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Abstract—The high computation/communication requirements
along with reliability needs and limited power budgets necessitate
complex processing platforms for emerging autonomous systems.
Due to the current focus on performance, however, such platforms
are increasingly difficult to predict and analyze. This holds true in
terms of both performance (e.g., behavioral and temporal) aspects
and power consumption. Ensuring functional safety thus requires
new techniques to analyze performance, predictability and power.
In this paper, we thus propose a novel hybrid tracing methodology
to monitor (and, subsequently, optimize) temporal, functional and
energy-related properties of Real-time Systems (RTSs). We target
current Programmable SoCs (pSoCs) integrating a fixed-function
System-on-Chip (SoC) with flexible Field Programmable Gate Ar-
ray (FPGA) fabric. Although such heterogeneous systems are well
suited for high-end, mixed-hardware/software real-time pipelines,
they also offer more complex performance/energy trade-offs than
software-only platforms. To systematically exploit this complexity,
we present a resource-efficient trace IP core for the pSoC’s fabric
and an external measurement/interface system – jointly capturing
hybrid power/state traces for subsequent (i.e., offline) analysis. By
fusing state data from our IP core with events-of-interest gathered
from power traces of pSoC and co-monitored I/O components, we
gain a holistic view on temporal RTS aspects. Events and synchro-
nized multi-rail power data jointly extend the debugging coverage
via automated identification of processing phases, computation of
energy baselines, and estimation of potential savings. Our solution
thus integrates functional, temporal and energy monitoring into a
single, unified workflow, which, in contrast to traditional separate
tools, delivers valuable new insights helpful during debugging and
reduces both cost and effort. Experimental evaluations on a Zynq-
based Visual Servoing System show the method’s various benefits.

I. INTRODUCTION

With many embedded systems today operating in time-critical
application domains at highest performance, the required com-
plex processing platforms are increasingly hard to predict w.r.t.
their temporal behavior. This is particularly challenging for
hardware-accelerated Real-time Systems (RTSs) that – in addi-
tion to already complex application software – rely on custom
hardware pipelines to reach the performance goals. Commonly,
such hardware is implemented via a Field Programmable Gate
Array (FPGA) [1], [2] – yielding a heterogeneous RTS, which,
e.g., then closes the loop in networked control systems (Fig. 1).

In such systems, it is crucial to know the overall processing
latency from arrival of sensor inputs to the transmission of an
actuation signal to ensure control stability. In many application
scenarios and, particularly, when using heterogeneous architec-
tures, however, these latencies are not only hard to analyze, but
also adversely affected by most power management techniques
required to keep the RTS within supply and cooling limitations.
To systematically gain insight on the inherent trade-off between

energy and latencies, we argue that both have to be jointly dealt
with – which exceeds the coverage of traditional tools handling
either temporal-functional properties or energy (Sec. II-C). We
thus propose a hybrid debugging methodology to capitalize on
our insights that latency and power debugging should be a joint
process and, without loss of coverage, be performed at a higher
level of abstraction – compared to traditional FPGA tools (like,
e.g., Intel SignalTap) as detailed in Sec. II-D on page 5 (top r.).
As further conceptual contribution, we make a case for precise,
per-component energy monitoring that includes control-related
I/O devices (such as network peripherals) to capture the RTS’s
total processing latency – from data input to control output. To
support our insights, we present an implementation strategy for
such tracing and demonstrate its benefits on a networked RTS.

Joint Monitoring: As it turns out, such a hybrid method has
significant advantages over existing solutions. Even though the
proposed level of abstraction implements the crucial functional
monitoring solely via (application) macro-phases, the resulting
traces cover the following major behavioral aspects of the RTS,
with – due to our lightweight instrumentation approach – near-
zero impact on its resource usage and thus function, timing and
energy consumption. Firstly, we are able to capture partial and,
most importantly for heterogeneous RTSs (using FPGA-based,
e.g., sensor acquisition and/or processing), true input-to-output
latencies. Secondly, our methodology combines the automated
identification of application phases with multi-rail energy data,
enabling the computation of per-phase, per-component energy
baselines and an estimation of best-case energy savings. Based
thereon, the optimization of RTS latencies and energy becomes
a significantly less complex process (with shorter turnarounds).

Although relatively new for FPGA-based RTSs, the underly-
ing challenge of balancing performance vs. energy has steadily
been intensified by the developments in computer architecture,
with existing tools persistently lagging behind even for timing-
only (i.e., not energy-related) analysis problems [3]. Balancing
latencies and energy of mixed-hardware/software applications,
however, causes additional intricacies for tools and developers,
as such particular, heterogeneous platforms offer an even larger
design space than traditional, software-only RTSs. Whilst, e.g.,
FPGA-accelerated real-time pipelines may deliver the required
performance, their temporal behavior is particularly difficult to
predict and measure – due to the complex interactions between
software and partially application-specific hardware layers [4].
Whilst software-based tools, for instance, are unable to capture
processing latencies caused by such custom hardware, existing
Intellectual Property (IP) cores for FPGA debugging are costly
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in terms of resource usage and limited w.r.t. their coverage (as
shown in Sec. II-B) – with the RTS’s end-to-end latencies thus
also remaining way out of reach. In addition, those functional-
temporal tools are totally separate from energy monitoring, and
vice versa. Thus, neither energy baselines per processing phase
nor performance/energy trade-offs can be made available to the
system designer. Integrating both classes of tools into a unified
workflow is a non-trivial task – not only due to their individual
limitations, but also because they, e.g., rely on different notions
of time and often are black-box IP or proprietary measurement
solutions (cf. Sec. II-C). In summary, the continuously increas-
ing complexity of current FPGA-accelerated RTSs (that results
from tight requirements) already heavily interferes with energy
or latency analysis, thus necessitating new, less restricted tools.

Proposed Methodology: In this paper, we introduce Hybrid
Power/State-Tracing as a novel debugging methodology using
synchronized power/state data for the analysis of FPGA-based
(heterogeneous) RTSs. By combining a resource-efficient trace
IP core instantiated in the RTS’s FPGA fabric with an External
Measurement Subsystem (EMS), we are able to synchronously
capture comprehensive state information plus energy data of at
least nine supply rails. Whilst the IP core (Fig. 1, orange+blue)
flexibly aggregates various system states using software instru-
mentation and/or by tapping relevant hardware signals (dashed
red), its data stream (blue) together with voltage/current probes
(orange/red) enable our EMS (bottom left) to generate a hybrid
power/state trace (Fig. 1, white box). We also extend the power
monitoring to crucial I/O components (such as Ethernet PHYs)
and fuse the resulting timestamps with those extracted from the
state trace to simultaneously gain a holistic view on the RTS’s
temporal behavior – including its end-to-end latencies. As our
EMS (see also Fig. 2) adds a precise, sub-µs timestamp to each
data point, both temporal events-of-interest (from I/O monitor-
ing and state trace) and additional functional information (also
contained in the trace) can easily be aligned to the power data.
This enables a Python-based analysis tool to compute precise
energy figures – per processing phase and RTS subcomponent.
Overall, the proposed hybrid power/state trace thus carries all
information required to perform unified temporal, functional
and energy monitoring of an FPGA-based RTS with low effort.

We present flexible implementation options for the proposed
trace IP core that differ in supported features and range from
FPGA-only monitoring to capturing the entire RTS – enabling
not only processor tracing using code instrumentation, but also
later, automated low-overhead trace readback. Our RTS-under-
test is a Xilinx Zynq that combines a fixed-function, dual-core
Processing System (PS) with FPGA-equivalent Programmable
Logic (PL) fabric, residing on a ZC702 development board. Its
FPGA Mezzanine Card (FMC) interface enables us to connect
our EMS that not only acquires RTS power/states but also inte-
grates two co-monitored Gigabit Ethernet (GigE) PHYs as net-
worked RTSs often rely on GigE to interface the outside world.

Applications and Benefits: Together, our proposed trace IP
core and custom FMC-sized measurement system implement a
cost- and resource-efficient solution for unified monitoring of a
heterogeneous RTS – reaching beyond 200 kSPS (kilo-samples

Fig. 1. Control loop (top) closed by heterogeneous RTS (center), instrumented
via our IP Core of the proposed Infrastructure for Power/State Tracing (bottom)

per second) for voltage or current values, and over 25 kSPS for
state data. We illustrate the various applications and benefits of
unified power/state monitoring for a PL workload with highly
variable power demand and a real-world mixed-hardware/soft-
ware Visual Servoing System (VSS) that implements a closed
control loop – driven by a high-rate video stream from a GigE
Vision camera (Fig. 1). In case of the VSS, it is crucial to know
the RTS’s total latency to ensure stability in control design. A
key question thus is How long does it take from arrival of one,
entire camera image to transmission of an actuation value. The
hybrid power/state trace in Fig. 8 fully describes an iteration of
the VSS. With incoming Ethernet frames (green) automatically
identified on a PHY supply rail (gray, magnified for visibility)
and fused to various state values gathered in PS and PL (red),
the RTS’s temporal behavior is accurately captured – sufficient
to answer the above and further, crucial questions (cf. Sec. VI).
In summary, the main contributions of this paper are

• Hybrid Tracing as novel methodology for unified tempo-
ral, functional & energy monitoring of FPGA-accelerated
RTSs, using power consumption and various state signals,

• Automated Identification of I/O and Processing Phases,
per-phase/component Energy Baselines, estimated Best-
Case Energy Savings and holistic Latency Monitoring,

• Flexible implementation options for the resource-efficient
trace IP core extracting the state trace from PS/PL and

• Low-overhead Trace Readback for intervention-free tests.
Outline: The rest of this paper is organized as follows. Techni-
cal background and related work are presented in Sec. II. Then,
Sec. III introduces key concepts of the proposed methodology,
followed by Sec. IV detailing a hardware/software architecture
to implement such hybrid tracing – using our resource-efficient
IP core (Sec. IV-A) with its various implementation and PS/PL
interface options (Sec. IV-B/C/D). Next, Sec. V describes EMS
(Sec. V-A) and two reference workloads – a synthetic memory
test and a real-world VSS (Sec. V-B/C). Based thereon, Sec. VI
shows the various applications and benefits of hybrid traces for
unified temporal, functional and energy monitoring on a Zynq-
based RTS/platform. We finally conclude our work in Sec. VII.
The appendices A and B supplement quantitative comparisons.



II. BACKGROUND AND RELATED WORK

Over the last decades, continuous advances in chip technology,
design tools and resulting hardware architectures sustained the
deployment of increasingly complex Systems-on-Chip (SoCs).
Besides intensifying the various cost-related challenges faced
during design, test and integration (such as, e.g., development,
fabrication and verification efforts), the resulting computation
and communication densities also increase the energy demand
of high-performance processing platforms. In many domains,
this restricts the choice of platform depending on both supply
and cooling constraints of the application scenario at hand. In
case of a lot of emerging autonomous systems, for instance, no
particular architecture has yet been identified as being the most
efficient. Instead, each manufacturer of (partially) autonomous
vehicles relies on a unique combination of processing elements
including Central Processing Units (CPUs), Graphics Process-
ing Units (GPUs), Digital Signal Processors (DSPs) and, more
recently, dedicated Deep Neural Network (DNN) accelerators,
each increasing power consumption and heat dissipation of the
entire RTS – or Application-specific Integrated Circuit (ASIC).

At the same time, however, various optimization strategies
for fixed-function and, in the last years, FPGA devices assist in
reducing the overall energy demand. In case of fixed-function
CPUs, DSPs or, generally, ASICs, this includes methods such
as clock and/or power gating, Dynamic Voltage and Frequency
Scaling (DVFS) and incremental processor sleep states – con-
trolled by hardware, firmware or software [5]–[9]. Although
traditionally lagging behind in terms of energy efficiency [10],
FPGA-based systems now implement not only selected meth-
ods well known from ASIC design (e.g., glitch-free clock gates
and/or multiplexers), but also features specific to the particular
reconfigurable FPGA fabric including automatic power gating
of uninstantiated memory resources [11]. Together with several
architecture primitives for both clock generation (e.g., clock
management tiles) and distribution (e.g., global, regional or I/O
clock trees) [12], current FPGAs thus support an increasing
number of fine-grained power management features [13]. This
enables both traditional – i.e., fabric-only – devices and, more
recently, heterogeneous Programmable SoCs (pSoCs) to reach
more energy-sensitive application domains such as, e.g., auto-
motive and robotics. By combining a fixed-function (and thus
power-efficient) multi-core SoC with a flexible, reconfigurable
FPGA fabric, such heterogeneous platforms are well suited for
mixed-hardware/software processing pipelines [2]. In addition,
the Dynamic Partial Reconfiguration (DPR) capability of many
devices [1] also enables energy-aware runtime strategies [14].

A. The Challenge: Power Management vs. System Latencies

Above optimization strategies, however, come at a cost. This
holds true for design time – due to, e.g., increased development
and verification efforts – and also during manufacturing (where
costly advances in process scaling, e.g., influence the static and
dynamic power consumption). It, in addition, applies to regular
system operation, as many energy saving techniques also affect
the temporal behavior of the system. This trade-off is of partic-
ular importance for (mainly hard) RTSs – as they operate under

predefined latency constraints in safety-critical environments,
where neither a deadline violation (caused by longer response
times) nor unforeseen jitter can be tolerated [15]. For a closed-
loop control system (Fig. 1), for instance, the overall sensor-to-
actuator latency has to be limited to avoid physical oscillations
and instabilities. It is heavily influenced by the communication
and computation delays caused by both network (in case of a
distributed setup) and the various processing steps on the RTS.

To ensure compliance with such timing constraints and sup-
port developers during system design and debugging, formal
methods and, at the other end of the spectrum, measurement-
based approaches are widely used. Whilst the former enable
various latency-aware online strategies for system-level power
management [16], [17], individual components such as proces-
sors [18] plus interconnects for SoCs [19] and datacenters [20]
are commonly co-optimized (w.r.t. energy, latency and area) at
design time. Dealing with the large variations in (i.e., software)
execution times caused by, e.g., pipelining or shared hardware
resources, however, remains a challenging task – even without
any notion of energy [3]. Although the formal methods such as
(static) timing analysis yield safe, but often rather pessimistic
upper timing bounds, they are practically infeasible due to the
extremely large state space of modern hardware and software
architectures [21], [22]. The measurement-based approaches,
on the other hand, are not limited to scenarios with restricted
complexity, but – inherently – only capture weak maximum ob-
served execution times that may or may not be exceeded in the
future. Still, it is common practice in safety-critical industries
such as automotive and avionics to perform elaborate latency
measurements over extended periods [23], as the resulting high
watermarks (i.e., the longest observed delays) approximate the
actual worst-case latencies over continuous system operation.
Similar challenges exist on GPUs, where recent modeling [24],
analysis [25] and lock-stepping [26] efforts aim at making their
massive parallelism available for safety-critical environments.

In addition to such primarily latency-focused measurement
approaches, various functional debugging utilities also provide
helpful insights into the temporal behavior of the device-under-
test (DUT). This holds true for not only the extensive – event-
based – runtime tracing facilities provided by current real-time
operating systems [23], but also various (internal and external)
solutions for functional debugging or tracing. Relying on either
standardized interfaces (e.g., JTAG and NEXUS with its high-
speed auxiliary port) or proprietary implementations (such as
ARM’s CoreSight), they enable both functional debugging (by,
e.g., code/data breakpoints or memory inspection) and mixed-
functional/temporal monitoring of current CPUs [27], [28]. In
contrast to the above software-driven methods (relying on code
instrumentation), the DUT remains unchanged during analysis.
Although the resulting traces accurately capture a combination
of functional and temporal CPU behavior for offline or online
analysis [28], their high data rates (and large file sizes) render
this approach rather costly. In addition, they – like the other
monitoring techniques – lack information regarding the power
consumption and thus cannot be used (alone) to balance energy
versus processing latencies during the optimization of an RTS.



B. Traditional Techniques for RTS Power and/or Latencies

Besides recent work on large-scale and (at the moment) thus
inherently soft real-time datacenter workloads [20], [29]–[31],
modeling, management and optimization techniques for RTS
power and latency are extensively studied – both together and
separately. As static leakage currents (increasingly) dominate
the overall consumption due to shrinking process geometries,
only optimizing for dynamic power by means of, e.g., D(V)FS
is no longer sufficient for energy-constrained RTSs [9]. More
recent techniques thus additionally use the flexible sleep states
(implementing fine-grained clock and power gating) of current
CPUs to optimally schedule task sets described by traditional
periodic models [9], [32] or, generally, irregular event patterns
captured by arrival curves known from real-time calculus [33].

Power modeling itself not only depends on various charac-
teristics of the underlying process technology, but (in addition
to and in line with latency modeling) also requires some notion
of circuit activities to estimate the resulting demand [10]. For
FPGA and pSoC power, the available tools range from spread-
sheets (relying on precise user-supplied design characteristics,
e.g., Xilinx’ Power Estimator [34]) to model-based workflows,
which use activity traces from prior functional simulation [35].

Power Monitoring: During measurements (contrary to sim-
ulation and modeling approaches) on actual devices including,
in particular, FPGA-based platforms, however, an RTS’ power
consumption and its various latencies are commonly monitored
separately. Although most of today’s FPGAs do not yet support
Dynamic Voltage Scaling (DVS), accurate power measurement
requires sensing the near-constant voltages and highly dynamic
currents on all the supply rails of interest. In case of a pSoC, its
individual subcomponents both in the fixed-function SoC (such
as CPUs, memory controllers and I/Os) and in the configurable
fabric (e.g., logic slices, BlockRAM, phase-locked loops or I/O
blocks) require independent supplies. Comprehensive energy
monitoring – suitable for a multitude of system designs (each
exhibiting a unique distribution of demand) – thus might have
to cover up to ten rails. As current is generally measured either
using a series resistor (i.e., a shunt) or an external, monitored
source (if – at all – electrically feasible), per-rail measurements
depend on the (immutable) shunt resistors that are part of many
systems’ on-board supply solutions [14], [36], [37]. In case the
particular device features analog inputs (using, e.g., XADC on
Zynq [38]), supply and amplified shunt voltages can be filtered
(to avoid aliasing), converted and stored internally. Without ac-
cess to shunts, only the overall power consumption of the RTS
can be captured on its external supply side, which complicates
identification of per-component activities. Efficiency variations
of the on-board DC/DC converters caused by load changes also
have a significant impact on measurement accuracy [39]–[41].

Latency monitoring, on the other hand, is mostly realized
using software instrumentation or by the addition of dedicated
measurement hardware. Although the former requires changes
to the DUT’s software and thus itself may affect the temporal
behavior, it enables in situ monitoring out in the field. The lat-
ter, by contrast, is capable of capturing latency figures without

any DUT modification, but depends on (potentially expensive,
external) monitoring equipment that is unavailable during reg-
ular system operation – due to cost, space and/or practicability
limitations. Above instrumentation-based approaches are thus
often applied both during development of an individual system,
and in case of large-scale, long-term monitoring after rollout in
the field. High watermarks (which capture the longest observed
latencies) are extensively used in safety-critical domains such
as automotive and avionics [42]. Furthermore, they would even
drive (or improve) probabilistic timing analysis [22]. Real-time
operating systems (e.g., Linux with PREEMPT_RT patch [43])
also integrate extensive tracing facilities to analyze the kernel’s
task scheduler, the applications’ executions times and various
other latency-relevant statistics during system operation [23].
Whilst many CPUs include dedicated monitoring blocks (e.g.,
Intel’s performance monitoring units [44]) used by above and
proprietary analysis tools (such as VTune Amplifier [45]), they
capture latency values on a per-cycle level, e.g., for single CPU
events such as memory accesses with cache miss – far too fine-
grained for end-to-end latency monitoring. In GPU-accelerated
architectures, both the processing and communication latencies
generally are neither well documented nor easily quantified as
vendor-supplied drivers, tools and device visibility are limited.

Traditional FPGA Debug/Trace Options: Current pSoCs,
however, can integrate above external tracing/monitoring hard-
ware to a certain degree. This holds true for both combined de-
bugging/trace acquisition solutions available for current CPUs
with appropriate high-speed interfaces (e.g., ARM’s CoreSight
ETM ports and MIPS OCI) [28] and dedicated external latency
monitoring hardware [46]. Whilst integration of such monitors
is a relatively new development [4], versatile debuggers/tracers
for FPGAs and pSoCs are well established due to their fabric’s
short reconfiguration times. Its logic/storage enables temporary
(i.e., debug-only) and flexible (e.g., w.r.t. their signal coverage)
instantiation of complex Embedded Logic Analyzers (ELAs).
Such (mixed-hardware/software) solutions are readily included
in the development tools of all major FPGA vendors and com-
bine a configurable, yet proprietary IP core for data acquisition
with software facilities for subsequent offline analysis. Xilinx’
Integrated Logic Analyzer (ILA) [47] or Intel’s SignalTap [48],
for instance, are fabric-based digital logic analyzers containing
comparator/trigger circuitry (via logic resources) and a storage
buffer in, e.g., BlockRAM (BRAM). As long as required logic
and memory resources are available, these solutions provide a
relatively fast way to gather cycle-accurate waveforms of a few
manually selected internal signals. The instantiation of such IP
cores, however, affects both logic placement and signal routing
on the fabric, and thus alters the design [49], [50] – particularly
in situations with tight and/or asynchronous timing constraints.
Their achievable capture lengths and depths are limited by the
availability of internal memory resources, which often already
are occupied by the actual application’s IPs. In contrast to the
debug/trace facilities integrated in most fixed-function devices
(such as CPUs or DSPs), it is, however, possible to remove
ELA-based solutions from the design once no longer required
and reassign the now free FPGA resources. The selection of all



capture signals traditionally is an iterative, manual and (due to
long synthesis/implementation runtimes) also time-consuming
process. Recent research thus proposes helpful extensions, e.g.,
automated identification of the relevant signals for both hand-
crafted designs [51], [52] and, more recently, those generated
from high-level synthesis tools [53]–[56], also including multi-
threaded circuits [57]. Further, various techniques to simplify a
post-implementation trace insertion and signal selection enable
flexible tracing without long design iterations using bitstream
manipulation [49], DPR [58], [59] or, recently, even both [60].

C. Limitations of Traditional Approaches and Synchronization

Although ELAs provide cycle-accurate waveforms at design
speeds (e.g., several hundreds of MHz) and fine-grained trigger
conditions (suitable for functional and temporal monitoring on,
e.g., register-level), the resulting traces still lack crucial system
aspects. They neither cover extended intervals (such as dozens
of milliseconds to span multiple RTS/control iterations) nor are
synchronized to external measurement equipment that captures
additional (e.g., analog voltage/current) data. Depending on the
RTS’ communication interfaces and processing pipelines, they
might be limited to internal sources of temporal events, which
leaves relevant I/O latencies (caused by, e.g., GigE controllers)
out of reach. Combined latency and power monitoring (to drive
both temporal analyses and energy optimizations of RTSs) thus
requires not only extended capture lengths including I/O events
but also synchronized state and power traces. Due to their large
on-chip memories and complex capture logic, ELAs might also
impact the temporal characteristics of the RTS (e.g., preventing
timing closure at a given frequency). Lastly, traditional voltage
and current monitoring via external sources or on-board supply
controllers is prone to additional inaccuracies due to integrated
DC/DC converters and restricted acquisition capabilities of the,
e.g., ZC702’s three UCD9248 (Fig. 2) controllers, respectively.
Their limitation in both temporal (with a best-case readout rate
of approx. 1 kSPS if only one controller is queried) and current
resolutions (with a granularity of approx. 15 mA) stems from
the fact that their integrated circuitry is designed for secondary,
i.e., slow overcurrent detection [61]. Dedicated power monitors
(e.g., TI’s INA231 [62]) offer better performance, but still rely
on an externally controlled readout over a rate-limited I2C link.

Synchronization of independently acquired (temporal/func-
tional) states or events to analog data is a non-trivial task, given
today’s system complexity. Whilst online approaches including
those implementing long-term, but trace-only acquisition could
theoretically be extended to analog data, their required external
(off-chip) storage solutions [63] are not only expensive but also
proprietary, impeding the integration of custom IP or circuitry.
Offline synchronization, on the other hand, can (potentially) be
a viable solution – either via established correlation techniques
from, e.g., cryptology (such as differential power analysis [64])
or by simultaneously acquiring a shared (i.e., trigger) signal for
subsequent shifting in both ELA trace and voltage/current data.
Without such a continuous and explicit synchronization source
or dedicated fabric logic with a (flexible) measurement system,
the independent sampling clocks will cause drifting time bases.

D. Relation to the Proposed Methodology and Quantifications

In comparison, our hybrid solution increases and unifies the
joint, overall observability of RTS power/states at significantly
higher levels of abstraction. This holds true for both resolution
and depth of temporal/functional traces required to sufficiently,
i.e., system/application envelope-wise, cover the RTS behavior
for power/latency analysis and/or optimization. As the periods,
deadlines and execution times of today’s real-time applications
range from hundreds of µs to dozens of ms [15], [22], the high,
single-cycle (i.e., few ns) resolution from ELA-based solutions
is not required. Similarly, single-instruction and per-signal data
from CPUs and FPGA fabric is far more accurate than needed.
This holds true for the acquisition both of temporal events such
as completed reception of a sensor value, start of processing (at
the real-time pipeline’s various stages) or finished transmission
of an actuation signal, and of functional aspects (e.g., sequence
IDs, sensor/actuator data or internal states such as CPU usage).
Although sufficient for such application-level monitoring (that,
in addition, covers the relatively slow effect of various system-
level power management techniques such as DVFS), individual
implications of CPU or, e.g., memory operations are discarded.
For FPGA-based RTSs, this possibility for abstraction together
with the option to instantiate custom trace IP cores within their
fabric enables the introduction of our hybrid power/state traces
that combine energy with macro-phase application monitoring.

In contrast to ELA-based approaches, the proposed trace not
only synchronously captures voltages and currents on the RTS’
supply rails in an online fashion (Sec. II-C), but also consumes
far less FPGA resources due to its level of abstraction and off-
chip storage. As our EMS is capable of power monitoring both
for multiple rails – including those of I/O components – and at
significantly higher temporal/analog resolution than traditional
power controllers, the analog data contains timing-relevant I/O
events and per-component/phase energy figures all in one. As a
similarity to ELAs, the FPGA signals of interest currently have
to be selected at design time, although solutions for later trace-
insertion could be used to integrate the proposed trace IP core.

Cost-wise, the proposed trace IP core and our EMS compare
as follows to the existing solutions. In terms of FPGA resource
usage, our trace IP core requires less than 500 slice registers (if
all implementation options are enabled) as shown in Tab. I. We
use a relatively simple configuration (single-bit trigger, 10 data
bits) of Xilinx’ ILA core as a baseline (for ELA-driven latency
monitoring as evaluated in app. B). It requires three times more
logic resources and 26x the memory, compared to our solution.
VSS pipeline, additional I/O cores and AXI crossbars (Xbars),
all part of our reference design, utilize less BlockRAM in total.
If trace readback (Sec. IV-D) is disabled, the logic and memory
requirements of our core are even lower (Tab. II, no RX FIFO).
In monetary terms, the hardware is one order of magnitude less
expensive than a commercial Data Acquisition (DAQ) solution
such as, e.g., a National Instruments PXIe-6124 used as analog
quantification reference. Even without its host PC and licenses,
a PXI system (app. A) costs over 50x more – albeit commercial
manufacturing and support would also increase the EMS price.



TABLE I
COST (I.E., RESOURCE USAGE): VSS PIPELINE VS. ILA VS. TRACE CORE

Component / Subsys. Slice LUTs Slice Regs Slices BRAM1

Base system (Xbars) 5599 7504 2496 0
Additional I/O cores 6256 9375 2757 11
VSS (HW) Pipeline 5456 5679 2140 26

ILA (GMII@PHY2) 1193 1580 619 104
Tracing2 & IRQ-FF 468 493 188 4

Zynq 7Z020 53200 106400 13330 280

NB: 1)18 Kbit each / 2)SPIB resource usage differs from Tab. II due to larger RX FIFO

Quantitative analyses of analog/temporal accuracies attained
with our approach and external measurement system are shown
in appendices A (National Instruments PXI) and B (Xilinx ILA).

III. DESIGN CONCEPTS/PRINCIPLES FOR HYBRID TRACING

On a conceptual level, the proposed methodology relies on five
key design principles to facilitate a unified temporal, functional
and energy monitoring for current FPGA-accelerated RTSs. As
introduced in Sec. II-D, application-level RTS Instrumentation
for lightweight acquisition of hardware/software pipeline states
enables a subsequent reconstruction of temporal and functional
system characteristics. Key indicators on the software-side are,
e.g., CPU loads, queue fill levels, number of runnable threads,
iteration counts, (varying) control gains and even live sensor or
actuator signals, although for VSS cases, the former could only
be tapped after object detection. Hardware-wise, both multi-bit
(e.g., sequence IDs, counters and finite-state machine registers)
and single-bit (such as interrupt request) signals are of interest.
State probes (dashed red in Fig. 1) forward the relevant signals
to our resource-efficient trace IP core, instantiated in the RTS’s
fabric. In addition to the IP core (orange+blue, bottom center),
Fig. 2 also shows the PL (light gray) with its underlying fabric
resources. With the CPUs and various other components in the
fixed-function PS (dark gray), these DUT resources are used to
implement the required heterogeneous real-time pipelines. The
trace core converts the state signals into a serial data stream for
transmission to an external measurement system (green, right),
which requires a suitable interface – and enough analog inputs.

These (in case of our EMS: up to 18) channels are connected
to the DUT’s on-board supply system (e.g., DC/DC converters)
to capture voltages/currents of the required rails. On the ZC702
used in our experiments, for instance, three complex UCD9248
power controllers (Fig. 2, blue) drive ten independent supplies,
three of which are selected for precise RTS Energy Monitoring,
as shown in the center of Fig. 2 (between DUT and UCD9248).
The three voltage (dotted) and current (dash-dotted) probes tap
the respective rails and thus enable our EMS to monitor supply
accurately via the UCD9248s’ downstream current sense (CS).

Our EMS also implements Monitoring of I/O components by
capturing their per-rail power consumption. Based thereon, I/O
events such as sensor reception over GigE PHYs are identified.
Measuring currents is the most generic implementation of I/O
monitoring and applicable to all communication standards that
require an external (and thus reachable) PHY or controller, and
enables fast turnarounds, e.g., without extra network analyzers.

Fig. 2. ZC702 Development Board (left) with a Zynq-based DUT (bottom left)
instrumented via our Trace IP Core (center) and External Measurement System
(right) using Serial State Stream (blue) and Supply Probes (dotted/dash-dotted)

Precise Timestamping of each acquired analog or state value
with sub-µs resolution in our EMS completes the hybrid traces.
It enables the subsequent conversion of the power/state data to
temporal and I/O events, precise energy figures via integration,
and functional information – altogether characterizing an RTS.

Automated RTS Analysis based on the hybrid traces not only
enables identification of application phases, estimation of best-
case energy savings and a holistic latency monitoring, but also
unifies, simplifies and thus significantly shortens RTS analysis.

IV. PROPOSED HARDWARE/IP/SOFTWARE ARCHITECTURE

Our hardware, IP and software architecture implementing the
proposed hybrid power/state-tracing features the following key
components. The DUT is a heterogeneous RTS based on, e.g.,
a Xilinx Zynq pSoC, which implements latency- and/or power-
constrained, mixed-hardware/software real-time pipelines. Pre-
cise per-rail power samples are acquired by our EMS (Sec. III),
which taps the on-board shunts of the ZC702 [65] and fuses the
state data from our trace core, transferred over a low-pin-count
Serial Peripheral Interface (SPI). The resulting hardware archi-
tecture including the heterogeneous, Zynq-based RTS (bottom
left) on its development board is shown in Fig. 2. In Sec. IV-A,
we present the proposed trace IP core and its interfaces to DUT
and a generic, SPI-capable measurement system, whilst details
of our FMC-sized EMS implementation are given in Sec. V-A.
Flexible instrumentation options for tracing of hardware (PL)
and software (PS) are shown in Sec. IV-B and IV-C. In case the
hybrid power/latency traces should automatically be sent to the
RTS after acquisition ended, Sec. IV-D presents a solution with
near-zero software overhead including required Linux drivers.

A. SPI-Bridge and DUT/Trace Interface

The primary design goals for the pSoC trace IP core and its
surrounding infrastructure were as follows. Both temporal and
functional trace information needs to be aggregated and subse-
quently forwarded with sampling rates and capture precisions
(i.e., data widths) sufficient for application-level monitoring of
the majority of current RTSs. With such systems’ control loops
rarely exceeding frequencies above one kHz, a state sampling
rate in the tens of kHz thus enables capturing dozens of state
changes within one control period. The method’s high level of
abstraction (Sec. II-D/III) also reduces the amount of data that



needs to be stored in one sample. With the Visual Servoing Ap-
plication scenario (Sec. V-C) in mind, a state size of 16 bytes is
selected, although it can easily be adapted to others. Additional
design goals are low resource utilization and minimized DUT
interference – not only to make our methodology viable even
close to design completion (where most FPGA resources might
be allocated to the actual application), but also to maintain
timing closure and I/O assignment in case of tight constraints
and heavily utilized pin budgets. Lastly, interfaces to the DUT
with its fixed-function PS and configurable PL and the external
measurement system should be as generic/flexible as possible.

We thus implement byte-wide trace ports (for connection to,
e.g., PS GPIOs/IRQs or PL signals) and an optional AXI slave
interface [66] for fast software instrumentation using memory-
mapped I/O (MMIO) writes. As these accesses are un-cached,
their impact on timing is minimal and near-constant. To use as
few I/O pins as possible whilst relying on only unidirectional
signals (due to speed and integrity considerations), we propose
a three-wire SPI-like connection between our trace IP core and
external measurement system. In case the AXI slave is enabled
during IP configuration, the split between PS and PL trace data
can be set on a byte-wise basis. The generic trace-ports also
include a per-byte acknowledge signal, which can be used to
reset simple upstream preprocessors in the PL – such as edge-
capture blocks or application-specific (e.g., activity) counters.

Fig. 3 shows the basic structure of the trace IP core with its
interfaces to both DUT and external measurement system. Its
gateway to the latter is a simple 8-bit shift register connected
to the SPI – that consists of two inputs, Serial Clock (SCLK)
and Master Out Slave In (MOSI), and a single output, Master
In Slave Out (MISO). The trace information captured from the
DUT is buffered in a 16-byte transmit (TX) fabric memory and
shifted out synchronously to the outside SCLK. Alternatingly,
incoming data streams (sent by an EMS) can optionally be for-
warded to the DUT by including additional receive (RX) logic
for trace readback (Sec. IV-D). As the core effectively bridges
DUT traces over SPI, it was quickly coined SPI-Bridge (SPIB).

This efficient structure enables our EMS with its hardware-
triggered SPI master functionality to retrieve DUT state traces,
which it then merges with its own analog (i.e., voltage/current)
measurements to form the hybrid power/state trace. The latter
is thus stored externally, reducing DUT resource consumption
and efforts for subsequent analysis (as the fused trace is readily
available without further, offline post-processing). As commer-
cially available DAQ solutions (in contrast to our FMC-sized
implementation) commonly rely on software-based SPI, their
precise clock sources and cross-input synchronization features
cannot directly be used for synchronization. In this case, state
timestamps have to be generated via complex post-processing.

In retrospect, the resulting infrastructure performs as follows
w.r.t. the above design goals. With the central SPI shift register
supporting external (SCLK) frequencies beyond 50 MHz even
on slowest speed-grade devices and the chosen sample size of
16 bytes, the theoretical state capture rate readily approaches
400 kSPS – which is even sufficient for most high-rate control
systems. If the desired RTS monitoring does not demand such

Shift registerMOSI MISO
11

TX RAM RX FIFOReceive
logic

Processing System (PS)

8
8

AXI3

4096 bytes

16 bytes

AXI3IRQ

PL-Trace x

SPI-Bridge

SCLK

(optional)
TraceAck

x
8

PS-GPIOs (EMIO)

64

Programmable
Logic (PL)

Fig. 3. Internals and Interfaces of the Trace IP Core (SPI-Bridge, center right)

dense state samples, the available bandwidth can either be
utilized for larger state samples, left unused or be reduced by
means of the SPI clock frequency. Both resource consumption
and the resulting interference with the DUT hardware (PL)
are extremely small, as even the fully-fledged implementation
including trace readback to the PS requires less than 500 slice
registers of a Xilinx Zynq 7Z020, which is below 5‰ of the
device resources [67]. The routing overhead to tap PL signals
of interest, however, depends on the particular architecture
and might necessitate intermediate capture registers in tight
designs like with ELAs and other tracing methodologies. The
SPI-based link between trace core and external measurement
system only uses three I/Os, whilst the internal ports enable
various implementation options for interfacing to PS and PL.

B. Implementation Options for PS & PL

The proposed hardware/software architecture consisting of
DUT, trace IP core and an external measurement system can
easily be tailored to the tracing/debugging scenario at hand.
This not only holds true for the byte-wide trace ports tapping
the hardware and software components (implemented in PL
and PS) of the RTS, but also for an independent AXI interface
for trace readback from the DUT. Whilst this section focuses
on configuration options of the trace IP core and acquisition of
PL states, Sec. IV-C presents options for PS tracing – whereas
the software infrastructure in kernel and userspace for trace
readback from our measurement system follows in Sec. IV-D.

In its most basic form, the SPIB implements only a single,
16-byte shift register with associated control logic to reload or
update the entire register (after 128 bits have been clocked out
by the external master). Although extremely resource-efficient,
this option – at first glance – only allows tracing of states from
the PL. On Zynq pSoCs, however, the signals of the general-
purpose I/O (GPIO) controllers (part of the PS) can be routed
to the PL by means of the Extended Multiplexed I/O (EMIO)
interface that connects PS and PL [68]. As indicated in Fig. 3,
up to 64 bits of PS trace data could thus be written to the SPIB
without additional logic resources. Analogously, this holds true
for Intel’s devices, which support routing of peripheral signals
from HPS to FPGA fabric [69]. In case all these fixed-function
GPIOs are unavailable, an AXI slave interface can be enabled
within the SPIB to make a configurable number of byte-wide
trace ports available from software. The segmentation of the (at
the moment 16) data bytes into PS and PL is given in Fig. 4. As
more than eight bytes of state data were never required, we use
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Fig. 4. Segmentation of Trace Data within the SPI-Bridge (currently 16 Bytes)

the remaining half to transfer selected metadata to our EMS at
system initialization. This, e.g., enables time synchronization
from DUT software to EMS, which simplifies the identification
of stored traces based on their date- and timestamp during later
analysis. In both cases, the software running on the PS (i.e.,
either bare metal applications or, in case an operating system is
used, kernel and userspace code) can easily be instrumented to
update the trace data via MMIO-based write accesses. Multiple
methods for tracing from Linux userspace (that do not require
development of custom device drivers) are shown in Sec. IV-C.

Trace Readback: In addition to transmitting state samples,
the SPIB can be configured to handle incoming data transfers
(i.e., from an external measurement system to DUT). We use
this feature to download the hybrid power/state trace recorded
by our FMC-sized measurement system to the DUT after the
acquisition is complete. Once received, the trace is available as
a regular file in Linux. This not only simplifies iterative, man-
ual measurements as the trace thus can easily be transferred
using, e.g., scp, but also enables fully automated, DUT-driven
measurement cycles where each trace is stored alongside other
performance-related data of the individual iteration. Details of
the required hardware and software are presented in Sec. IV-D.

Preprocessing: If the PL signals of interest change at sim-
ilar or even higher frequencies than the state capture rate, the
resulting trace will be incomplete due to aliasing. Depending
on the particular tracing/debugging scenario, however, the data
rate of certain types of signals can often be reduced without
loss of information relevant for application-level monitoring of
the RTS. We explored implementation options for both rare,
single-shot signals such as interrupt request (IRQ) lines and
also the per-cycle activity or enable signals of many IP cores
as found in, e.g., image processing (Sec. V-C). For the former,
we implemented a byte-wide edge-detection preprocessor that
resides between the various IRQ signals, which are required
to inform the PS CPUs that an IP core in the PL needs their
attention. Effectively equal to an 8-bit set/reset flip-flop, it only
requires five slices within the PL and runs at full clock rate of
the design. In case an IRQ line is asserted even for a single
cycle, the corresponding bit remains set until this event has
been seen by the SPIB, which afterwards resets the prepro-
cessor by means of the TraceAck signal (Fig. 3). The addition
of IRQ events to the trace data provides valuable information
regarding the temporal behavior of the heterogeneous RTS, in
particular for Direct Memory Access (DMA) IRQs that often
indicate a migration of processing from PS to PL or vice versa.
Activity/enable signals of, e.g., image processing IP cores, on
the other hand, can be used to trace utilization during regular
system operation. This, among others, enables fast estimation
of best-case power savings for activity-dependent management
techniques such as clock gating (Sec. VI-C). Thus, the average

TABLE II
RESOURCE USAGE OF THE SPI-BRIDGE (FULLY FEATURED)

Component Slice LUTs Slice Regs Slices BRAM1

Control 55 55 30 0
TX RAM 8 0 2 0
RX FIFO2 69 100 38 2

Interconnect3 328 330 126 0

SPI-Bridge 460 485 186 2

Zynq 7Z020 53200 106400 13330 280

NB: 1)in 18 Kbit mode (RAMB18E1) / 2)trace readback / 3)MMIO/readback

duty cycle of such signals is sufficient, which similarly can be
captured using a small activity counter also automatically reset
after the number of cycles with asserted enable signal has been
captured by the SPIB and acknowledged via its TraceAck port.

Tab. II shows the resource usage of the SPI-Bridge and its
individual components with all features enabled compared to
the total device resources of a medium-sized Zynq 7Z020. The
resource usage is dominated by an AXI interconnect sourced
from Xilinx [70], which is required to convert the PS’ complex
AXI3 interface to the reduced AXI4-Lite inside the SPIB and
thus has to be factored into the overall resource consumption.

C. Kernel/Userspace Tracing via MMIO

If either a (PS-internal) GPIO or the SPIB’s AXI slave inter-
face is used to transfer state information (from PS to EMS), the
software (executed by the PS CPUs) is easily instrumented due
to the MMIO-based interface of both options. In case the appli-
cation runs bare metal, i.e., without an operating system (OS),
plain write accesses to GPIOs or SPIB are sufficient. If an OS’
kernel implements an unprivileged userspace, kernel code still
may use direct hardware access itself. Normal applications on,
e.g., Linux, however, have to rely on kernel interfaces such as
GPIO/LED subsystems, userspace I/O or /dev/mem [71]–[74].

D. Low-Overhead Trace Readback to PS

Again, we implement this feature with resource efficiency in
mind, but also take software aspects into account. The receive
channel consists of a small control logic and a BlockRAM for
data buffering. As long as acquisition is running, the external
measurement system continuously transmits zeros (on MOSI)
whilst retrieving the trace data (via MISO). Afterwards, the
state trace (starting with a non-zero header) is automatically
uploaded. The non-zero value on MOSI triggers the receive
logic to assert its IRQ line and store the incoming data stream
in the BlockRAM until reset from the PS. On the software (i.e.,
PS) side, we assign the generic-uio driver to the SPIB (by
devicetree modification [75]). This driver is part of the stock
Linux kernel release and, due to our design of the receive logic,
sufficient to both inform a small userspace daemon of the
incoming data and expose the receive buffer to userspace via
MMIO. After initialization, the daemon blocks while waiting
for the IRQ and thus does not consume any CPU time in this
state. As measurement and transfer are mutually exclusive, the
(predominantly) dormant daemon has negligible impact on the
PS (i.e., software execution) and is only scheduled on demand.
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Fig. 5. Hybrid Power/State Trace of Synthetic PL Workload: Fabric & BRAM
Currents (dashed/gray & solid/black), Test Size (dotted red) & Control Signals

V. REFERENCE EMS IMPLEMENTATION AND USE CASES

We use our cost-effective FMC-sized measurement system (see
Sec. V-A for a feature summary or [40, 41] for implementation
details), specifically designed to capture multi-rail analog (i.e.,
voltage/current) values and state samples synchronously – thus
generating the proposed hybrid traces, which unify all required
measurements into a single workflow with very short (<1 min.)
and thus debugging-friendly turnaround times. To demonstrate
their benefits, we evaluate a synthetic PL workload (Sec. V-B)
and a real-world VSS (Sec. V-C), using a ZC702 and our EMS.

A. FMC-based Measurement Subsystem

One of the ZC702 ports connects to our FMC-sized external
measurement system that features not only an 18-channel, 16-
bit-resolution acquisition subsystem capable of over 200 kSPS,
but also two independent GigE PHYs [76], [77] – whose power
consumption is also monitored to identify sensor and actuator
I/O. As Ethernet is increasingly used for RTS interfacing, this
enables end-to-end (i.e., input-to-output) latency monitoring.
Internally, the acquisition subsystem routes three synchronized
analog-to-digital converters (ADCs) [78], gain amplifiers [79]
and additional circuitry to a Cortex M7 microcontroller (Fig. 2,
right) [80]. The latter relies on SDRAM [81] and µSD flash to
store analog samples and serial state stream received using one
of its integrated SPI master peripherals. Due to performance
limitations of external data bus, controller and µSD, the overall
logging throughput may not exceed ≈14 MByte/s. This results
in a trade-off between sampling rates of analog and state data,
which is currently set to a ratio of 8:1 analog to state samples.

During acquisition, the firmware (running on the Cortex M7
microcontroller, standalone without OS) continuously polls all
three ADCs as fast as possible, merges the state data received
via an SPI master (at above ratio) and adds sub-µs timestamps
to each ADC/SPI sample to create the hybrid power/state trace.

B. Synthetic Fabric & BRAM Workload

This first, synthetic application scenario aims to identify the
power demand (across two PL rails) of workloads that heavily
utilize the FPGA fabric’s memory structures (i.e., BlockRAM).
We thus rely on a simple RTL address/data generator to induce
intense switching activity on the inputs/outputs of 240 BRAMs
(out of a total 280). During the test, the BRAMs are enabled in
three groups of 80 as indicated by the dotted red line in Fig. 5.

Fig. 6. Visual Servoing Scenario on Zynq: PS I/Os (left), PS (center) and PL
with hardware-based Image Acquisition/Processing & State-Tracing via SPIB

In addition, we not only toggle Write (WE) and Output Register
Enables (CE), but also control the switching activity on both
address (AT) and write data (DT) busses. The BRAMs are
configured for 9-bit address and full 36-bit data widths using
write-first, registered output mode and are clocked at 50 MHz.

As expected, this causes drastic current variations on the PL
rail (dashed gray) driving both traffic generation logic and, as
apparent from the barely loaded BRAM rail (solid black), also
a significant portion of the BRAMs. Together, analog and state
data allow an automated baseline characterization (Sec. VI-B).

C. Visual Servoing Application Scenario

As mixed-hardware/software real-time pipelines are particu-
larly hard to analyze w.r.t. their temporal behavior (Sec. II-C),
we also apply the proposed methodology to a VSS application
scenario – featuring a hybrid PS/PL/PS processing pipeline [2].
A GigE Vision camera [82] continuously captures the height of
a magnetic levitating sphere, serving as representative use case
for high-speed VSSs. The control goal is to maintain its stable
levitation at a configurable position by altering the current sent
through an overhead magnetic coil. At 178 frames per second,
the incoming camera data cannot be handled in software alone.
Our design thus not only maps a part of the image processing
pipeline (Gaussian filter [83], Canny edge detection [84], con-
tour finding [85] and object detection) to the PL, but also relies
on purely hardware-based image acquisition for the incoming
GigE Vision video stream. This acquisition is implemented via
a custom IP core that interfaces the fixed-function GigE con-
troller within the PS to receive all and – subsequently – extract
the video-related Ethernet frames. Whilst proxying non-image
frames back into the PS, this GigE Vision Bridge (GEVB) core
then feeds the pixel stream (byte-wise) to the Image Processing
Pipeline (IPP) also implemented in the PL. Fig. 6 shows both
selected PS internals – including the GigE controller used for
image acquisition via PHY2 – and the VSS pipeline consisting
of GEVB, IPP and a Xilinx DMA core for PS writeback once
an entire camera image has traversed the PL hardware pipeline.

The remaining processing steps (i.e., starting from hysteresis
edge tracking for Canny) are then performed by our userspace
application running on the PS CPUs, which also computes and
transmits the actuation signal. Our custom Linux kernel driver
manages the transfer of both control and video data from a PL
DMA controller to userspace via the Video4Linux subsystem.
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Fig. 7 shows the processing of ten frames and, unlike Fig. 8,
also includes the required fabric current (solid pink). It slightly
increases during reception of camera images, i.e., between the
first payload frame ( P©) and the handover from PL to PS ( e©),
whereas end of CPU execution ( t©) yields a falling PS current.

VI. APPLICATIONS AND BENEFITS OF HYBRID TRACING

As our hybrid traces combine multi-rail power with accurately
synchronized PS/PL states, they cover a variety of properties in
a single, unified measurement and are widely applicable during
development/optimization of today’s FPGA-accelerated RTSs.

For our experiments with PL workload and Visual Servoing
System, we monitored the following supply rails on the ZC702
board and both GigE PHYs. The Zynq’s VCCPINT (PS cores),
VCCINT (PL fabric) and VCCBRAM (PL memory) rails are
acquired independently (i.e., both voltage and current), leaving
12 channels for I/O monitoring. We capture VCCADJ (=2.5 V)
and VCC3V3 (both from ZC702) – plus our FMC board’s 1V2
and 1V8, which feed the Ethernet PHYs’ core and analog rails.
With four supplies (two analog, one each for I/O and core) per
PHY, the remaining eight channels are entirely used for shunts.

A. Identification of Application Phases

The majority of current real-time and everyday applications
comprises multiple sequential phases of processing. This holds
particularly true for pipelined, mixed-software/hardware sce-
narios such as games or web browsers, which offload rendering
to a GPU – and most RTSs due to their inherent input-process-
output structure. The identification of all individual application
phases is crucial to answer functional (i.e., What did it do and
in which order?) and temporal (When did it do it?) questions
during debugging and/or optimization. Balancing latencies and
power of a mixed-hardware/software application, for instance,
requires precise knowledge of both – for each processing phase
and every relevant (hardware/software) component of the RTS.

Whilst even offline (e.g., current-driven) phase identification
is relatively straightforward in case of the synthetic workload
due to its predefined, self-contained nature, the real-world VSS
poses a significant challenge. This is because it not only relies
on hardware and software components with unknown temporal
and energy characteristics (such as all PS interconnects and the
Linux kernel), but also interacts with the RTS’s outside world
(i.e., camera and actuator) over an – event-triggered – Ethernet.
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Fig. 9. Synthetic PL Workload: Fabric Power versus Test Size in 24=16 Cases

Although the application’s periodic nature is clearly indicated
by the supply rails of PS (dotted blue) and fabric (solid pink)
in Fig. 7, both temporal and functional details such as acqui-
sition latencies, processing times and pipeline behavior (e.g.,
overlap) are out of reach. Including all details captured by our
hybrid trace, however, the internals of even a single application
iteration quickly become clear (Fig. 8). Implementing the GigE
Vision Stream Protocol (GVSP), the camera first transmits its
GVSP leader frame – which is then received by the RTS, as
indicated by a small spike on PHY2’s I/O rail (gray, magnified
by 10x). Once processed by the PS GigE controller, it traverses
the PS and reaches the PL for detection by the GEVB ( L©).
The following group of 56 GVSP payload frames (carrying the
actual image data) is automatically identified based on PHY2’s
rail and extends from P© to e© (dashed green lines and PHY:
markers). As GEVB and IPP operate in-stream (i.e., without
buffering entire images), the hardware pipeline finishes shortly
after the last payload frame ( e©) and processing migrates back
to the PS – i.e., its CPUs, which execute Linux and userspace
application ( S©). The latter not only asserts the (one-bit wide)
trigger line (cyan) notifying the external measurement system,
but also inserts the ID of the just received video image into the
state trace using software instrumentation (red CPU: Start
marker). As soon as both the remaining image processing steps
and control computation are completed, the actuation data is
finally transmitted ( t©). Together, the long camera readout ( L©
to e©) and CPU-based image/control computations ( S© to t©)
extend the overall latency beyond the control period of approx.
5.6 ms – Iteration #103 thus starts before iteration #102 ended.

It should be noted that – due to the entirely hardware-based
image acquisition – all hardware-related timestamps ( L©, P©
and e©) are out of reach of traditional, software-based tracing.
As the former records the point in time of the camera image’s
arrival, it is essential to deduce the total (i.e., end-to-end) RTS
latency (Sec. VI-D) required to ensure control stability (Sec. I).
Thanks to the temporal and functional coverage of our hybrid
trace, the control designer immediately becomes aware that the
pipeline overlap prohibits a traditional, “zero delay” approach.
Instead, advanced – delay-aware – strategies are required, even
though the VSS pipeline’s relatively small jitter (cf. Sec. VI-D)
might just obviate control designs for time-varying delays [86].

In case the PHYs’ power consumption is not of interest, the
I/O monitoring can be reduced to two channels (Sec. VI) – i.e.,
the I/O rail currents instead of all supply voltages and currents.
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Fig. 8. Hybrid Power/State Trace with PS & PHY Currents (dotted/blue & solid/gray/10x), every incoming Ethernet Frame (dashed green) & Image-IDs (red)

B. Phase/Component Energy Baselines

Each of the synthetic workload’s (Sec. V-B) 24=16 test cases
incrementally activates the BRAMs’ enable signals in groups
of 80. Even in the first case (AT=WE=DT=CE=0 – solid orange
line in upper left plot of Fig. 9) without switching activities, a
significant increase in power consumption can be seen, which
corresponds to the first three steps in Fig. 5 (left). In addition to
only instantiating as few BRAMs as possible (to benefit from
the automatic power gating on modern FPGAs, cf. Sec. II), it
thus is also advisable to (dynamically) disable each individual
BRAM whilst not accessed. As expected, increased switching
activities (i.e., assertion of AT/WE/DT/CE) also lead to a higher
power consumption – the only exception being the transition
of WE=0 to 1 in test case AT=1/DT=0/CE=1 (i.e., solid cyan
line on the right of Fig. 9). Moving from top (WE=0) to bottom
(WE=1), the power consumption – to the authors’ surprise – in
fact decreases. Although the reasons are currently unclear, it
also should be noted that running at a higher clock rate would
result in even steeper curves due to a linear relation to power.

In the Visual Servoing Application Scenario (Sec. V-C), we
again focus on the power consumption of the PL fabric. Based
on the activity timestamps gathered from the state trace (i.e.,
P© and e©), we identify an average PL power consumption of

159 mW in idle and 167 mW during frame reception (Fig. 7/8).
Also shown in Tab. III, we captured another hybrid power/state
trace whilst sequentially disabling all the clocks driving the PL
(FCLKx, generated within the PS). This yields a residual static
power consumption of 40 mW – equivalent to savings of 76%.
It, however, should be noted that this is an absolute best-case
value assuming that the entire PL fabric could be clock-gated,
effectively rendering the VSS inoperative as incoming Ethernet
frames can no longer be received by the PL (for filtering by the
GEVB), thus initially queue and eventually drop within the PS.

C. Estimated Best-Case Energy Savings

For a more realistic estimation of potential best-case savings
of the VSS-related PL components, both their fabric utilization
and activity ratio are required. Whilst the former can easily be
calculated as 29.3% based on utilization reports in Vivado [87],
the latter depends on various run-time aspects such as spacing
of individual GVSP payload frames, behavior of the PS GigE
controller and writeback rates of the DMA controller in the PL.

We thus use activity signals of GEVB and downstream IPP
cores to enable a small PL-based activity counter running at
full design frequency of 125 MHz – as proposed in Sec. IV-B.

As its present value can easily be acquired using the SPIB (red
dashed wires in Fig. 6), the resulting state trace thus includes
piece-wise, cycle-accurate utilization data of the VSS pipeline.

Based on the measured activity ratio of 15.6%, the pipeline
thus could be gated 84.4% of the time. The estimated best-
case power savings thus are 76% · 29.3% · 84.4% = 18.8% of
the active power consumption – yielding savings of 31.4 mW.
Such accurate estimations of potential savings require not only
synchronized state information (i.e., IPP activity), but also per-
phase energy values – both beyond traditional tools (Sec. II-C).

TABLE III
LATENCY AND POWER READINGS DERIVED FROM THE HYBRID TRACE

Period and/or Phase In Fig. 7/8 Latency Jitter/σ PL Power

Inter-Image @ PHY L© → L© 5.62 ms 18.87 µs –
Inter-Image @ CPU S© → S© 5.62 ms 19.25 µs –

Reception of Image P© → e© 4.29 ms 10.42 µs 167 mW
PL: Waiting for RX e© → P© – – 159 mW
PL-IPP & IRQ→PS e© → S© 0.12 ms 17.46 µs –
PS: IPP, Ctrl. & TX S© → t© 3.81 ms 54.30 µs –
RTS total (In→Out) L© → t© 8.53 ms 55.02 µs –

PL Idle (FCLKx=0) (Sec. VI-B) – – 40 mW

NB: Selected latency/power readings were omitted for clarity (but are part of the trace)

D. Phase, Component and I/O Latencies
Based on all the events gathered from the hybrid power/state

trace (Sec. VI-A), crucial temporal characteristics of the RTS
can be quantified – as summarized in Tab. III that also includes
the measured jitter given in terms of the standard deviation (σ).
This not only includes the pure-software execution time ( S©
to t©) with 3.81 ms, but also mixed-hardware/software figures
such as the DMA interrupt response time ( e© to S©) of 120 µs.
Unsurprisingly, the overall end-to-end jitter (“RTS” in Tab. III)
is largely caused by software (“PS”) – particularly by the edge-
dependent execution time of the IPP’s contour finding step. In
combination with PHY-based events, image transmission time
( P© to e©) of 4.29 ms (σ=10 µs) and – most importantly – the
total RTS latency, i.e., from image reception to transmission of
actuation signal ( L© to t©), with 8.53 ms (σ=55 µs) are found.

This value is not only crucial for control engineering (as it
represents the system’s dead time that needs to be compensated
during the design of the control algorithm), but also enables us
to evaluate the performance of various proprietary (i.e., black-
box) IPs such as GigE controllers part of the datapath (Fig. 6).



VII. CONCLUSION

In this paper, we proposed hybrid power/state-tracing as a uni-
fied, yet generic methodology to not only capture temporal and
functional characteristics of complex FPGA-accelerated RTSs,
but also correlate these properties to the energy consumption of
various system components. We presented a resource-efficient
trace IP core with a cost-effective measurement system to both
gather state streams from the RTS, and fuse them to the multi-
rail power measurements. Such hybrid traces enable automated
identification of various temporal events within complex – i.e.,
mixed-hardware/software – real-time application pipelines that
are crucial to resolving functional, temporal and energy-related
questions. In combination with the analog measurements, these
events permit the computation of per-phase and per-component
energy baselines – which are essential for subsequent, accurate
power/latency optimization and best-case energy estimation. In
addition, they also yield extensive latency coverage required to
ensure stability of control loops closed by the RTS, as demon-
strated for a heterogeneous, real-word Visual Servoing System.
Beyond the end-to-end latencies and potential best-case energy
savings, the trace data also unveiled its severe pipeline overlap.

Jointly, the proposed trace IP core and external measurement
system implement a complete solution for (holistic) RTS moni-
toring. It – in particular due to its simplicity – is effective (w.r.t.
costs/resources) and practical – and already has proven its wide
applicability to further application and measurement scenarios.

For future work, we intend to use the proposed methodology
not only to perform efficiency comparisons between bare metal
and Linux implementations of the VSS, but also for combined
latency- and power-optimization of PS (via frequency scaling)
and PL (using fine-grained clock gating) processing stages. We
expect traditional (i.e., software-driven) power management to
be insufficient due to the high control rate – thus necessitating
a mixed-software/hardware management module whose devel-
opment and evaluation will greatly benefit from hybrid tracing.

APPENDIX

We performed exhaustive measurements to ensure the accuracy
of our EMS (Sec. V-A) generating the hybrid power/state trace.

Fig. 10. Timestamping Accuracy: EMS vs. PXI (blue vs. pink) and PS Current

A. Quantitative Comparison to Energy Monitoring via NI-PXI

We use the National Instruments PXIe-6124 4-channel DAQ
card [88] for a quantitative evaluation of our solution’s analog
and temporal accuracies. In addition to its four, simultaneously

sampling 16-bit ADCs, it features 24 GPIO channels – that can
also be acquired or used as clock/trigger sources, within limits.
The (synchronized) analog and digital inputs sample at 4 MHz,
and, once relayed from PXI chassis over PCIe, reach a host PC.

Fig. 10 shows the rising PS current ( S© in Fig. 8) at a zoom
level high enough to recognize individual EMS samples (blue
vertical markers). To quantify temporal inaccuracies (i.e., the
interval between the recorded sampling times and actual ADC
acquisitions), we synchronized EMS and PXI by means of the
DUT trigger line. In addition, we logged the ADC busy signals
using PXI GPIOs, and plotted rising (green) and falling (pink)
edges. It can be easily seen that the EMS shortly pauses analog
sampling due to the incoming trigger (red) and the firmware’s
best-effort behavior (Sec. V-A). Subsequently, the timestamps
of analog acquisitions recorded by EMS (blue) and PXI (pink)
show only minor offsets – confirmed by a mean error of 0.2 µs.

Although state samples (received via the SPIB) benefit from
the same timestamp resolution, their sampling rate of currently
25 kSPS imposes a maximum uncertainty of 40 µs on the state
data – i.e., stored transitions might have occurred ≤40 µs ago.

To quantify analog (i.e., voltage/current – and thus indirectly
power) measurement errors, we use two analog channels of the
PXI (in differential setups) to accurately capture the PS supply
rail. Whilst voltage is directly measured (probing C138 on the
ZC702), current has to be captured indirectly (by means of the
shunt voltage across R76). Our measurement systems taps into
the ZC702’s own instrumentation amplifier (an INA333, U45),
whereas the PXI is driven from a dedicated, internally trimmed
INA213, piggybacked onto the ZC702 for maximum accuracy.
Our solution records a PS energy consumption of 21.46 mJ for
10 VSS iterations. With a PXI reading of 21.53 mJ, a relative
error of -0.3% is found (including all temporal/analog factors).

Fig. 11. Timestamping Accuracy: 14 Ethernet Frames in Wireshark (via ELA)

B. Quantitative Comparison to Latency Monitoring with ELAs

As evaluation of our solution’s temporal accuracy for events,
e.g., I/O activity, and as comparison to the functional/temporal
monitoring capabilities of ELAs, we instantiate Xilinx’ System
ILA [47] in the PL. Driven by the receive clock, it is able to tap
the Gigabit Media-Independent Interface (GMII) of PHY2 (see
Fig. 2/6) and record all raw incoming Ethernet frames on a per-
cycle basis (i.e., at 125 MHz). Using ≈37% of BRAM (Tab. I),
the ILA is able to capture 14 Ethernet frames containing image
data. After preprocessing, we import all frames into Wireshark
to find the transfer latency of 1.03404 ms in Fig. 11. Measuring
the same interval in our hybrid trace (Fig. 8) yields 1.03333 ms
and thus an extremely low relative error of 0.7‰ from our tool.
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