwinding of P may contain more inputs, such
as the input z in Fig. 1). Each of these inputs forms a valid
prefix of a complete test input for P. We denote a set of such
prefixes with T),.

Now, each prefix ,, in in 7}, needs to be augmented with a
suffix ¢4 to form a complete test input ¢ for P. For this, we first
compute the ranges of each of the missing inputs required for
ts using k-path interval analysis [7], as this analysis identifies
and merges program paths in such a way that the computed
intervals (value ranges) help verifying program properties. This
analysis conservatively (over approximately) determines the
value ranges of inputs that may reach a given program point.
We then randomly choose values within these ranges to extend
each ¢; in T}, into a complete test ¢ for P. These completed tests
form the corpus of initial seed tests for CGF, which then fuzzes
these to generate more tests for achieving better coverage.

C. Solution Step 2: Remedying a stuck or failed BMC

We observed that sometimes BMC either gets stuck (i.e.,
takes a lot of time, like several hours or days) or fails with
some error even for short unwindings if the input program
contains a large number of complex features (many loops, very
large arrays, etc.). For identifying the typical problems why
BMC gets stuck or fails, we did a comprehensive study of
more than 3000 C benchmarks from the Test-Comp repository.
These benchmarks consist of a variety of features such as large
loops, large arrays, device drivers, heap and bit operations etc.,
all of which are used in modern embedded software. They were
crafted to be challenging for formal verification engines.

CBMC, as well as other BMC engines such as ESBMC
[15] first translate a given program, and a given property
of the program to be verified, into a suitable intermediate
representation (IR), such as the goto program of Fig. 2, after
unwinding the program to a given or automatically determined
depth. The IR is then translated into a SAT formula using
appropriate bit-encoding for the data in the programs. Further
appropriate constraints are also added to faithfully represent
the program semantics, both during the translation as well as
during a post-translation processing stage. If BMC does not get
stuck or fail during these stages, then the SAT (SMT) formula
gets successfully generated. The BMC then calls an off-the-
shelf SAT (SMT) solver to solve the formula. Sometimes, even
the solver gets stuck while solving a complex formula. If all
goes well, the solver successfully verifies the given property. If
the property is violated, then the solver lists the corresponding
value assignments to the variables in the formula. BMC then
maps these values back to the program inputs, generating a
trace that shows why the given property is violated.

Suppose we wish to generate a testsuite that covers each
control flow branch of a given program P. For this, BMC models
the negation of reachability to each branch as a property to be
verified and repeatedly calls a SAT solver to check if each
such reachability property can be violated. If this property can
be violated, it means that the corresponding branch is reachable
and the solver generates a set of inputs (as described above) that
cause this branch to be reachable, thus forming a testcase for
covering this branch. CBMC has an option “—cover branches”,
with which CBMC automatically instruments all the branch
reachability properties to generate a branch coverage testsuite,
and repeatedly calls a solver until the reachability of each
branch is verified.

During this process, to the best of our knowledge, there have
been no known techniques to predict up front if, where and why
BMC gets stuck, or whether and when a solver will terminate.
So, in order to understand where does BMC typically gets stuck
or fails, we ran CBMC many times for different time durations,
ranging from 1 minute to 2 hours, and identified the typical
translation phases and reasons when BMC gets stuck. We have
also identified corresponding remedial strategies to rerun BMC
to try to overcome them. These problems and corresponding
remedial actions are described below.

1) Often times, when there are a large number of nested
loops or recursive calls, BMC takes an enormous amount
of time (days) to unwind the program even for the short
unwinding depth of 10. In such cases, BMC maybe rerun
with an even smaller unwind bound. But, during the re-
run BMC may again get stuck in unwinding, indicating
that the program complexity is simply too high.

In such cases, one needs to use program abstraction
techniques (e.g. [6]) to reduce the complexity of the
program, and run BMC on this abstracted program.

2) BMCs use a fixed number of bits to store addressed ob-
jects. If the given program has more number of addressed
objects than this limit, then BMC throws up an error
saying object-bits are insufficient.

In this case, BMC has to be rerun with a sufficient number
of object-bits, which can be automatically determined by
counting the number addressed objects in the program.

3) Some programs contain very large arrays (dimension size

around a million or even more). As BMCs try flattening
such big arrays into individual bits, required for a SAT
solver, would lead to too many bits that the SAT solver
cannot realistically solve, So, BMC throws an error that
the array size is too large.
In such cases, instead of translating arrays by flattening
them into bits, translate arrays as uninterpreted functions
for the SAT solver. Alternatively, instead of SAT back-
ends, use SMT solvers such as Z3 [16] that support array
theories, and hence the flattening is not required.

4) To ensure functionally consistent translation of a program
into a SAT or SMT formula, in cases such as when array
indices are accessed using non-constants, techniques like
Ackermann expansion (refer to [17]) are employed by
BMC, which leads to a quadratic number of constraints
to be added, irrespective of whether the translation is into
a SAT or SMT formula. This means, if an array has a
dimension size of 10000, the corresponding Ackermann
expansion will have millions of constraints. The BMC
takes a lot of time (days) to add such constraints.

We do not have a remedy for this. In some restricted
settings, it is possible to avoid the quadratic constraints.
This needs further investigation by experts in BMC.

5) As described earlier, BMC repeatedly calls a SAT solver
for each test coverage goal. If a SAT formula for a
particular test goal has lots of complex constraints, the
solver takes a lot of time to solve the formula (this also
depends on the heuristics built into the solver). Further,

Static - c
Analysis Information uzzer T
Initial test Testinput
Inputs Repository
Bounded
Model |, Testinput , Test
prefixes COmpIetion
checker

Fig. 3: BMCFuzz Implementation Architecture

as BMC times out waiting for the solver, we will lose
the test cases already generated for any earlier test goals.
In order to capture at least those tests that are already
generated, a trap for the timeout signal should be im-
plemented inside BMC. Whenever a timeout is trapped,
simply output all the generated tests before exiting BMC.
And then re-run BMC with either a different solver or by
excluding the test goal for which the solver got stuck, to
try to cover the remaining test goals.

Based on our experience in the verification of large embed-
ded systems using BMC, we recommend the above remedies
when BMC is employed for the verification of real world
embedded systems.

IV. TOOL ARCHITECTURE AND EXPERIMENTAL RESULTS
A. Tool Architecture

We have implemented the BMCFuzz approach in VeriFuzz
1.2, available at [9]. Fig. 3 shows the architecture of this
implementation.

Given a C language program P (“Program Under Test”) as
input. P is first fed to a “Bounded Model Checker” (CBMC,
in our implementation). CBMC then generates test prefixes as
described in III-B. These are then fed to a “Test Completion
Engine” (Sec. III-B) that extends the prefixes to form a set of
complete test inputs 7' using the range analysis of [7]. These
complete test inputs are then fed to a “Fuzzer”. We use an
enhanced version of AFL that takes analysis information from a
Static Analysis engine, as described in [10]. The Fuzzer mutates
each test in 7" to generate more tests to achieve better coverage.

This implementation currently supports test generation for
the two different coverage objectives of Test-Comp 2021:
one for covering the branches (Cover-branches) and one for
covering locations labelled as “ERROR” in the program (Cover-
error). Lastly, this implementation supports all the remedial
strategies except for the integration with program abstraction
techniques mentioned in Point 1 of Sec. IV.

B. Experimental Results

In order to comprehensively evaluate the BMCFuzz approach
and benchmark it against other state of the art test generation
techniques, VeriFuzz 1.2 (i.e. the actual implementation of

BMCFuzz) participated in Test-Comp 2021 [11]. In the rest
of this section, “VeriFuzz” refers to “VeriFuzz 1.2”.

Test-Comp 2021 consisted of more than 3,000 C programs,
each of which consists of a challenging task for verification
techniques like BMC as well as test generation techniques
like fuzzing. These are classified into several categories as
shown in Table I, based on the kind of program features they
exercise. Here, the category ECA consists of Event-Condition-
Action software, Sequntialized consists of concurrent programs
that have been sequentialized, xcsp consists of programs from
the XCSP_to_C tool benchmark set, Combinations consists
of programs combined from other categories, and Busybox
consists of programs from the Busybox software. The rest of
the category names are self explanatory. In Test-Comp 2021,
all participating tools are evaluated on these benchmarks with
the limits of 15 GB of RAM and 15 minutes of CPU time, on
Intel Xeon E3-1230 v5 3.4 GHz CPU, and the results of this
evaluation are publicly available [11].

In our experience, except on pathological programs, BMC
gets stuck only for a couple of reasons, but not all the reasons
described in Sec. III-C. Therefore, given the 15 minutes time,
in order to quickly detect when BMC gets stuck and rerun with
a corresponding remedial strategy, we invoke CBMC for one
minute initially and, if CBMC gets stuck, allow maximum two
reruns with 1 minute per rerun. After this, we run AFL for the
remaining time.

Here, we present our analysis of Test-Comp 2021’s tool
evaluation results, by comparing VeriFuzz with the other tools
that combined fuzzing and symbolic evaluation or BMC:
LibKluzzer [18] and Symbiotic [19], two top tools for branch
coverage, and (2) with FuSeBMC [20] and LibKluzzer, two top
tools in the Cover-Error category.

Table Ia shows the experimental results on 2,565 programs
meant for testing branch coverage. In this table, the column
#Tasks denotes the number of programs in the corresponding
category. For each program P, the evaluation score for a test
engine is computed as the number of branches covered by the
test engine / total number of branches in P. For each tool,
Column #s captures the cumulative score obtained by summing
up the individual score on all the programs of a category for
each test-engine. Column #t denotes the time taken in minutes
for producing testsuites for the entire category.

The results show that VeriFuzz achieved better coverage in
9 out of 14 categories when compared to the other tools. In
the remaining 5 categories, it is the second best tool with
only a narrow difference with the best tool in that category. In
particular, in the categories Loops and Combinations, VeriFuzz
scored significantly higher than the others. This shows that
our combination of BMC and Fuzzing is effective, leading
to higher coverage. Further, we have also analyzed some of
the programs in categories such as xcsp where VeriFuzz did
not do that well. Our analysis revealed that, in some cases,
CBMC could generate only very few seeds as the time limit of
1 min for rerun was insufficient, VeriFuzz would score more
if BMC is run for longer than one minute. In some other
cases, the tests produced did not lead to desired coverage due

to control dependencies on uninitialized variables, which are
treated by CBMC as non-deterministic whereas they lead to
undefined execution behaviour in ISO C. We have also observed
that in certain programs having floating point inputs, the tests
generated by CBMC did not lead to intended coverage due to
difference in the interpretation of floating point values between
CBMC and AFL. Lastly, VeriFuzz took more time than the
others as the fuzzing phase as it keeps on trying to produce
test inputs even when a branch is infeasible.

Table Ib shows the experimental results on 594 programs
meant for testing error coverage. In each of these programs,
only one location is marked as an ERROR location. Each test
engine is given a score of 1 if it can produce a test input that
causes the program’s execution to reach the ERROR location,
and 0 otherwise. In Table Ib, the column #s denotes the score of
the test engine by summing up its scores for all the individual
programs in the corresponding category.

Note that VeriFuzz fared better than the other tools in 2
out 10 categories, and stood second in 7 out of remaining 8
categories. It could locate the error in far lesser time than the
other tools. VeriFuzz took 154 sec to find the errors, whereas
FuSeBMC consumed 1309 sec and Libkluzzer consumed 5386
sec. In the categories xcsp and recursive, it fared worse. This is
for the same reason as in the Cover-branches experiment; these
categories just needed CBMC to be run for a bit more time to
generate seed inputs.

V. RELATED WORK

Combination BMC and Fuzzing has been done earlier.
FuSeBMC [20] injects labels, corresponding to desired test
coverage goals, to guide BMC and Fuzz engines independently
to achieve the desired test objectives. It intelligently manages
the execution time of the engines for improving energy con-
sumption. Driller [4] finds security vulnerabilities using a smart
combination of fuzzing and a selective concolic execution.
Here, when a fuzzer gets “’stuck” in a hard path, symbolic
execution techniques have been used to cover the hard branch.
[21] eliminates such hard branches during the fuzzing run to
focus only on what could be easily covered.

Another test generation engine that attempted combining
BMC and Fuzzing is VeriFuzz [10]. VeriFuzz employs BMC
only to analyze concurrent programs that are sequentialized.
Given a sequentialized C program P, VeriFuzz guesses a bound
that is sufficiently large to generate (exactly) one complete test
input ¢, such that ¢ executes P till the program-exit point. It
then passes ¢ to AFL [8] to generate new test cases. BMC often
fails to generate such a ¢ as the guessed bound is often either
insufficient or too large for the BMC to scale.

Other tools that use a combination of techniques include
LibKluzzer [18], which combines the strengths of coverage-
guided fuzzing and whitebox fuzzing, and Symbiotic [19],
which integrates light-weight static analyses with program
slicing and symbolic execution.

In contrast to all the above, our approach works by splitting
a given program into a prefix (a short unwinding of the
input program) and a suffix (rest of the program that is not
unwound). None of the above split the given program. We first

(a) Cover-Branches Results

(b) Cover-Error Results

Category #Tasks VeriFuzz Libkluzzer Symbiotic #Tasks VeriFuzz FuSeBMC LibKluzzer
#s #t #s #t #s #t #s #t #s #t #s #t

Arrays 400 295 5833 296 3000 228 5167 100 95 8 93 317 96 483
Bitvectors 62 38 933 38.6 933 37 600 10 9 3 10 23 9 135
ControlFlow 67 18.5 983 16.1 300 18 63 32 9 6 8 16 11 125
ECA 29 11.7 417 10.1 433 10 367 18 16 27 8 23 11 165
Floats 226 98.7 3333 90.2 3333 50 250 33 30 8 32 75 30 450
Heap 143 85.7 2167 89.8 1833 84 1250 57 47 5 45 38 47 483
Loops 581 424 8667 419 7667 383 4667 158 | 136 48 | 131 533 | 138 | 2000
Recursive 53 35.1 783 359 750 38 717 20 13 5 19 15 17 250
Sequentialized 82 71.3 1233 55.1 1217 36 567 107 99 35 | 101 217 83 | 1250
Xcsp 119 88 1833 80.3 1833 93 1833 59 25 9 53 52 3 45
combinations 210 180 3167 139 3167 135 2833 NA | NA | NA | NA NA | NA NA
Busybox 72 8.33 1083 6.39 1017 7 1000 NA | NA | NA | NA NA | NA NA
DeviceDrivers 290 57 4167 57.8 3833 44 4000 NA | NA | NA | NA NA | NA NA
Termination 231 204 3500 199 2000 178 3167 NA | NA | NA | NA NA | NA NA
[Total [[2565] 1615.33 [38099 [153329 [31316 | 1341 [26481 | 594 | 479 | 154 | 500 | 1309 | 445 | 5386

TABLE I: Experimental evaluation. For each subcategory, the number in blue colour indicates the highest achieved score.

generate tests for this prefix using BMC, which we extend
into tests for the entire program. These tests form a initial
corpus of good tests for CGF to effectively to produce tests
that achieve better coverage. Further, if the BMC gets stuck
or fails, our approach automatically identifies the cause and
applies appropriate remedial strategies.

VI. CONCLUSIONS AND FUTURE WORK

The experimental results clearly show that the proposed
combination of BMC and Fuzz is both effective and efficient.

In future, we plan to integrate our tool with program abstrac-
tion techiques. Currently, our approach decomposes a program
into a prefix and suffix, and solves them respectively using
BMC and Fuzzing. Similar to the compositional BMC of [22],
we intend to generalize our approach by decomposing a given
program P into n distinct parts (say P;, Ps, ..., Py) such that
each P; may be solved with a suitable test generation technique.
This will help achieve better scalability and coverage on more
complex programs, such as those with several deep loops (e.g.,
computations on multi-dimensional arrays) interspersed with
constraints that are hard for fuzzers to solve.

REFERENCES

[1] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey
of devops concepts and challenges,” ACM Comput. Surv., vol. 52, no. 6,
Nov. 2019.

[2] V. J. M. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, pp. 1-1, 2019.

[3] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks, “Evaluating
fuzz testing,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 2123-2138.

[4] N. Stephens, J. Grosen et al., “Driller: Augmenting fuzzing through selec-
tive symbolic execution,” in Proceedings of the Network and Distributed
System Security Symposium (NDSS), 2016.

[5] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Eds., Handbook
of Model Checking. Springer, 2018.

[6] S. Kumar, A. Sanyal, R. Venkatesh, and P. Shah, “Property checking
array programs using loop shrinking,” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS). Cham: Springer
International Publishing, 2018, pp. 213-231.

[7]1 S. Kumar, B. Chimdyalwar, and U. Shrotri, “Precise range analysis
on large industry code,” in Foundations of Software Engineering (ES-
EC/FSE). ACM, 2013, pp. 675-678.

[8] M. Zalewski, “American fuzzy lop.” [Online]. Available: http://lcamtuf.
coredump.cx/afl/
[9] R. Medicherla, “Verifuzz 1.2.0.” [Online]. Available: https://gitlab.com/
sosy-lab/test-comp/archives-2021/-/blob/master/2021/verifuzz.zip
A. B. Chowdhury, R. K. Medicherla, and R. Venkatesh, “Verifuzz: Pro-
gram aware fuzzing - (competition contribution),” in Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), ser. Lecture Notes
in Computer Science, vol. 11429. Springer, 2019, pp. 244-249.
D. Beyer, “Status report on software testing: Test-comp 2021,” in Funda-
mental Approaches to Software Engineering (FASE), ser. Lecture Notes
in Computer Science, vol. 12649. Springer, 2021, pp. 341-357.
M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software engi-
neering: Trends, techniques and applications,” ACM Computing Surveys
(CSUR), vol. 45, no. 1, p. 11, 2012.
P. McMinn, “Search-based software testing: Past, present and future,” in
International conference on Software Testing, Verification and Validation
Workshops (ICSTW). 1EEE, 2011, pp. 153-163.
D. Kroening and M. Tautschnig, “Cbmc — ¢ bounded model checker,”
in Tools and Algorithms for the Construction and Analysis of Systems.
Springer Berlin Heidelberg, 2014, pp. 389-391.
J. Morse, M. Ramalho, L. C. Cordeiro, D. A. Nicole, and B. Fischer,
“ESBMC 1.22 - (competition contribution),” in Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), ser. Lecture Notes in
Computer Science, vol. 8413. Springer, 2014, pp. 405-407.
L. M. de Moura and N. Bjgrner, “Z3: an efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems (TACAS).
Springer, 2008, pp. 337-340.
R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, A. Santuari, and
R. Sebastiani, “To ackermann-ize or not to ackermann-ize? on efficiently
handling uninterpreted function symbols in smt (ut),” in Proceedings of
the 13th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR). Springer-Verlag, 2006, p. 557-571.
H. M. Le, “Llvm-based hybrid fuzzing with libkluzzer (competition con-
tribution),” in Fundamental Approaches to Software Engineering (FASE).
Springer International Publishing, 2020, pp. 535-539.
M. Chalupa, J. Novik, and J. Strejcek, “Symbiotic 8: Parallel and targeted
test generation,” in Fundamental Approaches to Software Engineering.
Springer International Publishing, 2021, pp. 368-372.
K. M. Alshmrany, M. Aldughaim, A. Bhayat, and L. C. Cordeiro,
“Fusebmc: An energy-efficient test generator for finding security vul-
nerabilities in C programs,” in Tests and Proofs TAP, ser. Lecture Notes
in Computer Science, F. Loulergue and F. Wotawa, Eds., vol. 12740.
Springer, 2021, pp. 85-105.
H. Peng, Y. Shoshitaishvili, and M. Payer, “T-fuzz: Fuzzing by program
transformation,” in 2018 IEEE Symposium on Security and Privacy (SP),
2018, pp. 697-710.
C. Y. Cho, V. D’Silva, and D. Song, “Blitz: Compositional bounded
model checking for real-world programs,” in International Conference
on Automated Software Engineering ASE, ser. ASE’13. IEEE Press,
2013, p. 136-146.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

(21]

[22]

