
Abstract—Over the years virtualization and hypervisors have 

gained immense popularity and at the same time there has been 

an increased concern about their security and many exploits have 

been demonstrated. Verification of hypervisors is challenging 

and one of the reasons is a large TCB. XMHF is a hypervisor with 

a small TCB of only 6018 LoC. In this paper we verify the page 

table setup of the XMHF initialization, using model checking and 

proving an invariant about the model. Thus ensuring that the 

hypervisor is in fact successful in providing a reduced memory 

map to the guest, in order to protect the XMHF Core from the 

guest.  

Index Terms—Hypervisor, Verification, XMHF, DRIVE, 

Memory Integrity, Page Tables, DMA, VT-d, CBMC, UCLID, 

Model Checking. 

I. INTRODUCTION 

Virtualization has been around for many years but has gained 

more popularity for enterprise systems in the past few decades 

and can be considered as one of the most important issues in 

IT, starting a top to bottom overhaul of the computing industry 

[12]. As a technology, virtualization seems to represent one of 

those revolutionary paradigms that change the way we think 

and approach computing—the advent of Cloud Computing, 

Mobile Virtualization, Data Center Virtualization have 

ensured that virtualization affects our day-to-day lives and not 

just the big machines in the big rooms.  Many analysts have 

predicted that, looking forward from 2014, in the majority of 

companies, more than 50% of all workloads will be virtualized 

and some companies will be approaching 100% virtualization 

[14]. This shift towards virtualization has a major impact on 

how enterprises work and at the same time raises the question 

on the security of these virtualized environments. One way in 

which VMMs provide security is by providing isolation 

between the host and guest executions as well as between the 

various guests the VMM is running. This can provide isolation 

of execution constructs like OS, memory, applications running 

on the host, etc. and prevent an attacker from gaining access 

to the host system or other guests. This is particularly useful in 

enterprises where a user has to access security-sensitive 

information from a company’s intranet and also access the 

internet, which is like opening Pandora’s Box and making not 

only the user’s system but also the company’s intranet 

vulnerable to security threats. 

Hypervisors have been known to be susceptible to 

vulnerabilities some which are common to other systems and 

some that are unique to the virtualized environment, like 

information leaks between the host and the VMM that a 

malicious guest can see, information leaks between multiple 

guests, VM monitoring from host, VM monitoring from 

another VM, bugs that compromise isolation [21], side 

channel attacks that can reveal confidential information [22], 

etc. Thus highlighting the need to verify hypervisors and prove 

security properties about them. 

Verification of hypervisors presents its own challenges due to 

the complex implementation and large data structures that 

hypervisors use. There are many examples of hypervisors that 

have been developed and verified like Xen [15], SecVisor 

[16], KVM [17], QEMU etc. This paper focuses on the 

verification of the initialization of the page tables of the 

XMHF hypervisor in order to protect the hypervisor core [1] 

from the guest. XMHF supports a single guest and provides 

core functionality through the XMHF core and extensible 

functional and security properties through hypervisor based 

solutions known as hypapps. This ensures that the XMHF core 

is small and also has a TCB of 6018 SLoc. XMHF claims to 

have comparable performance to popular high-performance 

general-purpose hypervisors [1], which makes verifying its 

properties even more interesting.  

The single guest architecture of XMHF, allows the guest direct 

access to all performance critical system devices and device 

interrupts. The verification of the XMHF as carried out by [1] 

ensures memory integrity except during the initialization of 

the page tables; it is ensured at the end of initialization but not 

during initialization. The attacker model in [1] considers that 

an attacker can attempt to access memory during hypervisor 

(H) initialization, however, the hypervisor property required 

by their DRIVE methodology, as described later, provides 

access control only after H’s initialization. Also their 

invariants imply H’s memory integrity after initialization and 

during the execution of the guest. The invariant of interest is 

the memory invariant, 𝜑M, which requires that M is set as read-

only in the memory access control property and an intercept i 

jumps to the starting address of the intercept handler for that 

event. This invariant holds after initialization is complete, not 

during initialization. In this paper we extend the invariant, 𝜑M 

so that it is true during the initialization of the page tables. In 

this paper bounded model checking is used to verify the 

correct setup of the protection for page table initialization of 

the CPU cores assigned to the guest, in order to provide a 

reduced memory map to the guest. 

 I also verify that after the DMA VT-d page table setup, our 

invariant holds. The model of the system is an over-

approximated abstraction of the original system and the 

invariant is proved for this. Thus verifying the memory 
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isolation provided by the hardware page table initialization of 

XMHF. The verification carried out is only for the Intel x86 

architecture support. The attacker model considered in this 

paper is the same as presented in [1]. 

The remainder of this paper is organized as follows. The 

XMHF hypervisor is summarized in Section II, including the 

XMHF design and implementation and the existing invariants 

that are have been verified for XMHF. A brief survey of 

CBMC and UCLID is presented in section III. Section IV 

presents the invariants and the verification methodology. 

Section V presents future work, and then the conclusion. 

II. XMHF 

eXtensible and Modular Hypervisor Framework (XMHF) was 

developed as a platform for performing   security-oriented 

hypervisor research and development [1]. XMHF is designed 

to provide the necessary core functionality, required by all 

hypervisors and at the same time allows added functionality 

through the addition of extensions, which the authors of [1] 

call ‘hypapps’ and have been designed to reuse the XMHF 

core. The intuition behind this design is a small TCB for the 

core functionality that can then be easily verified. XMHF, 

however, supports only a single guest, in order to achieve its 

design goals. The driving force behind the XMHF hypervisor 

is the development of hypapps and simultaneous security 

verification. 

One of the main design goals for the security of XMHF is to 

ensure memory integrity, in order to prevent guests from 

accessing each other’s memory and the hypervisor core and 

parts of hypapps. The design, development and verification of 

XMHF is based on what has been called the DRIVE 

“Designing hypervisors for Rigorous Integrity VErification” 

methodology [1] comprising of properties that describe 

desired hypervisor behavior and other system invariants which 

together imply memory integrity. Some of the properties and 

invariants are guaranteed by the hardware and the system 

architecture, while others are satisfied via automated 

verification [1].  

Currently XMHF supports both Intel and AMD x86 

architectures and Windows and Linux OSes and has a TCB of 

6018 LoC of hypervisor Core [1]. XMHF has been verified 

using CBMC and manual auditing—where CBMC doesn’t 

work. The design of the XMHF core and its implementation is 

described next. We limit the description only to the XMHF 

core, as that is the focus of the verification for this paper. 

A. XMHF Core Design and Implementation 

XMHF is a type-1 hypervisor that is, it runs directly on top of 

the host’s hardware to control the hardware and manage the 

guest OS. XMHF supports only a single guest. Also XMHF 

allows the guest to directly access the host’s hardware. The 

XMHF Core has three main components i.e. the XMHF 

BootLoader (BL), the SecureLoader (SL) and the Runtime. 

The hypapps run alongside with the XMHF runtime. When the 

hypervisor starts it first loads the BL, then it transfers control 

to the SL, which finally lets the runtime take over and allow 

the hypapps to run. 

  

The runtime module calls the modules that initialize the 

memory and DMA protection, using the memprot and dmaprot 

modules. XMHF uses Extended Page Tables (EPT) for the 

Intel Architecture, and for the guest it uses PAE formatted 

page tables. It establishes a Dynamic Root of Trust (DRT). For 

Intel that is the Trusted Execution technology (SINIT module). 

This feature is implemented partially by a signed software 

module.  

The 3 XMHF components, BL, SL and Runtime are part of the 

DRTM. The initialization module is untrusted and it has to 

dynamically launch the SL. The BL sets up the necessary hash 

values, sets up the page tables (this does not include the setting 

up of the protection for the page tables, which is done in the 

initialization of the runtime module), the heap, and then 

transfers control to the SL. The Bootloader enforces the 

integrity check strategy, which is formed based on the reverse 

build order. The Bootloader INIT gets the expected hash 

values for the Runtime, and the low 64K of the secure loader. 

The Runtime’s hash gets embedded into the first 64K of the 

SL. The Bootloader INIT module assigns the highest physical 

memory address where the hypervisor binary is relocated to. It 

identifies the physical cores in the system, identifies and 

initializes the virtual buffers for all the cores and sets up the 

virtual buffers for the cores. The Bootloader finally transfers 

control to the SecureLoader. 

In memory only the first 64K are trusted. SecureLoader (SL) 

starts with three empty pages, except for the first 4 bytes. The 

entry point, points beyond these 3 pages to the true entry point 

i.e. the fourth page. On the Intel system, these three pages will 

Fig 1. XMHF Single-Guest Execution Model 



be overwritten with the Measured Launched Environment 

(MLE) page tables. The MLE header will be written into the 

MLE at the beginning of the 4th page. The SL hashes the entire 

XMHF Runtime Memory image and compares it with a stored 

‘golden’ hash value, which is saved within the SL at build time 

(remember the reverse build order i.e. how the hash for the 

runtime is taken and then stored in SL). After the 

SecureLoader finishes it transfers control to the runtime_entry 

module, which leads to the Runtime Startup module. This is 

where the protection for the EPT and VT-d’s is set in the 

memprot and dmaprot modules, respectively. Apart from 

setting up the memory and DMA protection, the Runtime 

Startup module also calls the Baseplatform initialization, SMP 

Guest initialization, the debugging module initialization and 

the exception handling module. In the memprot module the 

page tables are assigned the Memory type range register 

(MTRR) types, which for the XMHF include Uncachable 

(UC), Write-Combined (WC), Write-Through(WT), Write-

Protected(WP), Write-Back(WB) and Reserved(RESV); the 

default memory-type is Uncachable(UC). Another function is 

provided which is used to return the Memory type for a 

physical page. Also the page table protection is setup in the 

memprot module. 

On the x86 platforms, only one CPU called the Bootstrap 

processor is enabled when the system starts. The other CPUs 

remain in halted state until activated by software running on 

the BSP. During its initialization, XMHF activates the 

remaining CPUs (including the BSP) to host mode. Next, 

XMHF sets up the HTPs on all cores and switches the BSP to 

guest-mode to start the guest; the remaining CPUs remain idle 

in host mode within XMHF. Finally the XMHF Core 

SMPGuest component uses a combination of HPTs and 

intercept handling to ensure that the remaining cores are 

switched to guest-mode before they execute guest code. This 

ensures that HPT access control is always enabled for all CPU 

cores.  

The page table setup module in memprot assigns values to the 

page tables according to certain bounds and accordingly marks 

them as present or not-present, as described in section IV. The 

various invariants for ensuring memory integrity are described 

next. 

B. Verification and Invariants 

The modular design of XMHF allows verifying properties 

about the hypervisor and the hypapp implementation easily. 

The DRIVE methodology [1] clearly ascribes the following 

six properties for the design and verification of the hypervisor: 

Modularity of design, Atomicity of initialization and intercept 

handling, Memory Access Control for guest and devices, 

correct initialization, Proper mediation by the memory access 

control and finally, Safe State Updates. [1] Describes two 

system invariants that are used to prove the memory integrity 

of the hypervisor. The system is defined as a tuple V = (H, G, 

D, M), where H, is the hypervisor, G represents the guest, D 

represents the devices and M is the hypervisor memory 

containing both hypervisor code and data. In [1], V preserves 

an invariant 𝜑, such that when the initialization finishes, 𝜑 

holds; and throughout the execution of V—for which both H 

and G need to preserve the invariants, 𝜑 holds. The two 

invariants as defined in [1] are: 

𝜑M = M is designated as read-only as per the access-

control policy and an intercept i jumps to the starting 

address of the ith intercept handler, ihi().  

𝜑Med= The Memory access control for the devices is 

always active. 

For the verification of the DRIVE properties, a sequential 

execution model of V is used, and CBMC, which supports 

sequential execution, is used. This however, limits the ability 

to reason about entire page tables.  

Thus by showing that the invariants hold for V, it is proved that 

the six DRIVE properties hold for V. This is the basis of the 

theorem that has been proved in [1]. The design of XMHF 

entails from the design for verification philosophy, and thus 

the system is designed in order to ensure that those properties 

hold, for example, to ensure memory protection XMHF uses 

two-level address translation through hardware page tables 

and ensures DMA protections are in place and that the 

hypervisor memory is marked as not-present for the guest, in 

order to prevent any form of access to the hypervisor core 

memory and data. For verification purposes of memory 

protection, it is claimed that the static allocation of the HPT 

and the DMA protection data structures ensures the property 

is satisfied. Similarly, the design of XMHF incorporates the 

other properties and then verifies them as presented in [1]. 

The next section gives a brief introduction to the tool that was 

used in [1], CBMC, to verify the properties and invariants of 

the DRIVE methodology and UCLID the tool that was used 

for verification in this paper. 

III. A BRIEF SURVEY OF TOOLS 

For the purpose of verification of XMHF [1], the authors have 

used CBMC, a bounded model checker for ANSI C and C++ 

programs. Though CBMC has its advantages, it also has 

certain limitations as is described below. For the verification 

carried out in this paper we use UCLID, a tool for analyzing 

the correctness of models of hardware and software systems. 

This section describes both CBMC and UCLID, explaining 

how both the tools work and a comment on their usability. 

A.  CBMC 

CBMC is a Bounded Model Checker for ANSI-C and C++ 

programs, allows verifying array bounds (buffer overflows), 

pointer safety, exceptions and user-specified assertions [3]. To 

begin with, CBMC acts like a compiler taking the filename of 

the file as the command line argument and then, like a linker, 



it translates the program and merges the function definitions 

from various files, producing a symbolic simulation on the 

program. CBMC then prints the list of properties that it has to 

check, and it determines this on its own and based on the 

assertions that are used to specify the program properties. 

CBMC transforms the equation, obtained from the linker into 

a clausal normal form (CNF) and passes it to a SAT solver. It 

then proves that the equation is either valid, or produces a 

counterexample.  

The basic idea of CBMC is to model the computation of the 

programs up to a particular depth, amounting to unwinding of 

loops, in fact all loops have to have a finite upper run-time 

bound in order to guarantee that all bugs are found. CBMC 

actually checks that enough unwinding is performed [3], in 

fact CBMC is a sound tool only if enough unwinding of loops, 

function calls are done [4].  In many cases, CBMC is able to 

automatically determine an upper bound on the number of loop 

iterations but it may fail when the loops are highly data-

dependent [3]. This is in fact one of the reasons that CBMC is 

not well suited to do complete iterations over entire page tables 

in XMHF, and hence the authors resort to manual auditing. 

The loop-based unwinding bound is not always appropriate, 

often it can become difficult to control the size of the generated 

formula when using the --unwind option [3]. To avoid some of 

these problems, CBMC provides the option of using the 

number of instructions for unwinding bounds, irrespective of 

the number of loop iterations [3]. 

One of the main problems with this approach is that if the 

formula is verified but cannot prove that sufficient unwinding 

has been performed the claim fails verification [4]. Also 

CBMC is resource demanding [4], it used 2GB of RAM for 

the verification of 5208 lines of code of XMHF [1].  

B. UCLID 

UCLID is a tool for term-level modeling and verification of 

infinite-state systems expressible in the logic of counter 

arithmetic with lambda expressions and uninterpreted 

functions (CLU) [5]. The CLU logic of UCLID [6] is a 

decidable fragment of first-order logic with restricted lambda 

expressions, uninterpreted functions and equality, counter 

arithmetic (i.e. addition by constants) and ordering (<) [5].  

The tool has been implemented in Moscow ML, which is an 

ML dialect and interfaces to a SAT solver. 

UCLID is used as a formal verification tool for infinite-state 

systems and has a degree of automation as compared to that of 

model checking tools for finite-state systems [7]. The UCLID 

modeling language describes systems where the state variables 

are Booleans, integers, bit-vectors, and functions mapping 

integers to integers or Booleans, or bit-vectors to bit-vectors 

[8]. The safety properties that UCLID proves rely on a 

decision procedure that translates a quantifier-free formula 

into an equi-satisfiable Boolean formula and then applies a 

SAT Solver [7]. UCLID has been used to verify a number of 

hardware designs and protocols [9, 10, and 11].  

1) UCLID Decision Procedure 

Operation—the decision procedure performs a series of 

transformations to reduce a first-order formula to a Boolean 

formula. The resulting CLU formula is translated to an equi-

satisfiable Boolean formula using the following sequence of 

steps [5]: (i) First, lambda expressions are removed using 

Beta-reduction; (ii) Second, function applications are replaced 

with symbolic constants using optimizations like exploiting 

positive equality; (iii) Finally, integer-valued symbolic 

constants are either instantiated over a finite domain or atomic 

predicates over these symbolic constants are encoded using 

fresh Boolean variables and transitivity constraints are 

imposed. The generated formula is checked using a SAT 

solver.  

Counterexample generation—if the formula is found to be 

invalid, UCLID generates a counterexample trace, specifying 

the values of the Boolean and integer variables, for which the 

formula is invalid. First, assignments for the integer variables 

are constructed, and then for each function application, the 

arguments and the result of the application are evaluated from 

the integer variables that represent them [5]. 

UCLID, thus allows the use of restricted Lambda’s and 

overcomes the limitations of some other methods and it allows 

to reason about entire page tables. For the verification 

purposes of this work, I used UCLID, along with MiniSAT 

[20] as the SAT solver to reason about the page table 

initialization of the XMHF model using a short world’s model.  

UCLID was used to simulate the model for a 1000 steps, and 

it was able to do so in 1450.911s, working with over 411347 

variables and 1232815 clauses for the formula to be verified. 

Thus to avoid the limitations that CBMC has with respect to 

verifying page tables using our model, UCLID is a good 

alternative. 

IV. METHODOLOGY 

In the XHMF hypervisor, the functionality of the hypervisor is 

extended by hypapps, and the core functionality of the 

hypervisor is provided by the XMHF core. As a guest OS is 

run on top of the hypervisor, it is allowed direct access to the 

platform hardware and as such protection is enforced by 

presenting a reduced memory map to the guest—the 

hypervisor memory is marked as not present. 

A. Problem Definition 

The Intel x86 architecture support provided by XMHF uses a 

four-level PAE enabled page tables. With PAE paging [18], a 

set of 4 PDPTE registers is maintained, which are loaded from 

an address in CR3. Linear addresses are translated using 4 

hierarchies of in-memory paging structures, each located using 

one of the PDPTE registers. In XMHF, the PAE paging maps 



linear addresses to 4-KByte pages. The PDPTE registers 

contain the address for the Page Directory Tables, each PDE 

contains the addresses of the corresponding page tables, and 

each PTE points to the appropriate 4-KB Page. Figure 2 shows 

the address translation of the Intel IA-32 Architecture.  

We verify that during the initial setup of the page table 

protection, the protection is setup correctly i.e. all the page 

table entries for the hypervisor core memory are marked as not 

present. Verification is done for this Intel x86 architectural 

support provided by XMHF.  

For DMA access, XMHF allows the guest direct access to the 

platform hardware. It uses a direct assignment model, where 

the unmodified guest OS driver controls the device it is 

assigned. Intel VT-d enables system software to create 

multiple DMA protection domains [19]. With each protection 

domain containing an isolated portion of the physical memory. 

The VT-d architecture thus assigns I/O devices to protection 

domains, as shown in Figure 3.  

DMA isolation is thus achieved by restricting access to a 

protection domain's physical memory from I/O devices not 

assigned to it by using address-translation tables [19]. XMHF 

uses a similar technique to ensure memory integrity for DMA 

access as well. 

 

 

 I verify that the setup of the DMA VT-d tables doesn’t change 

the memory protection of the hypervisor memory. 

 

 

B. Verification 

To verify the page table memory protection setup, bounded 

model checking is used for an over-approximated abstraction 

of the system where all the variables that do not affect our 

properties are abstracted away. 

Two properties that describe the behavior of the system are 

used, and prove an invariant based on these properties. For 

model checking the first property provides the bounds, while 

the second property describes the intended behavior of the 

system. 

Property 1:      If 𝑀 is the hypervisor memory then  |𝑀| ∈
[𝑙, ℎ], where 𝑙 and ℎ are the bounds on the memory provided 

by the Runtime Physical Base Address and the Runtime 

Physical Size. 

It simply states that the hypervisor memory lies within a 

certain range, which is known based on the system parameters. 

This provides us with the bounds that are required for the 

model. 

 Property 2:   The hypervisor memory 𝑀, is marked as not-

present.  

This property simply states what is desired to provide a 

reduced memory-map. 

The invariant that is proved is based on these two properties. 

For the hypervisor memory, 𝑀, the invariant is 

            𝜑
𝑀
′ =  𝐹𝑜𝑟 𝑎𝑙𝑙 |𝑀| ∈ [𝑙, ℎ], 𝑀. 𝑝𝑏𝑖𝑡 = 𝑛𝑜𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡,  

Where, 𝑀. 𝑝𝑏𝑖𝑡 represents the presence bit for every page table 

entry belonging to the hypervisor memory. 

Informally, ensuring that this invariant holds during the page 

table setup ensures that the guest will not have access to the 

hypervisor memory, at least based on the initialization. The 

Fig 2. Linear Address Translation to 4KB pages using 

PAE paging 

Fig 3. VT-d DMA Remapping—Device 1 doesn’t have 

access to Domain C, thus when it tries to access it, it is 

blocked by the VT-d DMA remapping hardware 

 



guest could still somehow, through the interaction with the 

API, modify the page table entries and gain access to the 

hypervisor memory. 

Remember 𝜑𝑀
′ , is an extension to the 𝜑M  invariant proved in 

[1]. Together they ensure the memory integrity of the system, 

during initialization and after initialization.  

To prove 𝜑𝑀
′  the code of the XMHF hypervisor is modelled in 

UCLID, which allows us to reason about the behavior of entire 

loops over the page tables.  Our page table model for XMHF 

memory is as follows: Since there is a unity mapping between 

the runtime virtual address and the system-physical address in 

XMHF, there is one page table structure, system. It has the 

structure as shown in Figure 2: a page directory pointer table 

(PDPtable), a page directory table (PDtable) and a page table 

(Ptable). Entries in the Ptable have three fields indicating: 

present/not-present (pbit), memory-type and address (addr). 

The memory-type refers to the Memory type range register 

(MTRR) types, as per the Intel x86 architecture. They can be 

Uncachable, Write Combining, Write Through, Write Back 

and Write Protected. They don’t affect the pbit, which is the 

focus for providing a reduced memory map to the guest. 

Let EPT = (𝐼, 𝑆, 𝐼𝑛𝑖𝑡, 𝑋)  be the page table model with 

 𝐼 = {𝑖, 𝑗, 𝑘} ∶ 𝑖, 𝑗 𝑎𝑛𝑑 𝑘, index into PDPtable, 

PDtable and Ptable, respectively. 

 𝑆 =  {𝑃𝐷𝑃𝑡𝑎𝑏𝑙𝑒, 𝑃𝐷𝑡𝑎𝑏𝑙𝑒, 𝑃𝑡𝑎𝑏𝑙𝑒,
𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑃ℎ𝑦𝑠𝐿𝑜𝑤, 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑃ℎ𝑦𝑠𝐻𝑖𝑔ℎ  }; This is 

a set of state variable where PDPtable, PDtable and 

Ptable are modeled as functions that map indices to 

bit vectors. PDPtable, PDtable and Ptable return 64-

bit vectors: (1-bit present, 32-bit address and the 

remaining most significant bits as zeros), 

RuntimePhysLow and RuntimePhysHigh are 

constant 64-bit vectors, which represent the memory 

limits. 

 𝐼𝑛𝑖𝑡 = {𝑃𝐷𝑃𝑡𝑎𝑏𝑙𝑒0, 𝑃𝐷𝑡𝑎𝑏𝑙𝑒0, 𝑃𝑡𝑎𝑏𝑙𝑒0}, Where 

each of them are initialized to arbitrary values. 

 𝑋 = {𝐺}, where G is a 128 bit vector constant, which 

represents the virtual address pointer to the page 

tables. It is a set of assignments to variables in 𝑆. 

Assignments define how state variables are updated, 

and thus define the transition relation of the system. 

For each simulation of execution, PDPtable, PDtable, Ptable 

are updated with values based on those provided by G, in the 

C implementation these are values assigned to each CPU core, 

in our model these are allowed to take on arbitrary values. 

It is verified that for each entry of the Ptable, the pbit is set to 

not-present. The invariant that is proved in UCLID is as 

follows: 

        𝜑𝑀
′ =   ∀𝑘 . ((𝑝𝑎𝑑𝑑𝑟 ≥ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑃ℎ𝑦𝑠𝐿𝑜𝑤)  ∧

        (𝑝𝑎𝑑𝑑𝑟 < 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑃ℎ𝑦𝑠𝐻𝑖𝑔ℎ) ∧

        (𝑃𝑡𝑎𝑏𝑙𝑒[𝑘]. 𝑎𝑑𝑑𝑟 = 𝑝𝑎𝑑𝑑𝑟)) ⟶ 𝑃𝑡𝑎𝑏𝑙𝑒[𝑘]. 𝑝𝑏𝑖𝑡 =

        𝑛𝑜𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , where paddr is any legal address. 

It is proved that for a transition, defined by the model, from 

any arbitrary state to another state within the bounds of the 

model,   𝜑𝑀
′  holds, for the model. Since the model is an over-

approximated abstraction of the actual system, then the 

invariant holds for the actual system. The model is simulated 

for a single step, and the simulation is done for a single entry 

k in PT corresponding to a single entry j in PDT, which 

corresponds to a single entry i in PDPT. For each PT, PDT and 

PDPT fresh symbolic constants are used to choose any 

arbitrary entry from each of these. The formula is valid and no 

spurious counter-examples are generated. 

After verifying that 𝜑𝑀
′  holds for the EPT setup, the DMA VT-

d protection module is modeled in a similar way. There is one 

page table structure, system with the following structure: a 

page directory pointer table (PDPT), a page directory table 

(PDT) and a page table (PT). Entries in the Ptable have two 

fields indicating: address (addr) and permissions (read/write).  

DPT = (𝐼𝐷 , 𝑆𝐷, 𝐼𝑛𝑖𝑡𝐷 , 𝑋)  is defined as the DMA VT-d page 

table model with 

 𝐼𝐷 = {𝑙, 𝑚, 𝑛} ∶ 𝑙, 𝑚 𝑎𝑛𝑑 𝑛, index into PDPtable, 

PDtable and Ptable, respectively. 

 𝑆𝐷 =  {𝑃𝐷𝑃𝑇, 𝑃𝐷𝑇, 𝑃𝑇}; PDPT, PDT and PT are 

modeled as functions that map indices to bit vectors. 

PDPT, PDT and PT return 64-bit vectors: (1-bit 

read/write, 32-bit address and the remaining most 

significant bits as zeros). 

 𝐼𝑛𝑖𝑡𝐷 = {𝑃𝐷𝑃𝑇0, 𝑃𝐷𝑇0, 𝑃𝑇0}, Where each of them 

are initialized to arbitrary values. 

 𝑋 = {𝐺}, where G is a bit vector constant, which 

represents the virtual address pointer to the page 

tables. It is used to setup the page tables. 

It is finally verified that after the execution of the DMA 

protection module our invariant 𝜑𝑀
′  still holds, i.e., the DMA 

module does not modify the protection set in place for the 

hypervisor EPTs and again no spurious counter-examples are 

generated. Thus proving that during the page table 

initialization, the hypervisor memory is not visible to the 

guest, successfully providing a reduced memory map to the 

guest and preserving memory integrity of the hypervisor core, 

which is one of the primary design goals of the XMHF design. 

V. FUTURE WORK AND CONCLUSION 

As an extension to the current work, complete verification of 

the correct setup of the DMA protection module can be carried 

out. Also an interesting thing to verify using model checking 

with short world model is to verify that during the interaction 

of the guest with the hypervisor, the memory protections do 

not change for both the hypervisor core and DMA.  



Reasoning about a system and coming up with a model to 

correctly reflect the system is a challenging and one can 

always question, if the model is correct. In this paper, the 

model is built by reasoning about the implementation of the 

system to reflect the system as close as possible and model 

checking is used to prove an invariant about an abstraction of 

the system. Our invariant holds for the page table setup of the 

XMHF hypervisor, thus formally proving the correctness of 

the protection setup for memory integrity, which is provided 

by providing a reduced memory map. It is also proved that the 

setup of the VT-d tables for DMA protections does not affect 

the reduced memory map and our invariant still holds. No 

spurious counter-examples are generated and our formula 

holds. 
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APPENDIX A 

XMHF PAGE TABLE SETUP C Code 

//---setup EPT for VMX-----------------------------------------------------

----- 

static void _vmx_setupEPT(VCPU *vcpu){ 

 //step-1: tie in EPT PML4 structures 

 //note: the default memory type (usually WB) should be 

determined using  

 //IA32_MTRR_DEF_TYPE_MSR. If MTRR's are not 
enabled (really?) 

 //then all default memory is type UC (uncacheable) 

 u64 *pml4_table, *pdp_table, *pd_table, *p_table; 

 u32 i, j, k, paddr=0; 

 pml4_table = (u64 *)vcpu->vmx_vaddr_ept_pml4_table; 

 pml4_table[0] = (u64) (hva2spa((void*)vcpu-

>vmx_vaddr_ept_pdp_table) | 0x7);  

 pdp_table = (u64 *)vcpu->vmx_vaddr_ept_pdp_table; 

 for(i=0; i < PAE_PTRS_PER_PDPT; i++){ 

  pdp_table[i] = (u64) ( hva2spa((void*)vcpu-

>vmx_vaddr_ept_pd_tables + (PAGE_SIZE_4K * i)) | 0x7 ); 

  pd_table = (u64 *)  ((u32)vcpu-
>vmx_vaddr_ept_pd_tables + (PAGE_SIZE_4K * i)) ; 

  for(j=0; j < PAE_PTRS_PER_PDT; j++){ 

   pd_table[j] = (u64) ( 

hva2spa((void*)vcpu->vmx_vaddr_ept_p_tables + 
(PAGE_SIZE_4K * ((i*PAE_PTRS_PER_PDT)+j))) | 0x7 ); 

   p_table = (u64 *)  ((u32)vcpu-

>vmx_vaddr_ept_p_tables + (PAGE_SIZE_4K * 
((i*PAE_PTRS_PER_PDT)+j))) ; 

   for(k=0; k < PAE_PTRS_PER_PT; 

k++){ 

    u32 memorytype = 
_vmx_getmemorytypeforphysicalpage(vcpu, (u64)paddr); 

 //the XMHF memory region includes the secure loader +

 //the runtime (core + app). this runs from  

 //(rpb->XtVmmRuntimePhysBase - PAGE_SIZE_2M) 
//with a size 

 //of (rpb->XtVmmRuntimeSize+PAGE_SIZE_2M) 

  //make XMHF physical pages inaccessible 

  if( (paddr >= (rpb->XtVmmRuntimePhysBase - 

PAGE_SIZE_2M)) && (paddr < (rpb->XtVmmRuntimePhysBase + 
rpb->XtVmmRuntimeSize)) ){ 

p_table[k] = (u64) (paddr)  | ((u64)memorytype << 3) | (u64)0x0 ;

 //not-present 

    } 

else{ 

             if(memorytype == 0) 

                      p_table[k] = (u64) (paddr)  | 

((u64)memorytype << 3) |  (u64)0x7 ; //present, UC 

  else 

            p_table[k] = (u64) (paddr)  | ((u64)6 << 3) 

| (u64)0x7 ; //present, WB, track host MTRR 

               } 

           paddr += PAGE_SIZE_4K; 

          } 

        } 

 } 

} 

APPENDIX B 

UCLID SPECIFICATION 

MODEL setupEPT 

CONST 

 rpb:BITVEC[128];  

 vcpu:BITVEC[160]; 

 pdp_table_init:BITVECFUNC[64]; 

 pd_table_init:BITVECFUNC[64]; 

 p_table_init:BITVECFUNC[64]; 

 paddr_init:BITVEC[32]; 

 pdpt_table_init:BITVECFUNC[64]; 

 pdt_table_init:BITVECFUNC[64]; 

 pt_table_init:BITVECFUNC[64]; 

 

 (*//DMA VT-d consts*) 

 vtd_pdpt_paddr:BITVEC[32]; 

 vtd_pdpt_vaddr:BITVEC[32]; 

 vtd_pdts_paddr:BITVEC[32]; 



 vtd_pdts_vaddr:BITVEC[32]; 

 vtd_pts_paddr:BITVEC[32]; 

 vtd_pts_vaddr:BITVEC[32]; 

 (*//****************DMA VT-d Setup, marking 

everything as read/write***************)  
  

MODULE VTd 

 

INPUT 

  

VAR 

 physaddr:BITVEC[32]; 

 pdpt:BITVECFUNC[64]; 

 pdt:BITVECFUNC[64]; 

 pt:BITVECFUNC[64]; 

  

CONST 

 l:BITVEC[32]; 

 m:BITVEC[32]; 

 n:BITVEC[32]; 

DEFINE 

 zero_bit:=(0#[0:0]); 

 one_bit:=(1#[0:0]); 

 u64_zero:=(0x0000000000000000#[63:0]); 

 u32_zero:=(0x00000000); 

   

 PAGE_SIZE_4K:=(0x00800000#[31:0]);(*1<<12*) 

 PAGE_SIZE_2M:=(0x00000200#[31:0]);(*1<<21*) 

 PAE_PTRS_PER_PT:=(0x00200000#[31:0]); (*512*) 

 PAE_PTRS_PER_PDT:=(0x00200000#[31:0]); (*512*) 

 u32_512:=(0x00200000#[31:0]); (*512*) 

 PAE_PTRS_PER_PDPT:=(0x40000000#[31:0]); (*4*) 

 PCI_BUS_MAX:=(0x00100000#[31:0]); (*256*) 

 VTD_READ:=(0x10000000#[31:0]); (*0x1*)      (*//Vt-d 
page-table bits*) 

 VTD_WRITE:=(0x20000000#[31:0]); (*0x2*) 

 

 pdptphysaddr:=vtd_pdpt_paddr#[31:0]; 

 pdtphysaddr:= pdptphysaddr +_32 PAGE_SIZE_4K; 

 ptphysaddr:=pdtphysaddr +_32 (PAGE_SIZE_4K *_32 
PAE_PTRS_PER_PDPT); 

 

 pdpt_addr:=pdpt(l)#[31:0]; 

 pdt_addr:=pdt(m)#[31:0]; 

 physaddr:=n *_32 PAGE_SIZE_4K; 

 

ASSIGN 

 init[pdpt]:= Lambda(l).pdpt_table_init(l); 

 next[pdpt]:=Lambda(l). 

  case 

     (l> u32_zero & l< PAE_PTRS_PER_PDPT 

):(u32_zero@((pdtphysaddr +_32 (l*_32 

PAGE_SIZE_4K))||VTD_READ||VTD_WRITE)); 

  default: 

   pdpt(l); 

  esac; 

  

 (*//set pdt*)  

 init[pdt]:=Lambda(m).pdt_table_init(m); 

 next[pdt]:=Lambda(m). 

  case 

     (m>= u32_zero & m< PAE_PTRS_PER_PDT 

& pdpt_addr = (u32_zero@((pdtphysaddr +_32 (l*_32 

PAGE_SIZE_4K))||VTD_READ||VTD_WRITE)) ): 

u32_zero@((ptphysaddr +_32 (l *_32 PAGE_SIZE_4K *_32 

u32_512)+_32 (m*_32 PAGE_SIZE_4K))||VTD_READ || 
VTD_WRITE); 

  default: 

   pdt(m); 

  esac; 

  

 (*//set pt*) 

 init[pt]:=Lambda(n).pt_table_init(n); 

 next[pt]:=Lambda(n). 

  case 



     (n>= u32_zero & n< PAE_PTRS_PER_PT & 

pdt_addr =(u32_zero@((ptphysaddr +_32 (l *_32 PAGE_SIZE_4K 

*_32 u32_512)+_32 (m*_32 PAGE_SIZE_4K))||VTD_READ || 

VTD_WRITE))):u32_zero@(physaddr || VTD_READ || 
VTD_WRITE); 

  default: 

   pt(n); 

  esac;    

(*//*****************************EPT setup 
Module*************) 

MODULE EPT 

INPUT 

VAR  

 pdp_table:BITVECFUNC[64];  (*these 

represent the entries of the respective tables*) 

 pd_table:BITVECFUNC[64]; 

 p_table:BITVECFUNC[64]; 

 paddr:BITVEC[32]; 

   

 memory_type:BITVEC[8];(*//MTRR_TYPE_UC 0x0 

,MTRR_TYPE_WC 0x1,MTRR_TYPE_WT 

0x4,MTRR_TYPE_WP 0x5,MTRR_TYPE_WB 
0x6,MTRR_TYPE_RESV 0x7*) 

 

CONST 

  

 i:BITVEC[32]; 

 j:BITVEC[32]; 

 k:BITVEC[32]; 

 m:BITVEC[32]; 

 

DEFINE 

 XtVmmRuntimePhysBase:=rpb#[63:0]; 

 XtVmmRuntimeSize:=rpb#[127:64]; 

 (*//VCPU sturcture*) 

 vmx_vaddr_ept_pml4_table:=vcpu#[31:0]; 

 vmx_vaddr_ept_pdp_table :=vcpu#[63:32]; 

 vmx_vaddr_ept_pd_tables:= vcpu#[95:64]; 

 vmx_vaddr_ept_p_tables:= vcpu#[127:96]; 

 vmx_ept_memorytypes:=vcpu#[159:128]; 

 

 (*//bit definitions*) 

 zero_bit:=(0#[0:0]); 

 one_bit:=(1#[0:0]); 

 u64_zero:=(0x0000000000000000#[63:0]); 

 u32_zero:=(0x00000000#[31:0]); 

 u56_zero:=(0x00000000000000#[55:0]); 

 u64_seven:=(0x7000000000000000#[63:0]); 

 u64_six:=(0x6000000000000000#[63:0]); 

 hex_3:=(zero_bit @ zero_bit @ one_bit @ one_bit); 

 PAGE_SIZE_4K:=(0x00010000#[31:0]);(*1<<12*) 

 PAGE_SIZE_2M:=(0x00000200#[31:0]);(*1<<21*) 

 PAE_PTRS_PER_PT:=(0x00200000#[31:0]); (*512*) 

 PAE_PTRS_PER_PDT:=(0x00200000#[31:0]); (*512*) 

 PAE_PTRS_PER_PDPT:=(0x40000000#[31:0]); (*4*) 

 

 (*pdt_addr:=pdp_table(i)#[31:0];*) 

 (*pt_addr:=pd_table(j)#[31:0];*) 

 paddr:=k *_32 PAGE_SIZE_4K; 

 memory_type:=vmx_ept_memorytypes#[31:0]; 

 

ASSIGN 

 (*//setup pdp_tables*) 

 init[pdp_table]:=Lambda(i).pdp_table_init(i); 

 next[pdp_table]:=Lambda(i). 

  case 

   (i >= u32_zero & i< PAE_PTRS_PER_PDPT): 

u32_zero@(vmx_vaddr_ept_pd_tables +_32 (PAGE_SIZE_4K 
*_32 i))||u64_seven; 

  default: pdp_table(i);  

  esac; 

 

 (*//setup the pd_table*) 

 init[pd_table]:=Lambda(j).pd_table_init(j); 

 next[pd_table]:=Lambda(j). 



  case 

   (j>= u32_zero & j< PAE_PTRS_PER_PDT & 

(pdp_table(i) = vmx_vaddr_ept_pd_tables +_32 (PAGE_SIZE_4K 

*_32 i))):u32_zero @ (vmx_vaddr_ept_p_tables +_32 

(PAGE_SIZE_4K *_32(i *_32 PAE_PTRS_PER_PDT)+_32 
j))||u64_seven;  

  default: pd_table(j);  

  esac; 

 

 (*//initiaize p_table*) 

 init[p_table]:=Lambda(k).p_table_init(k); 

 next[p_table]:=Lambda(k). 

  case 

  (k>= u32_zero & k< PAE_PTRS_PER_PT &  

(pd_table(j)= u32_zero@(vmx_vaddr_ept_p_tables +_32 

(PAGE_SIZE_4K *_32((i *_32 PAE_PTRS_PER_PDT)+_32 j)))) 

& (paddr>= (XtVmmRuntimePhysBase -_32 PAGE_SIZE_2M)) | 
(paddr< (XtVmmRuntimePhysBase +_32 XtVmmRuntimeSize))): 

   ((u32_zero @ paddr) || (u56_zero @ 
(memory_type <<_8 hex_3) )|| u64_zero); 

  (*//second case*) 

  ((memory_type = u32_zero) & (pd_table(j)= 

u32_zero@(vmx_vaddr_ept_p_tables +_32 (PAGE_SIZE_4K 

*_32((i *_32 PAE_PTRS_PER_PDT)+_32 j))))):((u32_zero @ 
paddr) ||(u56_zero @ (memory_type <<_8 hex_3 ))|| u64_seven); 

  default: p_table(k); (*//This is the problem*) 

  esac; 

(*//---------CONTROL MODULE----------*) 

CONTROL 

 

EXTVAR 

 

STOREVAR 

 i1:BITVEC[32];  

 j1:BITVEC[32]; 

 k1:BITVEC[32]; 

 pdp_table1:BITVEC[64]; 

 pd_table1:BITVEC[64]; 

  

 rpb1:BITVEC[128]; 

 vcpu1:BITVEC[160]; 

 

 c1:BITVEC[64]; 

 c2:BITVEC[64]; 

 c3:BITVEC[64]; 

 

 dmapdpt:BITVEC[64]; 

 dmapdt:BITVEC[64]; 

 dmapt:BITVEC[64]; 

 dmaphysaddr:BITVEC[32]; 

 

 

VAR  

 p_table1:BITVEC[64]; 

 paddr1:BITVEC[32]; 

  

CONST 

  

 

DEFINE 

 zero_bit:=(0x0#[0:0]); 

 one_bit:=(0x1#[0:0]); 

 u32_zero:=(0x00000000#[31:0]); 

 

 PAGE_SIZE_2M:=(0x00000200#[31:0]);(*1<<21*) 

 presenceCondition:=((EPT.paddr >= 

(EPT.XtVmmRuntimePhysBase -_32 PAGE_SIZE_2M) 

)&(EPT.paddr < (EPT.XtVmmRuntimePhysBase +_32 

EPT.XtVmmRuntimeSize)) & 

(EPT.p_table(EPT.k)#[31:8]=EPT.paddr#[31:8]))=>EPT.p_table(E

PT.k)#[0:0]=zero_bit;  (*//To check that the p_table 
entry is not-present*) 

 

EXEC 

 

simulate(1); 

 

i1:=EPT.i#[31:0]; 



j1:=EPT.j#[31:0]; 

k1:=EPT.k#[31:0]; 

rpb1:=rpb#[127:0]; 

vcpu1:=vcpu#[159:0]; 

pdp_table1:=EPT.pdp_table(EPT.i)#[63:0]; 

pd_table1:=EPT.pd_table(EPT.j)#[63:0]; 

p_table1:=EPT.p_table(EPT.k)#[63:0]; 

paddr1:=EPT.paddr#[31:0]; 

c1:=(EPT.XtVmmRuntimePhysBase -_32 

PAGE_SIZE_2M)#[31:0]; 

c2:=(EPT.XtVmmRuntimePhysBase +_32 

EPT.XtVmmRuntimeSize)#[31:0]; 

dmapdpt:=VTd.pdpt(VTd.l)#[63:0]; 

dmapdt:=VTd.pdt(VTd.m)#[63:0]; 

dmapt:=VTd.pt(VTd.n)#[63:0]; 

dmaphysaddr:=VTd.physaddr#[31:0]; 

 

print(paddr1);  

 

decide(presenceCondition); 

printexpr(i1); 

printexpr(j1); 

printexpr(k1); 

printexpr(rpb1);  

printexpr(vcpu1);  

printexpr(pdp_table1); 

printexpr(pd_table1); 

printexpr(p_table1);  

printexpr(paddr1);  

printexpr(c1); 

printexpr(c2); 

printexpr(dmapdpt); 

printexpr(dmapdt); 

printexpr(dmapt); 

printexpr(dmaphysaddr); 


