
BrezeFlow: Unified Debugger for Android CPU
Power Governors and Schedulers on Edge Devices

?Alexander Hoffman, †Anuj Pathania, ?Philipp H. Kindt, +Samarjit Chakraborty, †Tulika Mitra
?Chair of Real-Time Computer Systems, Technical University of Munich

†School of Computing, National University of Singapore
+Department of Computer Science, University of North Carolina at Chapel Hill

Email: alex.hoffman@tum.de

Abstract—Power management is quintessential to the success-
ful deployment of edge devices, such as smartphones, in power-,
thermal-, and energy-constrained environments. Governors and
schedulers operate system sub-routines for power management at
the edge. There exist several tools for debugging power issues in
Android applications. However, there exists no tool to identify and
classify inevitable misdecisions by power managers, given their
often inefficient underlying heuristics. In this work, we introduce
the first tool – BrezeFlow – designed for unified (scheduling and
frequency scaling) power debugging of CPU power managers
on Android edge devices. BrezeFlow enables kernel developers
to evaluate designs of their power managers retrospectively
with closed-source applications in real-world scenarios based
on any user-defined strategy and thereby gain insights for
better future governor designs. BrezeFlow detected an average
of 815 misdecisions per second for the commonly deployed duo,
ondemand governor and Completely Fair Scheduler, on mobile
edge devices running popular applications.

I. INTRODUCTION

Modern Android-based edge devices, such as smartphones,
are the amalgamation of heterogeneous multi-core hardware
architectures, hardware management logic, and multi-threaded
applications. While the computational capacity of CPUs on
mobile devices has been growing exponentially, the batteries
supplying these devices have not been able to keep up. Fur-
thermore, dissipating power (heat) from edge devices has be-
come a limiting factor [1]. Therefore, effective on-chip power
management techniques are crucial in achieving respectable
battery life and safe operating temperatures for edge devices,
such as smartphones, vehicle entertainment systems, etc.

Many state-of-the-art edge devices employ heterogeneous
multi-core CPUs built using the ARM big.LITTLE architec-
ture, which incorporates two heterogeneous CPU clusters –
a Big cluster with high-performance, high-power cores and
a Little cluster with low-performance, low-power cores. The
CPUs share the same instruction set architecture (ISA) but
significantly different micro-architectures. Therefore, they can
run threads from the same application using heterogeneous
multi-processing (HMP) but with very contrasting power-
performance thread execution characteristics.

The majority of mobile devices now run the Android
operating system (OS) on top of device-customized Linux
based kernels. Governors are the OS subroutines primarily
responsible for managing the power for the CPUs. Governors,
in heterogeneous multi-cores, are responsible for scaling the

operational voltages and frequencies of both clusters using
dynamic voltage and frequency scaling (DVFS), and the
power-gating of clusters. Optionally, they can also influence
the allocation of threads on to individual CPU cores.

Load balancing, through appropriate mapping of threads
to heterogeneous CPU cores, also plays a role in deciding
efficient DVFS configurations. In the default design, sched-
ulers are the OS sub-routines responsible for thread man-
agement (load balancing) that operate independently from
governors, and vice versa. A lack of synergy between a
governor, managing only DVFS, and a scheduler, performing
load-balancing, often leads to significantly inefficient power
management [2]. Furthermore, the standard Linux kernel also
employs simple heuristics within governors and schedulers,
which are generally not optimized, especially when considered
from the perspective of a specific application. Power manage-
ment subroutines originating in the research community seek
to integrate the role of governor and scheduler into one unified
power manager, as this has proven effective [2], [3].

Determining highly efficient power management decisions
at run-time requires perfect future workload predictions, but
making such predictions are usually very difficult at run-
time [4]. Therefore, misdecisions by power managers usually
go unnoticed. This ignorance is even more apparent given that
the metric commonly used in quantifying a power management
strategy’s efficacy is usually the gains over an antecedent
strategy. There are preexisting tools, such as [5], to debug
and optimize the power consumption of Android applications.
However, there exists, to best of our knowledge, no tool which
can automatically identify and classify misdecisions of power
managers, such as the inefficient setting of a CPU’s voltage
and frequency, or the reallocation of a thread to decrease
the maximum core-wise load of a CPU, in turn potentially
allowing for more frequency reductions.

In this paper, we propose a power profiling tool – BrezeFlow
– that can be used to quantify an application’s execution in
terms of the systems power management state against a set
of user-defined misdecision classification strategies. This clas-
sification enables kernel developers to quantitatively evaluate
the performance of their power managers. Misdecisions are
identified retroactively with prescient knowledge and the help
of a user-defined misdecision classification strategy.



BrezeFlow operates by extracting system performance and
power information, then annotating interaction graphs from the
execution of closed-source Android applications. Constituent
tasks from an application represent the vertices in the interac-
tion graph. A task slice is the intermittent execution of a single
process from waking up until returning to a sleeping state.
Edges represent inter-process communications (IPCs) between
the tasks. Existing approaches derive similar graphs from the
source code or the corresponding binary code [5]. In Android,
significant portions of an application’s functionality execute
using system services. Therefore, neither the source code nor
the binary code is useful for mining properties, such as the
projected workload, required for debugging power managers.
Furthermore, several task properties (such as the execution
time) are subject to online power management decisions.
Therefore, the necessary information can only be extracted
from the active execution of a target application.

All user- and system-space tasks in Android communicate
with each other exclusively using the Binder framework,
through Binder transactions. Moreover, Binder transactions are
always event-based. A task attempting to receive a Binder
transaction gets blocked until the occurrence of the appropriate
Binder event. Since all IPCs (including remote procedure calls
(RPCs) and task synchronization) are realized using Binder,
tracing these transactions will uncover the dependencies of the
execution flow among different tasks. BrezeFlow exploits this
to achieve an understanding of the inter-task dependencies,
their execution/sleep cycles, and their communication behav-
iors. As a result, all information that is necessary for inferring
power management decisions, in retrospect, is captured by
jointly monitoring the scheduler, device drivers, and Binder.

BrezeFlow then compares the actual power management
decisions taken to decisions that would have been in accor-
dance with an alternate power management strategy provided
by the user. This comparison is done in a time horizon that
encompasses the target task and the tasks directly impacting
it/being impacted by it. It flags a decision as a misdecision
whenever a system configuration is available that would result
in lower instantaneous energy consumption with the clairvoy-
ant user-defined strategy. Governor misdecisions are the result
of incorrect DVFS configurations or power-gating. Scheduler
misdecisions result from incorrect load balancing. BrezeFlow
can classify a misdecision as both a governor and a scheduler
misdecision simultaneously. In the end, BrezeFlow generates
a report which summarizes all the misdecisions for the user to
analyze and derive insights. The insights provide a foundation
for the development of more optimized power managers in the
future.
Our Contributions: In this paper, we make the following
contributions.

1) We propose the first tool – BrezeFlow– for the auto-
matic extraction of interaction graphs on Android devices.
BrezeFlow annotates the interaction graphs with power
management misdecision information for easy visual
analysis by a user.

2) BrezeFlow uses the interaction graph to debug the de-
cisions of the governor, scheduler, or both. It classifies
their decisions as misdecisions if they are found to be
inefficient as per a clairvoyant user-defined strategy. Clas-
sification provides insights into shortcomings in existing
designs for superior future designs.

3) We test and evaluate BrezeFlow on the popular Exynos
5422 multiprocessor system-on-Chip (MPSoC) with
big.Little heterogeneous multi-core CPU using the de-
fault Android governors and schedulers, as well as, with
state-of-the-art unified GameOptimized governor from the
research domain [2].

Open-Source Contributions: Source-code for BrezeFlow is
available on GitHub [6].

II. TRACING TASKS AND IPC IN ANDROID

In this section, we provide the background knowledge
necessary for understanding the operations of BrezeFlow.
Binder Framework: Unlike in standard Linux, Android re-
places all methods for IPC (such as semaphores, sockets,
pipes, etc.) with the Binder framework in all application
software. Binder is responsible for the handling of two-way
communications, notifications, and inter-thread management
signaling, both in the kernel- and user-space. It allows for
the transmission of data, blocking and unblocking of tasks,
RPC, and task synchronization. Binder employs a client-server
communication model. A client task initiates communication
by sending a call transaction via the Binder kernel driver.
The client task is then put into a sleep state until a response
is returned, leading to synchronous communication and task
execution sequences. Compared to most other OSs, Android
offloads a large portion of an application’s workload to system
services. As a result, inter-task dependencies in Android are
relativity complex and are therefore of central importance
for power management. Since Binder transactions control the
sleep cycles of applications and most system services, tracing
the scheduler and Binder uncovers the inter-task execution
flow. BrezeFlow tightly integrates with the Binder framework.
Android Kernel Tracing Frameworks: Since the Android
kernel is a derivative of the Linux kernel, it comes with
existing Linux tools for tracing kernel events, supporting
tracepoints. Tracepoints export kernel information to user-
space, with almost negligible overhead, when triggered. Some
of the tracepoints are already built into the kernel source code
by default for key events such as context switches and Binder
transactions. Kernel developers can add additional tracepoints
by modifying the source code of the kernel itself or as a
loadable kernel module (LKM). BrezeFlow consists of an
LKM and a user-space application. It builds on top of the
well-known ftrace tracing framework wherein it uses custom
and in-built tracepoints for gathering information relevant to
the construction of interaction graphs. By utilizing the highly
efficient ftrace framework, BrezeFlow ensures that the traces
extracted during runtime have a negligible impact on the
execution characteristics of the system under observation.



GLThread 8412 (18509)
CPU: 3 

{Util: 94.78, Temp: 60.44}
Duration: 212 ns

... servicemanager (3031)
CPU: 1

{Util: 40.13, Temp: 60.43}
Duration: 293 ns

...

Binder Transaction
Type: Call

Destination: 3031

Binder Transaction
Type: Reply

Destination: 18509

GLThread 8412 (18509)
CPU: 3 

{Util: 91.77, Temp: 60.44}
Duration: 1003 ns

...

Fig. 1: An interaction graph showing an IPC between two
tasks, working on behalf of the target application, providing
insight into inter-task dependencies and execution flows.

III. AUTOMATED INTERACTION GRAPH EXTRACTION

Online tracing of the Android kernel using BrezeFlow allows
for accurate extraction of events from within the kernel with
an almost negligible overhead as a result of using ftrace.
BrezeFlow extracts task executions and their dependencies
by tracing sched_switch and binder_transaction
events. Core frequencies and other system metrics are ex-
tracted using custom tracepoints that leverage the devices’
drivers to log runtime device metrics. BrezeFlow uses precise
kernel timestamps to synchronize the events and the system
metrics during off-line analysis. A kernel task periodically
tracing the required non-event driven tracepoints, e.g., on-
board power sensor values, allows for adjustment of per-
formance (tracing overhead) vs. accuracy (reduced interval
between measurements).

CPU events, such as sched_switch and cpu_idle,
provide information on the context switches and utilization for
an individual core. sched_switch events detail a context
switch on the core wherein the process IDs (PIDs) of tasks
that switches in and out. A task rarely executes on a CPU as
a single block of work because of scheduling and interrupts.
Since a task will leave the CPU with a state S (interrupt-
ible sleep) when its current execution cycle is completed,
BrezeFlow successfully traces the complete task executions by
tracing all task slices and then lacing them temporally. This
trace provides timing constraints for the task that are known
to guarantee the successful execution of the application.

As the Binder driver provides a tracepoint that details each
binder_transaction event, traces show IPCs from a
client task to a server task. Traces allow for the isolation of the
application’s task execution dependencies and the interactions
of the tasks with the system services when analyzed off-line.
This isolation is required when performing DVFS analysis
as the reduction in frequency will increase execution times.
Therefore, a valid frequency decrease must not violate the
timing bounds of dependent tasks. BrezeFlow puts together all
this information in the form of a human-readable interaction
graph. Figure 1, for example, shows an interaction dependency
between two tasks extracted using BrezeFlow.

IV. DEBUGGING WITH BrezeFlow

BrezeFlow requires a debugging strategy with which to
classify misdecisions, allowing for user-defined flexibility.
This section provides an overview of the strategy we provide
to show the functionality of BrezeFlow in this work. The

Algorithm 1 Systematic analysis performed on each PID
branch to evaluate the system’s power configuration
1: procedure PROCESS GRAPH(InteractionGraph)
2: for Task in Application PIDs do
3: for Task in Tasks do
4: if Task on big core then
5: cycles← Task.cycles×migration factor
6: for freq in f min to f max of little do
7: scaling factor← Task.little freq÷ freq
8: scaled workloads← little workloads× scaling factor
9: scaled cycles← cycles× scaling factor

10: if scaled workloads < 100 then
11: task duration← scaled cycles÷ CPU cycles per sec
12: task finish← Task.start time + task duration
13: if task finish < depender start time then
14: Fault Detected: Task can be moved to LITTLE
15: if freq 6= Task.little freq then
16: Fault Detected: DVFS possible w realloc
17: if Task.core freq 6= min core freq then
18: if Lower max core util possible then
19: Fault Detected: Intra-cluster reallocation inefficient
20: for freq in f min to f max of current core do
21: scaling factor← current core freq÷ freq
22: scaled workloads← current core workloads× scaling factor
23: if scaled workloads < 100 then
24: Fault Detected: DVFS parameters can be reduced

strategy operates on prescient knowledge of the future for a
limited time horizon. Provided with a more complex evaluation
strategy, BrezeFlow can operate with an unbounded time
horizon. However, even then, it does not know the best
solution; and employs a heuristic that is expected to be highly
efficient. Note that this strategy can be easily replaced by
another in the tool.

It is a well-known fact for power management in Android
devices that applications operate more power efficiently when
they execute on cores close to their highest utilization at the
lowest frequency necessary to sustain a given performance [7].
Therefore, BrezeFlow uses the core utilizations of the DVFS
configuration set by the governor for a given system workload
to quantify the efficacy of a governor. This quantification is
done using an iterative time horizon that is bounded to each
task slice and its directly dependent tasks’ during evaluation.

An unbalanced load-balancing by a scheduler can force
the governor to operate at a DVFS configuration with higher
core frequencies than necessary to sustain the required perfor-
mance. Furthermore, it is also a well-known fact in power
management for edge devices that edge applications oper-
ate more power efficiently on Little cores than Big cores
in a heterogeneous multi-core system [8]. Therefore, in the
implemented evaluation strategy, BrezeFlow evaluates thread
allocations in a heterogeneity-aware manner. It tries to enable
further DVFS reductions through thread allocations that reduce
peak core-wise utilizations.

Algorithm 1 provides the strategy within BrezeFlow used
to extract potential sub-optimal system power management
configurations. Through further analysis the identification of
governor flaws can be simplified. BrezeFlow, by default, uses
a migration factor (MF) model given by [8] to estimate the
performance of a task slice on a Little core when originally
executed on the Big core (Line 5). A utilization-frequency
model given by [9] is used to estimate the performance of
a task slice when executed at a lower frequency (Line 8). The
integration of both models into BrezeFlow is modular, meaning



TABLE I: List of power managers used in evaluation.

Governor performance, powersave, ondemand,
conservative, interactive

Scheduler Completely Fair scheduler (CFS)
Unified GameOptimized [2]

TABLE II: List of applications used in evaluation.

Games Fruit Ninja, Candy Crush, Real Racing 3
Benchmarks Seascape 3D
Others Amazon Shopping, Chrome Web Browser

they can be easily replaced with other system models (Line 9).
Thus, the efficacy of BrezeFlow is sensitive to the accuracy of
underlying models, such as [8] and [9].

The strategy within BrezeFlow flags a task execution on a
Big core as a scheduler misdecision if migration to a Little core
would have allowed the task to execute while still respecting
the timing constraints of its dependent tasks (Line 14). For
a reallocation to be valid, all task dependencies given by
the edges in the interaction graph must remain valid in the
alternate execution. Specifically, the task deadlines that are
known from the traced context switches of the CPU. Thus, in
the implemented strategy that does not cascade timing changes
into future task execution. An execution is valid if the stretched
execution duration of a task, due to a frequency change does
not overlap dependent tasks’ start times (Lines 13-16). It
also flags an execution as a scheduler misdecision, if after
a potential intra-cluster migration to reduce peak core-wise
utilization (Line 19), the governor could have reduced the
frequency of the cluster (Line 24). Thus, BrezeFlow flags an
execution as a governor misdecision if the execution could
have been run at a lower frequency without violating its
extracted deadline. Similarly, if the governor fails to power
down an empty cluster, this is also classified as a misdecision.
Given user-defined metric thresholds, developers can thus
more easily isolate situations where governor logic is failing.

V. EXPERIMENTAL EVALUATION

Experimental Setup: We employ an Odroid XU3 develop-
ment board in this work. The board contains an Exynos 5422
MPSoC with an ARM big.Little CPU running Android 7.1
and Linux kernel 3.10.9. We evaluated six different governors
alongside the default Linux scheduler (CFS) on the Odroid
XU3 board with six different applications using BrezeFlow.
Table I lists all governors and schedulers used in the evalua-
tion. Besides evaluating all default governors and schedulers
available on the Odroid XU3, we also evaluate a state-of-the-
art power manager [2] that unifies the role of governor and
scheduler. We employ a large and varying array of organic
workloads by running a range of Android applications such as
email, e-commerce, games, and benchmarks in our evaluation.
We evaluate several scenarios within an application. Table II
lists all of the applications used in the evaluation.

BrezeFlow produces a large quantity of data every second
due to the tracing of all context switches on an eight-core
CPU. Limiting the test duration to four seconds reduced the

Fig. 2: Amount of various CPU governor and scheduler misde-
cisions observed when running various Android applications.

interaction graph processing time and thereby allowing for
a greater quantity of tests to be performed. Nevertheless,
BrezeFlow can potentially generate and process interaction
graphs for much longer test runs.
Results: Figure 2 shows the misdecisions recorded for each
application and governor tested. Misdecisions are classified
into inter-cluster reallocations, wrong cluster-wise DVFS,
intra-cluster reallocations that reduce maximum core-wise
utilization, and inter-cluster reallocations that would enable
DVFS optimizations. The extremely large number of errors
recorded for the performance governor was to be expected due
to its complete lack of load balancing and its overexertion of
the hardware. Similarly, powersave sets the core frequencies to
their minimum without power gating the big CPU leading to
the visible big-to-little reallocation misdecisions and no DVFS
misdecisions due to the extremely restrictive management of
the hardware. There is no room for any power optimizations,
although the entire system configuration is inefficient from a
quality of service (QoS) perspective under powersave.

The interactive governor was found to make more misdeci-
sions than the ondemand governor for all situations because of
its greater reluctance to decrease frequency after a frequency



Fig. 3: Near linear increase between detected misdecisions of
the interactive CPU governor and touch events when running
Chrome web browser on Android.
Algorithm 2 ondemand Governor Algorithm
1: procedure PROCESS GRAPH(InteractionGraph)
2: for every CPU in the system do
3: loop Every X milliseconds
4: Get utilization since last check
5: if Utilization > UP THRESHOLD then
6: Increase frequency to MAX
7: loop Every Y milliseconds
8: Get utilization since last check
9: if Utilization < DOWN THRESHOLD then

10: Decrease frequency by 20%

ramp. Both ondemand and interactive governors’ responses in
the Amazon app, created large amounts of misdecisions due to
the large workloads from the web traffic requests and system
service communications generated as a result of the user’s
interaction with the application. Figure 3 highlights this by
showing the number of screen scroll events and their impact on
power management through the background workload spikes
that induce frequency ramps. As the games tested do not
produce rapidly changing workloads during playing, they
exhibit significantly fewer misdecisions when compared to
applications such as Chrome and Amazon Shopping.

The research GameGovernor [2] performed better than the
standard governors by employing a bin packing first fit task
allocation strategy. This strategy caused spikes in intra-cluster
allocation misdecisions due to the overhead-aware task alloca-
tion performed by the algorithm. These spikes show that there
is a significant number of inefficient decisions in short time
horizons. Similarly, the workload prediction employed by the
governor caused an increase in task-local DVFS misdecisions.
Determining the overall efficiency of the governor for larger
time horizons in consideration with task migration overheads
would require further analysis.
Case Study: Previous results show that BrezeFlow can iden-
tify a significant number of misdecisions for various power
managers. To provide more insight into a use case, we present
a case study that was performed to debug the ondemand
governor. Algorithm 2 shows the high-level algorithm behind
the ondemand governor [10]. ondemand ramps up the cluster
frequency to the maximum when a new workload triggers the
UP_THRESHOLD (Line 5). The frequency will then take some
multiple of a kernel-defined period Y to settle on the minimum
required frequency. However, it takes some time for ondemand
to return to an appropriate lower long-term frequency (Lines
7 - 10). Therefore, ondemand spends a significant duration of
time above the minimum required frequency.

Analysis with BrezeFlow shows that ondemand performs
especially poorly in the execution of applications with short-
duration and bursty workload. Figure 4 shows three such

Fig. 4: Incurred power management misdecisions with interac-
tive applications running on Android with ondemand governor.

workloads – the sending of an email, starting of a game, and
clicking of a link in a web browser. For each misdecision,
BrezeFlow produces a detailed description of the misdecision
as well as a snapshot of the system’s power state.

Analysis of the web browser’s workload showed that the
clicking of a link that blanks the web browser’s internal
window and creates background network workloads generated
several misdecision spikes. Misdecisions were a reaction for
each action causing the UP_THRESHOLD threshold value in
Algorithm 2 to be reached. This reaction caused the frequency
of the Little core to be ramped up to its maximum, causing
large amounts of inefficient DVFS decisions as well as causing
some tasks to be migrated to the Big cluster despite the Little
cluster’s capacity. This migration was a commonly observable
characteristic of workload spikes. The spikes in misdecisions
were also observed to decrease over time, which adheres to
the recessive nature of the ondemand governor’s algorithm.

Similarly, the misdecision spike shown in the Hillclimb
graph was the result of a large load created between the
game’s event, Mali, OpenGL, and SurfaceFlinger system ser-
vice threads. Similarly in the sending of an email, BrezeFlow
showed that changing the displayed window, playing an “email
sent” sound, and the network activity of sending the email
incited several spikes due to interaction between Google
Mobile Service, Android Audio Server, OpenGL, Mali, and
SurfaceFlinger system service threads. The scheduling of this
relatively low load application was handled well with even
thread loads across the system’s cores such that the system
was able to spend most of the time between DVFS spikes at
its minimum operating frequency.

VI. RELATED WORK

Energy-efficient application development is dependent on
tools that aid in the automation of power debugging. Authors
of [11] were the first to develop an automatic test framework,



based on the evaluation of event traces for energy-consuming
bugs, such as the improper management of network resources,
background services, and wakelocks. Similarly, authors of [12]
used the tracing of system calls to identify energy bugs.
These works build upon the extraction and processing of
Android activity graphs from the application’s source code or
binary. Activity graphs are perfect for debugging applications.
However, they are too high-level to debug power managers
due to their abstraction of system-space information.

Nevertheless, there exist several works that trace the ex-
ecution flow of an application from the perspective of its
interaction with the system. Tools were being used to decon-
struct the execution flow of embedded applications to optimize
hardware-software co-design of embedded systems [13]. How-
ever, state-of-the-art Android applications and edge devices
are now too complex for application of these dated tools
long before Android OS. Kernel and Binder traces have been
previously used to develop the Appscope framework [14].
Appscope was primarily designed for measuring the energy
consumption of an application. Authors of [15] were one of
the first to use the extraction of task execution and IPCs
information for the characterization of Android applications.
However, their methodology lacked the means and details
necessary for debugging decisions of power managers for
state-of-the-art heterogeneous multi-core processors.

Power management for heterogeneous multi-/many-cores is
an active area of research [16]. Most Android devices ship
with a group of default heterogeneity-aware power managers
– governors [10] and schedulers [17]. However, most of these
default power managers operate with naive heuristics, which
are grossly inadequate to manage sophisticated state-of-the-
art Android applications. Nevertheless, it has not stopped
researchers from proposing sophisticated power managers that
unify the role of governor and scheduler in one manager.
Research power managers for heterogeneous multi-cores em-
ploy sophisticated heuristics from control theory [18] to price
theory [19]. They are also often application-specific such as
for mobile gaming [2] and web browsing [20]. Due to their
application-specific design, they usually are only used by
kernel developers to design power managers for application-
specific edge devices. To best of our knowledge, we are the
first to propose a tool to debug CPU power managers designed
for edge devices with Android OS.

VII. CONCLUSION

In this work, we introduce the first automated tool – Breze-
Flow – that is capable of quantifying the quality of CPU power
governors and schedulers (power managers) on edge devices
with Android OS. Evaluations on a real-world heterogeneous
multi-core CPU show that BrezeFlow can identify and classify
misdecisions for several different power managers from both
industry and academia. BrezeFlow, on average, flagged 2,100
misdecisions per second for the evaluated power managers. We
also present a case study demonstrating the use of BrezeFlow
to gain insights into the shortcomings of an existing power
manager, which can then be used for improving future designs.

VIII. ACKNOWLEDGEMENT

This work was partially funded by Singapore Ministry of
Education Academic Research Fund TI 251RES1905.

REFERENCES

[1] S. Pagani, L. Bauer, Q. Chen, E. Glocker, F. Hannig, A. Herkersdorf,
H. Khdr, A. Pathania, U. Schlichtmann, D. Schmitt-Landsiedel, et al.,
“Dark Silicon Management: An Integrated and Coordinated Cross-Layer
Approach,” it-Information Technology, vol. 58, no. 6, pp. 297–307, 2016.

[2] N. Peters, D. Füß, S. Park, and S. Chakraborty, “Frame-Based and
Thread-Based Power Management for Mobile Games on HMP Plat-
forms,” IEEE 34th International Conference on Computer Design
(ICCD), pp. 169–176, 2016.

[3] P.-H. Tseng, P.-C. Hsiu, C.-C. Pan, and T.-W. Kuo, “User-Centric
Energy-Efficient Scheduling on Multi-Core Mobile Devices,” 51st De-
sign Automation Conference (DAC), pp. 1–6, 2014.

[4] B. Dietich, N. Peters, S. Park, and S. Chakraborty, “Estimating the
Limits of CPU Power Management for Mobile Games,” in 35th IEEE
International Conference on Computer Design (ICCD), pp. 1–8, IEEE,
2017.

[5] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
“Detecting Energy Bugs and Hotspots in Mobile Apps,” ACM SIGSOFT
Symposium on the Foundations of Software Engineering, vol. 16-21-
November-2014, pp. 588–598, 2014.

[6] A. Hoffman, “BrezeFlow.” github.com/alxhoff/BrezeFlow, 2020.
[7] A. Pathania, Q. Jiao, A. Prakash, and T. Mitra, “Integrated CPU-GPU

Power Management for 3D Mobile Games,” 51st Design Automation
Conference (DAC), pp. 1–6, 2014.

[8] A. Pathania, S. Pagani, M. Shafique, and J. Henkel, “Power Management
for Mobile Games on Asymmetric Multi-Cores,” International Sympo-
sium on Low Power Electronics and Design (ISLPED), pp. 243–248,
2015.

[9] A. Pathania, A. E. Irimiea, A. Prakash, and T. Mitra, “Power-
Performance Modelling of Mobile Gaming Workloads on Heterogeneous
MPSoCs,” 52nd Design Automation Conference (DAC), p. 201, 2015.

[10] Venkatesh Pallipadi & Alexey Starikovskiy, “The Ondemand Governor,”
in Linux Symposium Volume Two, 2006.

[11] A. Banerjee, L. K. Chong, S. Chattopadhyay, and A. Roychoudhury,
“Detecting Energy Bugs and Hotspots in Mobile Apps,” ACM SIGSOFT
Symposium on the Foundations of Software Engineering, vol. 16-21-
Nove, pp. 588–598, 2014.

[12] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent Inside
My App?: Fine Grained Energy Accounting on Smartphones with eprof,”
European Conference on Computer Systems (EuroSys), pp. 29–42, 2012.

[13] K. S. Vallerio and N. K. Jha, “Task Graph Extraction for Embedded
System Synthesis,” International Conference on VLSI Design, vol. 2003-
Janua, pp. 480–486, 2003.

[14] C. Yoon, D. Kim, W. Jung, C. Kang, and H. Cha, “Appscope: Ap-
plication Energy Metering Framework for Android Smartphone using
Kernel Activity Monitoring,” USENIX Technical Cconference, pp. 387–
400, 2012.

[15] S. Han, Y. Yun, and Y. H. Kim, “Profiling-Based Task Graph Extraction
on Multiprocessor System-on-Chip,” Asia Pacific Conference on Circuits
and Systems (APCCAS), pp. 510–513, 2016.

[16] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
Multi/Many-core Systems: Survey of Current and Emerging Trends,”
50th Design Automation Conference (DAC), pp. 1–10, 2013.

[17] J. Kobus and R. Szklarski, “Completely Fair Scheduler and its Tuning,”
Whitepaper, 2009.

[18] T. S. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical Power Management for Asymmetric Multi-Core
in Dark Silicon Era,” 50th Design Automation Conference (DAC), pp. 1–
9, 2013.

[19] T. Somu Muthukaruppan, A. Pathania, and T. Mitra, “Price Theory
Based Power Management for Heterogeneous Multi-Cores,” ACM SIG-
PLAN Notices, vol. 49, no. 4, pp. 161–176, 2014.

[20] N. Peters, S. Park, S. Chakraborty, B. Meurer, H. Payer, and D. Clif-
ford, “Web Browser Workload Characterization for Power Management
on HMP Platforms,” International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ ISSS), pp. 1–10, 2016.


