
Abstract—Over the years virtualization and hypervisors have

gained immense popularity and at the same time there has been

an increased concern about their security and many exploits have

been demonstrated. Verification of hypervisors is challenging

and one of the reasons is a large TCB. XMHF is a hypervisor with

a small TCB of only 6018 LoC. In this paper we verify the page

table setup of the XMHF initialization, using model checking and

proving an invariant about the model. Thus ensuring that the

hypervisor is in fact successful in providing a reduced memory

map to the guest, in order to protect the XMHF Core from the

guest.

Index Terms—Hypervisor, Verification, XMHF, DRIVE,

Memory Integrity, Page Tables, DMA, VT-d, CBMC, UCLID,

Model Checking.

I. INTRODUCTION

Virtualization has been around for many years but has gained

more popularity for enterprise systems in the past few decades

and can be considered as one of the most important issues in

IT, starting a top to bottom overhaul of the computing industry

[12]. As a technology, virtualization seems to represent one of

those revolutionary paradigms that change the way we think

and approach computing—the advent of Cloud Computing,

Mobile Virtualization, Data Center Virtualization have

ensured that virtualization affects our day-to-day lives and not

just the big machines in the big rooms. Many analysts have

predicted that, looking forward from 2014, in the majority of

companies, more than 50% of all workloads will be virtualized

and some companies will be approaching 100% virtualization

[14]. This shift towards virtualization has a major impact on

how enterprises work and at the same time raises the question

on the security of these virtualized environments. One way in

which VMMs provide security is by providing isolation

between the host and guest executions as well as between the

various guests the VMM is running. This can provide isolation

of execution constructs like OS, memory, applications running

on the host, etc. and prevent an attacker from gaining access

to the host system or other guests. This is particularly useful in

enterprises where a user has to access security-sensitive

information from a company’s intranet and also access the

internet, which is like opening Pandora’s Box and making not

only the user’s system but also the company’s intranet

vulnerable to security threats.

Hypervisors have been known to be susceptible to

vulnerabilities some which are common to other systems and

some that are unique to the virtualized environment, like

information leaks between the host and the VMM that a

malicious guest can see, information leaks between multiple

guests, VM monitoring from host, VM monitoring from

another VM, bugs that compromise isolation [21], side

channel attacks that can reveal confidential information [22],

etc. Thus highlighting the need to verify hypervisors and prove

security properties about them.

Verification of hypervisors presents its own challenges due to

the complex implementation and large data structures that

hypervisors use. There are many examples of hypervisors that

have been developed and verified like Xen [15], SecVisor

[16], KVM [17], QEMU etc. This paper focuses on the

verification of the initialization of the page tables of the

XMHF hypervisor in order to protect the hypervisor core [1]

from the guest. XMHF supports a single guest and provides

core functionality through the XMHF core and extensible

functional and security properties through hypervisor based

solutions known as hypapps. This ensures that the XMHF core

is small and also has a TCB of 6018 SLoc. XMHF claims to

have comparable performance to popular high-performance

general-purpose hypervisors [1], which makes verifying its

properties even more interesting.

The single guest architecture of XMHF, allows the guest direct

access to all performance critical system devices and device

interrupts. The verification of the XMHF as carried out by [1]

ensures memory integrity except during the initialization of

the page tables; it is ensured at the end of initialization but not

during initialization. The attacker model in [1] considers that

an attacker can attempt to access memory during hypervisor

(H) initialization, however, the hypervisor property required

by their DRIVE methodology, as described later, provides

access control only after H’s initialization. Also their

invariants imply H’s memory integrity after initialization and

during the execution of the guest. The invariant of interest is

the memory invariant, 𝜑M, which requires that M is set as read-

only in the memory access control property and an intercept i

jumps to the starting address of the intercept handler for that

event. This invariant holds after initialization is complete, not

during initialization. In this paper we extend the invariant, 𝜑M

so that it is true during the initialization of the page tables. In

this paper bounded model checking is used to verify the

correct setup of the protection for page table initialization of

the CPU cores assigned to the guest, in order to provide a

reduced memory map to the guest.

 I also verify that after the DMA VT-d page table setup, our

invariant holds. The model of the system is an over-

approximated abstraction of the original system and the

invariant is proved for this. Thus verifying the memory

Verification of XMHF HPT Protection Setup
Sarah J. Andrabi

 University of North Carolina, Chapel Hill

isolation provided by the hardware page table initialization of

XMHF. The verification carried out is only for the Intel x86

architecture support. The attacker model considered in this

paper is the same as presented in [1].

The remainder of this paper is organized as follows. The

XMHF hypervisor is summarized in Section II, including the

XMHF design and implementation and the existing invariants

that are have been verified for XMHF. A brief survey of

CBMC and UCLID is presented in section III. Section IV

presents the invariants and the verification methodology.

Section V presents future work, and then the conclusion.

II. XMHF

eXtensible and Modular Hypervisor Framework (XMHF) was

developed as a platform for performing security-oriented

hypervisor research and development [1]. XMHF is designed

to provide the necessary core functionality, required by all

hypervisors and at the same time allows added functionality

through the addition of extensions, which the authors of [1]

call ‘hypapps’ and have been designed to reuse the XMHF

core. The intuition behind this design is a small TCB for the

core functionality that can then be easily verified. XMHF,

however, supports only a single guest, in order to achieve its

design goals. The driving force behind the XMHF hypervisor

is the development of hypapps and simultaneous security

verification.

One of the main design goals for the security of XMHF is to

ensure memory integrity, in order to prevent guests from

accessing each other’s memory and the hypervisor core and

parts of hypapps. The design, development and verification of

XMHF is based on what has been called the DRIVE

“Designing hypervisors for Rigorous Integrity VErification”

methodology [1] comprising of properties that describe

desired hypervisor behavior and other system invariants which

together imply memory integrity. Some of the properties and

invariants are guaranteed by the hardware and the system

architecture, while others are satisfied via automated

verification [1].

Currently XMHF supports both Intel and AMD x86

architectures and Windows and Linux OSes and has a TCB of

6018 LoC of hypervisor Core [1]. XMHF has been verified

using CBMC and manual auditing—where CBMC doesn’t

work. The design of the XMHF core and its implementation is

described next. We limit the description only to the XMHF

core, as that is the focus of the verification for this paper.

A. XMHF Core Design and Implementation

XMHF is a type-1 hypervisor that is, it runs directly on top of

the host’s hardware to control the hardware and manage the

guest OS. XMHF supports only a single guest. Also XMHF

allows the guest to directly access the host’s hardware. The

XMHF Core has three main components i.e. the XMHF

BootLoader (BL), the SecureLoader (SL) and the Runtime.

The hypapps run alongside with the XMHF runtime. When the

hypervisor starts it first loads the BL, then it transfers control

to the SL, which finally lets the runtime take over and allow

the hypapps to run.

The runtime module calls the modules that initialize the

memory and DMA protection, using the memprot and dmaprot

modules. XMHF uses Extended Page Tables (EPT) for the

Intel Architecture, and for the guest it uses PAE formatted

page tables. It establishes a Dynamic Root of Trust (DRT). For

Intel that is the Trusted Execution technology (SINIT module).

This feature is implemented partially by a signed software

module.

The 3 XMHF components, BL, SL and Runtime are part of the

DRTM. The initialization module is untrusted and it has to

dynamically launch the SL. The BL sets up the necessary hash

values, sets up the page tables (this does not include the setting

up of the protection for the page tables, which is done in the

initialization of the runtime module), the heap, and then

transfers control to the SL. The Bootloader enforces the

integrity check strategy, which is formed based on the reverse

build order. The Bootloader INIT gets the expected hash

values for the Runtime, and the low 64K of the secure loader.

The Runtime’s hash gets embedded into the first 64K of the

SL. The Bootloader INIT module assigns the highest physical

memory address where the hypervisor binary is relocated to. It

identifies the physical cores in the system, identifies and

initializes the virtual buffers for all the cores and sets up the

virtual buffers for the cores. The Bootloader finally transfers

control to the SecureLoader.

In memory only the first 64K are trusted. SecureLoader (SL)

starts with three empty pages, except for the first 4 bytes. The

entry point, points beyond these 3 pages to the true entry point

i.e. the fourth page. On the Intel system, these three pages will

Fig 1. XMHF Single-Guest Execution Model

be overwritten with the Measured Launched Environment

(MLE) page tables. The MLE header will be written into the

MLE at the beginning of the 4th page. The SL hashes the entire

XMHF Runtime Memory image and compares it with a stored

‘golden’ hash value, which is saved within the SL at build time

(remember the reverse build order i.e. how the hash for the

runtime is taken and then stored in SL). After the

SecureLoader finishes it transfers control to the runtime_entry

module, which leads to the Runtime Startup module. This is

where the protection for the EPT and VT-d’s is set in the

memprot and dmaprot modules, respectively. Apart from

setting up the memory and DMA protection, the Runtime

Startup module also calls the Baseplatform initialization, SMP

Guest initialization, the debugging module initialization and

the exception handling module. In the memprot module the

page tables are assigned the Memory type range register

(MTRR) types, which for the XMHF include Uncachable

(UC), Write-Combined (WC), Write-Through(WT), Write-

Protected(WP), Write-Back(WB) and Reserved(RESV); the

default memory-type is Uncachable(UC). Another function is

provided which is used to return the Memory type for a

physical page. Also the page table protection is setup in the

memprot module.

On the x86 platforms, only one CPU called the Bootstrap

processor is enabled when the system starts. The other CPUs

remain in halted state until activated by software running on

the BSP. During its initialization, XMHF activates the

remaining CPUs (including the BSP) to host mode. Next,

XMHF sets up the HTPs on all cores and switches the BSP to

guest-mode to start the guest; the remaining CPUs remain idle

in host mode within XMHF. Finally the XMHF Core

SMPGuest component uses a combination of HPTs and

intercept handling to ensure that the remaining cores are

switched to guest-mode before they execute guest code. This

ensures that HPT access control is always enabled for all CPU

cores.

The page table setup module in memprot assigns values to the

page tables according to certain bounds and accordingly marks

them as present or not-present, as described in section IV. The

various invariants for ensuring memory integrity are described

next.

B. Verification and Invariants

The modular design of XMHF allows verifying properties

about the hypervisor and the hypapp implementation easily.

The DRIVE methodology [1] clearly ascribes the following

six properties for the design and verification of the hypervisor:

Modularity of design, Atomicity of initialization and intercept

handling, Memory Access Control for guest and devices,

correct initialization, Proper mediation by the memory access

control and finally, Safe State Updates. [1] Describes two

system invariants that are used to prove the memory integrity

of the hypervisor. The system is defined as a tuple V = (H, G,

D, M), where H, is the hypervisor, G represents the guest, D

represents the devices and M is the hypervisor memory

containing both hypervisor code and data. In [1], V preserves

an invariant 𝜑, such that when the initialization finishes, 𝜑

holds; and throughout the execution of V—for which both H

and G need to preserve the invariants, 𝜑 holds. The two

invariants as defined in [1] are:

𝜑M = M is designated as read-only as per the access-

control policy and an intercept i jumps to the starting

address of the ith intercept handler, ihi().

𝜑Med= The Memory access control for the devices is

always active.

For the verification of the DRIVE properties, a sequential

execution model of V is used, and CBMC, which supports

sequential execution, is used. This however, limits the ability

to reason about entire page tables.

Thus by showing that the invariants hold for V, it is proved that

the six DRIVE properties hold for V. This is the basis of the

theorem that has been proved in [1]. The design of XMHF

entails from the design for verification philosophy, and thus

the system is designed in order to ensure that those properties

hold, for example, to ensure memory protection XMHF uses

two-level address translation through hardware page tables

and ensures DMA protections are in place and that the

hypervisor memory is marked as not-present for the guest, in

order to prevent any form of access to the hypervisor core

memory and data. For verification purposes of memory

protection, it is claimed that the static allocation of the HPT

and the DMA protection data structures ensures the property

is satisfied. Similarly, the design of XMHF incorporates the

other properties and then verifies them as presented in [1].

The next section gives a brief introduction to the tool that was

used in [1], CBMC, to verify the properties and invariants of

the DRIVE methodology and UCLID the tool that was used

for verification in this paper.

III. A BRIEF SURVEY OF TOOLS

For the purpose of verification of XMHF [1], the authors have

used CBMC, a bounded model checker for ANSI C and C++

programs. Though CBMC has its advantages, it also has

certain limitations as is described below. For the verification

carried out in this paper we use UCLID, a tool for analyzing

the correctness of models of hardware and software systems.

This section describes both CBMC and UCLID, explaining

how both the tools work and a comment on their usability.

A. CBMC

CBMC is a Bounded Model Checker for ANSI-C and C++

programs, allows verifying array bounds (buffer overflows),

pointer safety, exceptions and user-specified assertions [3]. To

begin with, CBMC acts like a compiler taking the filename of

the file as the command line argument and then, like a linker,

it translates the program and merges the function definitions

from various files, producing a symbolic simulation on the

program. CBMC then prints the list of properties that it has to

check, and it determines this on its own and based on the

assertions that are used to specify the program properties.

CBMC transforms the equation, obtained from the linker into

a clausal normal form (CNF) and passes it to a SAT solver. It

then proves that the equation is either valid, or produces a

counterexample.

The basic idea of CBMC is to model the computation of the

programs up to a particular depth, amounting to unwinding of

loops, in fact all loops have to have a finite upper run-time

bound in order to guarantee that all bugs are found. CBMC

actually checks that enough unwinding is performed [3], in

fact CBMC is a sound tool only if enough unwinding of loops,

function calls are done [4]. In many cases, CBMC is able to

automatically determine an upper bound on the number of loop

iterations but it may fail when the loops are highly data-

dependent [3]. This is in fact one of the reasons that CBMC is

not well suited to do complete iterations over entire page tables

in XMHF, and hence the authors resort to manual auditing.

The loop-based unwinding bound is not always appropriate,

often it can become difficult to control the size of the generated

formula when using the --unwind option [3]. To avoid some of

these problems, CBMC provides the option of using the

number of instructions for unwinding bounds, irrespective of

the number of loop iterations [3].

One of the main problems with this approach is that if the

formula is verified but cannot prove that sufficient unwinding

has been performed the claim fails verification [4]. Also

CBMC is resource demanding [4], it used 2GB of RAM for

the verification of 5208 lines of code of XMHF [1].

B. UCLID

UCLID is a tool for term-level modeling and verification of

infinite-state systems expressible in the logic of counter

arithmetic with lambda expressions and uninterpreted

functions (CLU) [5]. The CLU logic of UCLID [6] is a

decidable fragment of first-order logic with restricted lambda

expressions, uninterpreted functions and equality, counter

arithmetic (i.e. addition by constants) and ordering (<) [5].

The tool has been implemented in Moscow ML, which is an

ML dialect and interfaces to a SAT solver.

UCLID is used as a formal verification tool for infinite-state

systems and has a degree of automation as compared to that of

model checking tools for finite-state systems [7]. The UCLID

modeling language describes systems where the state variables

are Booleans, integers, bit-vectors, and functions mapping

integers to integers or Booleans, or bit-vectors to bit-vectors

[8]. The safety properties that UCLID proves rely on a

decision procedure that translates a quantifier-free formula

into an equi-satisfiable Boolean formula and then applies a

SAT Solver [7]. UCLID has been used to verify a number of

hardware designs and protocols [9, 10, and 11].

1) UCLID Decision Procedure

Operation—the decision procedure performs a series of

transformations to reduce a first-order formula to a Boolean

formula. The resulting CLU formula is translated to an equi-

satisfiable Boolean formula using the following sequence of

steps [5]: (i) First, lambda expressions are removed using

Beta-reduction; (ii) Second, function applications are replaced

with symbolic constants using optimizations like exploiting

positive equality; (iii) Finally, integer-valued symbolic

constants are either instantiated over a finite domain or atomic

predicates over these symbolic constants are encoded using

fresh Boolean variables and transitivity constraints are

imposed. The generated formula is checked using a SAT

solver.

Counterexample generation—if the formula is found to be

invalid, UCLID generates a counterexample trace, specifying

the values of the Boolean and integer variables, for which the

formula is invalid. First, assignments for the integer variables

are constructed, and then for each function application, the

arguments and the result of the application are evaluated from

the integer variables that represent them [5].

UCLID, thus allows the use of restricted Lambda’s and

overcomes the limitations of some other methods and it allows

to reason about entire page tables. For the verification

purposes of this work, I used UCLID, along with MiniSAT

[20] as the SAT solver to reason about the page table

initialization of the XMHF model using a short world’s model.

UCLID was used to simulate the model for a 1000 steps, and

it was able to do so in 1450.911s, working with over 411347

variables and 1232815 clauses for the formula to be verified.

Thus to avoid the limitations that CBMC has with respect to

verifying page tables using our model, UCLID is a good

alternative.

IV. METHODOLOGY

In the XHMF hypervisor, the functionality of the hypervisor is

extended by hypapps, and the core functionality of the

hypervisor is provided by the XMHF core. As a guest OS is

run on top of the hypervisor, it is allowed direct access to the

platform hardware and as such protection is enforced by

presenting a reduced memory map to the guest—the

hypervisor memory is marked as not present.

A. Problem Definition

The Intel x86 architecture support provided by XMHF uses a

four-level PAE enabled page tables. With PAE paging [18], a

set of 4 PDPTE registers is maintained, which are loaded from

an address in CR3. Linear addresses are translated using 4

hierarchies of in-memory paging structures, each located using

one of the PDPTE registers. In XMHF, the PAE paging maps

linear addresses to 4-KByte pages. The PDPTE registers

contain the address for the Page Directory Tables, each PDE

contains the addresses of the corresponding page tables, and

each PTE points to the appropriate 4-KB Page. Figure 2 shows

the address translation of the Intel IA-32 Architecture.

We verify that during the initial setup of the page table

protection, the protection is setup correctly i.e. all the page

table entries for the hypervisor core memory are marked as not

present. Verification is done for this Intel x86 architectural

support provided by XMHF.

For DMA access, XMHF allows the guest direct access to the

platform hardware. It uses a direct assignment model, where

the unmodified guest OS driver controls the device it is

assigned. Intel VT-d enables system software to create

multiple DMA protection domains [19]. With each protection

domain containing an isolated portion of the physical memory.

The VT-d architecture thus assigns I/O devices to protection

domains, as shown in Figure 3.

DMA isolation is thus achieved by restricting access to a

protection domain's physical memory from I/O devices not

assigned to it by using address-translation tables [19]. XMHF

uses a similar technique to ensure memory integrity for DMA

access as well.

 I verify that the setup of the DMA VT-d tables doesn’t change

the memory protection of the hypervisor memory.

B. Verification

To verify the page table memory protection setup, bounded

model checking is used for an over-approximated abstraction

of the system where all the variables that do not affect our

properties are abstracted away.

Two properties that describe the behavior of the system are

used, and prove an invariant based on these properties. For

model checking the first property provides the bounds, while

the second property describes the intended behavior of the

system.

Property 1: If 𝑀 is the hypervisor memory then |𝑀| ∈
[𝑙, ℎ], where 𝑙 and ℎ are the bounds on the memory provided

by the Runtime Physical Base Address and the Runtime

Physical Size.

It simply states that the hypervisor memory lies within a

certain range, which is known based on the system parameters.

This provides us with the bounds that are required for the

model.

 Property 2: The hypervisor memory 𝑀, is marked as not-

present.

This property simply states what is desired to provide a

reduced memory-map.

The invariant that is proved is based on these two properties.

For the hypervisor memory, 𝑀, the invariant is

 𝜑
𝑀
′ = 𝐹𝑜𝑟 𝑎𝑙𝑙 |𝑀| ∈ [𝑙, ℎ], 𝑀. 𝑝𝑏𝑖𝑡 = 𝑛𝑜𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡,

Where, 𝑀. 𝑝𝑏𝑖𝑡 represents the presence bit for every page table

entry belonging to the hypervisor memory.

Informally, ensuring that this invariant holds during the page

table setup ensures that the guest will not have access to the

hypervisor memory, at least based on the initialization. The

Fig 2. Linear Address Translation to 4KB pages using

PAE paging

Fig 3. VT-d DMA Remapping—Device 1 doesn’t have

access to Domain C, thus when it tries to access it, it is

blocked by the VT-d DMA remapping hardware

guest could still somehow, through the interaction with the

API, modify the page table entries and gain access to the

hypervisor memory.

Remember 𝜑𝑀
′ , is an extension to the 𝜑M invariant proved in

[1]. Together they ensure the memory integrity of the system,

during initialization and after initialization.

To prove 𝜑𝑀
′ the code of the XMHF hypervisor is modelled in

UCLID, which allows us to reason about the behavior of entire

loops over the page tables. Our page table model for XMHF

memory is as follows: Since there is a unity mapping between

the runtime virtual address and the system-physical address in

XMHF, there is one page table structure, system. It has the

structure as shown in Figure 2: a page directory pointer table

(PDPtable), a page directory table (PDtable) and a page table

(Ptable). Entries in the Ptable have three fields indicating:

present/not-present (pbit), memory-type and address (addr).

The memory-type refers to the Memory type range register

(MTRR) types, as per the Intel x86 architecture. They can be

Uncachable, Write Combining, Write Through, Write Back

and Write Protected. They don’t affect the pbit, which is the

focus for providing a reduced memory map to the guest.

Let EPT = (𝐼, 𝑆, 𝐼𝑛𝑖𝑡, 𝑋) be the page table model with

 𝐼 = {𝑖, 𝑗, 𝑘} ∶ 𝑖, 𝑗 𝑎𝑛𝑑 𝑘, index into PDPtable,

PDtable and Ptable, respectively.

 𝑆 = {𝑃𝐷𝑃𝑡𝑎𝑏𝑙𝑒, 𝑃𝐷𝑡𝑎𝑏𝑙𝑒, 𝑃𝑡𝑎𝑏𝑙𝑒,
𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑃ℎ𝑦𝑠𝐿𝑜𝑤, 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑃ℎ𝑦𝑠𝐻𝑖𝑔ℎ }; This is

a set of state variable where PDPtable, PDtable and

Ptable are modeled as functions that map indices to

bit vectors. PDPtable, PDtable and Ptable return 64-

bit vectors: (1-bit present, 32-bit address and the

remaining most significant bits as zeros),

RuntimePhysLow and RuntimePhysHigh are

constant 64-bit vectors, which represent the memory

limits.

 𝐼𝑛𝑖𝑡 = {𝑃𝐷𝑃𝑡𝑎𝑏𝑙𝑒0, 𝑃𝐷𝑡𝑎𝑏𝑙𝑒0, 𝑃𝑡𝑎𝑏𝑙𝑒0}, Where

each of them are initialized to arbitrary values.

 𝑋 = {𝐺}, where G is a 128 bit vector constant, which

represents the virtual address pointer to the page

tables. It is a set of assignments to variables in 𝑆.

Assignments define how state variables are updated,

and thus define the transition relation of the system.

For each simulation of execution, PDPtable, PDtable, Ptable

are updated with values based on those provided by G, in the

C implementation these are values assigned to each CPU core,

in our model these are allowed to take on arbitrary values.

It is verified that for each entry of the Ptable, the pbit is set to

not-present. The invariant that is proved in UCLID is as

follows:

 𝜑𝑀
′ = ∀𝑘 . ((𝑝𝑎𝑑𝑑𝑟 ≥ 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑃ℎ𝑦𝑠𝐿𝑜𝑤) ∧

 (𝑝𝑎𝑑𝑑𝑟 < 𝑅𝑢𝑛𝑡𝑖𝑚𝑒𝑃ℎ𝑦𝑠𝐻𝑖𝑔ℎ) ∧

 (𝑃𝑡𝑎𝑏𝑙𝑒[𝑘]. 𝑎𝑑𝑑𝑟 = 𝑝𝑎𝑑𝑑𝑟)) ⟶ 𝑃𝑡𝑎𝑏𝑙𝑒[𝑘]. 𝑝𝑏𝑖𝑡 =

 𝑛𝑜𝑡𝑝𝑟𝑒𝑠𝑒𝑛𝑡 , where paddr is any legal address.

It is proved that for a transition, defined by the model, from

any arbitrary state to another state within the bounds of the

model, 𝜑𝑀
′ holds, for the model. Since the model is an over-

approximated abstraction of the actual system, then the

invariant holds for the actual system. The model is simulated

for a single step, and the simulation is done for a single entry

k in PT corresponding to a single entry j in PDT, which

corresponds to a single entry i in PDPT. For each PT, PDT and

PDPT fresh symbolic constants are used to choose any

arbitrary entry from each of these. The formula is valid and no

spurious counter-examples are generated.

After verifying that 𝜑𝑀
′ holds for the EPT setup, the DMA VT-

d protection module is modeled in a similar way. There is one

page table structure, system with the following structure: a

page directory pointer table (PDPT), a page directory table

(PDT) and a page table (PT). Entries in the Ptable have two

fields indicating: address (addr) and permissions (read/write).

DPT = (𝐼𝐷 , 𝑆𝐷, 𝐼𝑛𝑖𝑡𝐷 , 𝑋) is defined as the DMA VT-d page

table model with

 𝐼𝐷 = {𝑙, 𝑚, 𝑛} ∶ 𝑙, 𝑚 𝑎𝑛𝑑 𝑛, index into PDPtable,

PDtable and Ptable, respectively.

 𝑆𝐷 = {𝑃𝐷𝑃𝑇, 𝑃𝐷𝑇, 𝑃𝑇}; PDPT, PDT and PT are

modeled as functions that map indices to bit vectors.

PDPT, PDT and PT return 64-bit vectors: (1-bit

read/write, 32-bit address and the remaining most

significant bits as zeros).

 𝐼𝑛𝑖𝑡𝐷 = {𝑃𝐷𝑃𝑇0, 𝑃𝐷𝑇0, 𝑃𝑇0}, Where each of them

are initialized to arbitrary values.

 𝑋 = {𝐺}, where G is a bit vector constant, which

represents the virtual address pointer to the page

tables. It is used to setup the page tables.

It is finally verified that after the execution of the DMA

protection module our invariant 𝜑𝑀
′ still holds, i.e., the DMA

module does not modify the protection set in place for the

hypervisor EPTs and again no spurious counter-examples are

generated. Thus proving that during the page table

initialization, the hypervisor memory is not visible to the

guest, successfully providing a reduced memory map to the

guest and preserving memory integrity of the hypervisor core,

which is one of the primary design goals of the XMHF design.

V. FUTURE WORK AND CONCLUSION

As an extension to the current work, complete verification of

the correct setup of the DMA protection module can be carried

out. Also an interesting thing to verify using model checking

with short world model is to verify that during the interaction

of the guest with the hypervisor, the memory protections do

not change for both the hypervisor core and DMA.

Reasoning about a system and coming up with a model to

correctly reflect the system is a challenging and one can

always question, if the model is correct. In this paper, the

model is built by reasoning about the implementation of the

system to reflect the system as close as possible and model

checking is used to prove an invariant about an abstraction of

the system. Our invariant holds for the page table setup of the

XMHF hypervisor, thus formally proving the correctness of

the protection setup for memory integrity, which is provided

by providing a reduced memory map. It is also proved that the

setup of the VT-d tables for DMA protections does not affect

the reduced memory map and our invariant still holds. No

spurious counter-examples are generated and our formula

holds.

REFERENCES

[1] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan

McCune, James Newsome and Anupam Datta, “Designing,

Implementation and Verification of an eXtensible and

Modular Hypervisor Framework”, in Proc. IEEE Symposium

on Security and Privacy 2013.

[2] Intel: “Advantages of using virtualization technology in the

enterprise”, http://software.intel.com/en-us/articles/the-

advantages-of-using-virtualization-technology-in-the-

enterprise

[3] CBMC, http://www.cprover.org/cbmc/

[4] Kostyantyn Vorobyov, Padmanabhan Krishnan.

“Comparing Model Checking and Static Program Analysis: A

Case Study in Error Detection Approaches”, In Proceedings

of SSV, 2010.

[5] Shuvendu K. Lahiri and Sanjit A. Seshia, “The UCLID

Decision Procedure”, In Computer-Aided Verification (CAV

’04), LNCS 3114. pp 475–478, 2004.

[6] R. E. Bryant, S. K. Lahiri, and S. A. Seshia, “Modeling and

verifying systems using a logic of counter arithmetic with

lambda expressions and uninterpreted functions”. In

Computer-Aided Verification (CAV '02), LNCS 2404, pages

78-92, 2002.

[7] Randal E. Bryant, “Formal Verification of Infinite State

Systems Using Boolean Methods”, Lecture Notes in Computer

Science Volume 4098, pp 1-3, 2006.

[8] User’s Guide to UCLID Version 3.0, 2008

[9] A.M. Gharehbaghi and M. Fujita, “Formal verification

guided automatic design error diagnosis and correction of

complex processors”, In Proc. Int. High Level Design

Validation and Test Workshop (HLDVT 11), IEEE Press, pp.

121-127, Nov. 2011.

[10] Bijan Alizadeh, Amir Masoud Gharehbaghi, and

Masahiro Fujit, “Pipelined Microprocessors Optimization and

Debugging”, In ARC 2010, LNCS 5992, pp. 435–444, 2010.

[11] R. Sinha, C. Sturton, P. Maniatis, S. A. Seshia, and D.

Wagner. “Verification with Small and Short Worlds”. In

FMCAD, 2012.

[12] Mike Dahlin, Ryan Johnson, Robert B. Krug, Michael

McCoyd, William Young, “Toward the Verification of a

simple hypervisor”, EPTCS 70, pp 28-45. 2011.

 [13] William Hau, Rudolph Araujo, MacAfee, “Virtualization

and Risk – Key Security Considerations for your Enterprise

Architecture”, http://www.mcafee.com/us/resources/white-

papers/foundstone/wp-virtualization-and-risk.pdf

[14] Doug Hazelman, Enterprise Systems, “The Impact of

Virtualization's Rise in 2013”,

http://esj.com/Articles/2012/12/12/Virtualization-Rise-

2013.aspx

[15] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.

Ho, R. Neugebauer, I. Pratt, and A. Warfield. “Xen and the art

of virtualization”. In SOSP ’03: Proceedings of the 19th ACM

symposium on Operating systems principles, 2003.

[16] A. Seshadri, M. Luk, N. Qu, and A. Perrig. “SecVisor: A

tiny hypervisor to provide lifetime kernel code integrity for

commodity OSes”. In 16th SOSP, pages 335–350, Oct 2007.

[17] A. Kivity. “KVM: the Linux virtual machine monitor”. In

OLS '07: The 2007 Ottawa Linux Symposium, pages 225-230,

July 2007.

[18] Intel® 64 and IA-32 Architectures Software Developer’s

Manual, Volume 3A, May 2011.

[19] TW Burger, Intel® Virtualization Technology for

Directed I/O (VT-d): Enhancing Intel platforms for efficient

virtualization of I/O devices, May 2012.

[20] MiniSAT, http://minisat.se

[21] T. Garfinkel and M. Rosenblum. “When Virtual is Harder

than Real: Security Challenges in Virtual Machine Bases

computing Environments”. In Proc. of the 10th Workshop on

Hot Topics in Operating Systems, Jun. 2005.

[22] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.

“Cross-VM side channels and their use to extract private

keys”. In G. Danezis and V. Gligor, editors, Proceedings of

CCS 2012. ACM Press, Oct. 2012.

APPENDIX A

XMHF PAGE TABLE SETUP C Code

//---setup EPT for VMX---

static void _vmx_setupEPT(VCPU *vcpu){

 //step-1: tie in EPT PML4 structures

 //note: the default memory type (usually WB) should be

determined using

 //IA32_MTRR_DEF_TYPE_MSR. If MTRR's are not
enabled (really?)

 //then all default memory is type UC (uncacheable)

 u64 *pml4_table, *pdp_table, *pd_table, *p_table;

 u32 i, j, k, paddr=0;

 pml4_table = (u64 *)vcpu->vmx_vaddr_ept_pml4_table;

 pml4_table[0] = (u64) (hva2spa((void*)vcpu-

>vmx_vaddr_ept_pdp_table) | 0x7);

 pdp_table = (u64 *)vcpu->vmx_vaddr_ept_pdp_table;

 for(i=0; i < PAE_PTRS_PER_PDPT; i++){

 pdp_table[i] = (u64) (hva2spa((void*)vcpu-

>vmx_vaddr_ept_pd_tables + (PAGE_SIZE_4K * i)) | 0x7);

 pd_table = (u64 *) ((u32)vcpu-
>vmx_vaddr_ept_pd_tables + (PAGE_SIZE_4K * i)) ;

 for(j=0; j < PAE_PTRS_PER_PDT; j++){

 pd_table[j] = (u64) (

hva2spa((void*)vcpu->vmx_vaddr_ept_p_tables +
(PAGE_SIZE_4K * ((i*PAE_PTRS_PER_PDT)+j))) | 0x7);

 p_table = (u64 *) ((u32)vcpu-

>vmx_vaddr_ept_p_tables + (PAGE_SIZE_4K *
((i*PAE_PTRS_PER_PDT)+j))) ;

 for(k=0; k < PAE_PTRS_PER_PT;

k++){

 u32 memorytype =
_vmx_getmemorytypeforphysicalpage(vcpu, (u64)paddr);

 //the XMHF memory region includes the secure loader +

 //the runtime (core + app). this runs from

 //(rpb->XtVmmRuntimePhysBase - PAGE_SIZE_2M)
//with a size

 //of (rpb->XtVmmRuntimeSize+PAGE_SIZE_2M)

 //make XMHF physical pages inaccessible

 if((paddr >= (rpb->XtVmmRuntimePhysBase -

PAGE_SIZE_2M)) && (paddr < (rpb->XtVmmRuntimePhysBase +
rpb->XtVmmRuntimeSize))){

p_table[k] = (u64) (paddr) | ((u64)memorytype << 3) | (u64)0x0 ;

 //not-present

 }

else{

 if(memorytype == 0)

 p_table[k] = (u64) (paddr) |

((u64)memorytype << 3) | (u64)0x7 ; //present, UC

 else

 p_table[k] = (u64) (paddr) | ((u64)6 << 3)

| (u64)0x7 ; //present, WB, track host MTRR

 }

 paddr += PAGE_SIZE_4K;

 }

 }

 }

}

APPENDIX B

UCLID SPECIFICATION

MODEL setupEPT

CONST

 rpb:BITVEC[128];

 vcpu:BITVEC[160];

 pdp_table_init:BITVECFUNC[64];

 pd_table_init:BITVECFUNC[64];

 p_table_init:BITVECFUNC[64];

 paddr_init:BITVEC[32];

 pdpt_table_init:BITVECFUNC[64];

 pdt_table_init:BITVECFUNC[64];

 pt_table_init:BITVECFUNC[64];

 (*//DMA VT-d consts*)

 vtd_pdpt_paddr:BITVEC[32];

 vtd_pdpt_vaddr:BITVEC[32];

 vtd_pdts_paddr:BITVEC[32];

 vtd_pdts_vaddr:BITVEC[32];

 vtd_pts_paddr:BITVEC[32];

 vtd_pts_vaddr:BITVEC[32];

 (*//****************DMA VT-d Setup, marking

everything as read/write***************)

MODULE VTd

INPUT

VAR

 physaddr:BITVEC[32];

 pdpt:BITVECFUNC[64];

 pdt:BITVECFUNC[64];

 pt:BITVECFUNC[64];

CONST

 l:BITVEC[32];

 m:BITVEC[32];

 n:BITVEC[32];

DEFINE

 zero_bit:=(0#[0:0]);

 one_bit:=(1#[0:0]);

 u64_zero:=(0x0000000000000000#[63:0]);

 u32_zero:=(0x00000000);

 PAGE_SIZE_4K:=(0x00800000#[31:0]);(*1<<12*)

 PAGE_SIZE_2M:=(0x00000200#[31:0]);(*1<<21*)

 PAE_PTRS_PER_PT:=(0x00200000#[31:0]); (*512*)

 PAE_PTRS_PER_PDT:=(0x00200000#[31:0]); (*512*)

 u32_512:=(0x00200000#[31:0]); (*512*)

 PAE_PTRS_PER_PDPT:=(0x40000000#[31:0]); (*4*)

 PCI_BUS_MAX:=(0x00100000#[31:0]); (*256*)

 VTD_READ:=(0x10000000#[31:0]); (*0x1*) (*//Vt-d
page-table bits*)

 VTD_WRITE:=(0x20000000#[31:0]); (*0x2*)

 pdptphysaddr:=vtd_pdpt_paddr#[31:0];

 pdtphysaddr:= pdptphysaddr +_32 PAGE_SIZE_4K;

 ptphysaddr:=pdtphysaddr +_32 (PAGE_SIZE_4K *_32
PAE_PTRS_PER_PDPT);

 pdpt_addr:=pdpt(l)#[31:0];

 pdt_addr:=pdt(m)#[31:0];

 physaddr:=n *_32 PAGE_SIZE_4K;

ASSIGN

 init[pdpt]:= Lambda(l).pdpt_table_init(l);

 next[pdpt]:=Lambda(l).

 case

 (l> u32_zero & l< PAE_PTRS_PER_PDPT

):(u32_zero@((pdtphysaddr +_32 (l*_32

PAGE_SIZE_4K))||VTD_READ||VTD_WRITE));

 default:

 pdpt(l);

 esac;

 (*//set pdt*)

 init[pdt]:=Lambda(m).pdt_table_init(m);

 next[pdt]:=Lambda(m).

 case

 (m>= u32_zero & m< PAE_PTRS_PER_PDT

& pdpt_addr = (u32_zero@((pdtphysaddr +_32 (l*_32

PAGE_SIZE_4K))||VTD_READ||VTD_WRITE))):

u32_zero@((ptphysaddr +_32 (l *_32 PAGE_SIZE_4K *_32

u32_512)+_32 (m*_32 PAGE_SIZE_4K))||VTD_READ ||
VTD_WRITE);

 default:

 pdt(m);

 esac;

 (*//set pt*)

 init[pt]:=Lambda(n).pt_table_init(n);

 next[pt]:=Lambda(n).

 case

 (n>= u32_zero & n< PAE_PTRS_PER_PT &

pdt_addr =(u32_zero@((ptphysaddr +_32 (l *_32 PAGE_SIZE_4K

*_32 u32_512)+_32 (m*_32 PAGE_SIZE_4K))||VTD_READ ||

VTD_WRITE))):u32_zero@(physaddr || VTD_READ ||
VTD_WRITE);

 default:

 pt(n);

 esac;

(*//*****************************EPT setup
Module*************)

MODULE EPT

INPUT

VAR

 pdp_table:BITVECFUNC[64]; (*these

represent the entries of the respective tables*)

 pd_table:BITVECFUNC[64];

 p_table:BITVECFUNC[64];

 paddr:BITVEC[32];

 memory_type:BITVEC[8];(*//MTRR_TYPE_UC 0x0

,MTRR_TYPE_WC 0x1,MTRR_TYPE_WT

0x4,MTRR_TYPE_WP 0x5,MTRR_TYPE_WB
0x6,MTRR_TYPE_RESV 0x7*)

CONST

 i:BITVEC[32];

 j:BITVEC[32];

 k:BITVEC[32];

 m:BITVEC[32];

DEFINE

 XtVmmRuntimePhysBase:=rpb#[63:0];

 XtVmmRuntimeSize:=rpb#[127:64];

 (*//VCPU sturcture*)

 vmx_vaddr_ept_pml4_table:=vcpu#[31:0];

 vmx_vaddr_ept_pdp_table :=vcpu#[63:32];

 vmx_vaddr_ept_pd_tables:= vcpu#[95:64];

 vmx_vaddr_ept_p_tables:= vcpu#[127:96];

 vmx_ept_memorytypes:=vcpu#[159:128];

 (*//bit definitions*)

 zero_bit:=(0#[0:0]);

 one_bit:=(1#[0:0]);

 u64_zero:=(0x0000000000000000#[63:0]);

 u32_zero:=(0x00000000#[31:0]);

 u56_zero:=(0x00000000000000#[55:0]);

 u64_seven:=(0x7000000000000000#[63:0]);

 u64_six:=(0x6000000000000000#[63:0]);

 hex_3:=(zero_bit @ zero_bit @ one_bit @ one_bit);

 PAGE_SIZE_4K:=(0x00010000#[31:0]);(*1<<12*)

 PAGE_SIZE_2M:=(0x00000200#[31:0]);(*1<<21*)

 PAE_PTRS_PER_PT:=(0x00200000#[31:0]); (*512*)

 PAE_PTRS_PER_PDT:=(0x00200000#[31:0]); (*512*)

 PAE_PTRS_PER_PDPT:=(0x40000000#[31:0]); (*4*)

 (*pdt_addr:=pdp_table(i)#[31:0];*)

 (*pt_addr:=pd_table(j)#[31:0];*)

 paddr:=k *_32 PAGE_SIZE_4K;

 memory_type:=vmx_ept_memorytypes#[31:0];

ASSIGN

 (*//setup pdp_tables*)

 init[pdp_table]:=Lambda(i).pdp_table_init(i);

 next[pdp_table]:=Lambda(i).

 case

 (i >= u32_zero & i< PAE_PTRS_PER_PDPT):

u32_zero@(vmx_vaddr_ept_pd_tables +_32 (PAGE_SIZE_4K
*_32 i))||u64_seven;

 default: pdp_table(i);

 esac;

 (*//setup the pd_table*)

 init[pd_table]:=Lambda(j).pd_table_init(j);

 next[pd_table]:=Lambda(j).

 case

 (j>= u32_zero & j< PAE_PTRS_PER_PDT &

(pdp_table(i) = vmx_vaddr_ept_pd_tables +_32 (PAGE_SIZE_4K

*_32 i))):u32_zero @ (vmx_vaddr_ept_p_tables +_32

(PAGE_SIZE_4K *_32(i *_32 PAE_PTRS_PER_PDT)+_32
j))||u64_seven;

 default: pd_table(j);

 esac;

 (*//initiaize p_table*)

 init[p_table]:=Lambda(k).p_table_init(k);

 next[p_table]:=Lambda(k).

 case

 (k>= u32_zero & k< PAE_PTRS_PER_PT &

(pd_table(j)= u32_zero@(vmx_vaddr_ept_p_tables +_32

(PAGE_SIZE_4K *_32((i *_32 PAE_PTRS_PER_PDT)+_32 j))))

& (paddr>= (XtVmmRuntimePhysBase -_32 PAGE_SIZE_2M)) |
(paddr< (XtVmmRuntimePhysBase +_32 XtVmmRuntimeSize))):

 ((u32_zero @ paddr) || (u56_zero @
(memory_type <<_8 hex_3))|| u64_zero);

 (*//second case*)

 ((memory_type = u32_zero) & (pd_table(j)=

u32_zero@(vmx_vaddr_ept_p_tables +_32 (PAGE_SIZE_4K

*_32((i *_32 PAE_PTRS_PER_PDT)+_32 j))))):((u32_zero @
paddr) ||(u56_zero @ (memory_type <<_8 hex_3))|| u64_seven);

 default: p_table(k); (*//This is the problem*)

 esac;

(*//---------CONTROL MODULE----------*)

CONTROL

EXTVAR

STOREVAR

 i1:BITVEC[32];

 j1:BITVEC[32];

 k1:BITVEC[32];

 pdp_table1:BITVEC[64];

 pd_table1:BITVEC[64];

 rpb1:BITVEC[128];

 vcpu1:BITVEC[160];

 c1:BITVEC[64];

 c2:BITVEC[64];

 c3:BITVEC[64];

 dmapdpt:BITVEC[64];

 dmapdt:BITVEC[64];

 dmapt:BITVEC[64];

 dmaphysaddr:BITVEC[32];

VAR

 p_table1:BITVEC[64];

 paddr1:BITVEC[32];

CONST

DEFINE

 zero_bit:=(0x0#[0:0]);

 one_bit:=(0x1#[0:0]);

 u32_zero:=(0x00000000#[31:0]);

 PAGE_SIZE_2M:=(0x00000200#[31:0]);(*1<<21*)

 presenceCondition:=((EPT.paddr >=

(EPT.XtVmmRuntimePhysBase -_32 PAGE_SIZE_2M)

)&(EPT.paddr < (EPT.XtVmmRuntimePhysBase +_32

EPT.XtVmmRuntimeSize)) &

(EPT.p_table(EPT.k)#[31:8]=EPT.paddr#[31:8]))=>EPT.p_table(E

PT.k)#[0:0]=zero_bit; (*//To check that the p_table
entry is not-present*)

EXEC

simulate(1);

i1:=EPT.i#[31:0];

j1:=EPT.j#[31:0];

k1:=EPT.k#[31:0];

rpb1:=rpb#[127:0];

vcpu1:=vcpu#[159:0];

pdp_table1:=EPT.pdp_table(EPT.i)#[63:0];

pd_table1:=EPT.pd_table(EPT.j)#[63:0];

p_table1:=EPT.p_table(EPT.k)#[63:0];

paddr1:=EPT.paddr#[31:0];

c1:=(EPT.XtVmmRuntimePhysBase -_32

PAGE_SIZE_2M)#[31:0];

c2:=(EPT.XtVmmRuntimePhysBase +_32

EPT.XtVmmRuntimeSize)#[31:0];

dmapdpt:=VTd.pdpt(VTd.l)#[63:0];

dmapdt:=VTd.pdt(VTd.m)#[63:0];

dmapt:=VTd.pt(VTd.n)#[63:0];

dmaphysaddr:=VTd.physaddr#[31:0];

print(paddr1);

decide(presenceCondition);

printexpr(i1);

printexpr(j1);

printexpr(k1);

printexpr(rpb1);

printexpr(vcpu1);

printexpr(pdp_table1);

printexpr(pd_table1);

printexpr(p_table1);

printexpr(paddr1);

printexpr(c1);

printexpr(c2);

printexpr(dmapdpt);

printexpr(dmapdt);

printexpr(dmapt);

printexpr(dmaphysaddr);

