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ABSTRACT
We introduce a one-shot learning algorithm for resource-
constrained systems based on a sparse model. One-shot learn-
ing is a learning model trying to build a knowledge system
by learning only one or a few examples. In order to achieve
the goal of one-shot learning, the conventional sparse model
is revised in our algorithm. With the sparse model revised for
one-shot learning, it becomes able to build a reliable knowl-
edge by leveraging a dictionary as a prior knowledge. It
helps one-shot learning algorithm create more general and
bias-free knowledge by letting it overcome the weakness of
a small number of training examples. In order to make one-
shot learning run on resource-constrained systems, a new
learning algorithm of a sparse model which only requires
one dictionary is devised. In this way, the traditional sparse
model which requires heavy computation for a number of
dictionaries becomes available to such systems. Our imple-
mentation of human video activity classification for resource-
constrained system shows that one-shot learning on resource-
constrained systems is feasible with the proposed algorithm.

1. INTRODUCTION
Neural Networks (NN) and its extended models such

as Deep Neural Networks (DNN) have shown great learn-
ing ability. However, they require a large number of
training data and computational power to achieve a de-
cent performance.

For example, in order to train a NN for image clas-
sification, the number of training examples per class
should be larger than the number of neurons in the or-
der of magnitude in practice. As the number of neurons
and depth of layers increases, the more training exam-
ples become necessary. If the number of training data
is not enough, the NN will suffer the problem of over-
fitting and the performance of generalization will also
decrease.

Besides the need for a large number of training exam-
ples, training (learning) of NN is usually performed by
high-performance GPUs since they have a large number
of neurons and parameters to be computed.

Unfortunately, the two major requirements of NN
mentioned above are usually not available in resource-

constrained systems such as embedded or IoT (the In-
ternet of things) systems. Thus, NN has not been di-
rectly applied to such systems so far despite their pow-
erful learning ability.

However, an ability to learn is becoming a crucial
part of such systems. Thus, there have been numerous
approaches to fit NN to such devices. Quantization of
trained model is one of the popular approaches [1]. Even
though it is able to fit a large model into a resource-
constrained device, it just borrows a NN model that is
pre-trained on different machines. Thus, the device is
only able to make inference from the borrowed model
but unable to learn new knowledge by itself.

Hence, an alternative learning model that fits into
such systems which are not based on the traditional NN
model needs to be researched in order for such systems
to have an ability of learning by itself.

In order to do that, we propose one-shot learning al-
gorithm based on sparse model for resource-constrained
systems which replaces the traditional NN model. The
main goal of this algorithm is to give such devices an
ability of learning that is able to build its own knowledge
by learning only one or few training examples. It does
not require heavy parallel-computation that is usually
supported by GPUs in NN model.

One-shot learning tries to mimic human’s learning
process that requires only one or few examples to learn.
For example, a person can recognize a new object after
looking at only a few images of it. It is possible because
the person is able to extract a necessary information
or feature from the object and abstract them based on
the person’s own prior knowledge. On contrary, NN
requires a large number of images to learn it.

One-shot learning is a perfect concept for resource-
constrained systems since 1) they cannot perform heavy
computation and 2) they also cannot access and han-
dle a large number of training data due to its limited
resource.

With one-shot learning, fast and accurate learning re-
quiring only a small number of training examples is able
to happen inside a resource-constrained device. Such
a device trains its own model without receiving help
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from any others. It only uses its own computation unit
and does not require any additional computing hard-
ware such as GPUs or TPU (Tensor Processor Unit).

We choose sparse model as a base for our one-shot
learning algorithm since richness of sparse model pro-
vides useful prior knowledge that a small number of
one-shot learning data is unable to. Specifically, we use
a dictionary of a sparse model as a prior knowledge
that helps it build a reliable knowledge system. With
a dictionary, one-shot learning algorithm becomes able
to learn knowledge from a single or few example.

Also, compact representation of data is possible with
a sparse model since it represents data in a sparse man-
ner using a dictionary. This is a huge benefit to resource-
constrained systems.

Another reason for choosing sparse model is that it is
proven effective in many areas such as Computer Vision
and Image Processing. In particular, it shows one of
the best performances for image de-noising and activity
recognition.

We set the following design goals for our one-shot
learning algorithm and address them one by one in the
following sections.

• Take only one or few training examples per class
and make a reliable learning performance.

• Build its own knowledge system without receiving
any help from other systems.

• Run the proposed algorithm on a resource-constrained
system.

2. RELATED WORK
The idea of one-shot learning has been explored since

the advent of a learning algorithm. However, it recently
receives the spotlight again and many researchers are
trying to achieve true one-shot learning. Several ap-
proaches that have been proposed so far are listed as in
the following.

A pre-trained deep neural network is used as a base
of one-shot learning [2]. Recently, Google DeepMind [3]
employed ideas from metric learning based on deep neu-
ral features and from recent advances that augment neu-
ral networks with external memories. Their framework
learns a network that maps a small labeled support set
and an unlabelled example to its label, obviating the
need for fine-tuning to adapt to new class types. tasks.
Another work based on neural network is [4]. It ex-
plored a method for learning siamese neural networks
which employ a unique structure to naturally rank sim-
ilarity between inputs. Once a network has been tuned,
it can capitalize on powerful discriminative features to
generalize the predictive power of the network not just
to new data, but to entirely new classes from unknown
distributions.

Meanwhile, one-shot learning method based on the
statistical and probabilistic model is also made. A vari-
ational Bayesian framework [5] was proposed to repre-
sent object categories by probabilistic models. Prior
knowledge is represented as a probability density func-
tion on the parameters of models. The posterior model
for an object category is obtained by updating the prior
in the light of one or more observations. [6] proposed
methodology that is a variant of principal component
regression (PCR). They show that classical PCR esti-
mators may be inconsistent in the specified setting, un-
less they are multiplied by a scalar c > 1; that is, unless
the classical estimator is expanded.

Generally, learning models are conducted on machines
with high computational power and they are not suit-
able for resource-constrained systems such as embedded
or mobile devices. However, some mobile devices are
able to run a neural network such as convolutional neu-
ral network [7] by decreasing the size of the network.
Also, by using quantization technique which reduces
the precision or size of weight parameters of the neu-
ral network, it becomes able to run a pre-trained neural
network [8, 9] on an embedded device.

Even though they are able to run a pre-trained model,
they still need to borrow already-trained models that
are trained on powerful computing machines with a
large number of data. Thus, such embedded or mo-
bile devices cannot learn or train by itself. They only
able to utilize a pre-trained model.

The relationship between one-shot learning and sparse
model was explored before. [10] proposed a model of
fast learning that exploits the properties of sparse rep-
resentations. It tried to build a hardware model based
on the fact that humans rapidly and reliably learn many
kinds of regularities and generalizations.

3. RESEARCH CHALLENGES
One-shot learning based on sparse model poses some

research challenges that should be explored.
First, a clear definition and goal of one-shot learning

have to be defined. Ideally, one-shot learning aims to
take only one or few training examples to learn.

For example, it should be able to classify an apple
and orange by learning only a few images of them. This
simple learning process brings some advantages over the
traditional NN such as no need of large training data,
easiness to train, lightweightness, and swiftness.

Those advantages are achieved by carefully choosing
training examples. They severely determine the perfor-
mance of one-shot learning. What examples should be
taken and learned? What type of training examples or
learning can be said to be one-shot learning? How many
are training examples needed?

Right choice and construction of prior knowledge is
another critical issue. Since a small number of examples
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can hardly provide a reliable statistic of a learning ob-
ject, it needs help from prior knowledge. Thefore, the
choice of prior knowledge seriously affects the result and
performance of one-shot learning.

Second, the challenge on how to learn training exam-
ples and how to relate them to sparse model has to be
researched. It raises broads questions such as why we
choose sparse model and how it is combined into a uni-
fied one-shot learning algorithm. In order to do that,
the characteristics of sparse model that can be lever-
aged for one-shot learning should be first understood.
In more detail, we aim to achieve the richness of sparse
model and the lightness of one-shot learning at the same
time.

Even though we consider a dictionary of sparse model
as our prior knowledge, there is no clear relationship
between one-shot learning and sparse model. In order
to make it clear and fit sparse model into a united one-
shot learning algorithm, the traditional sparse model
should be revised or modified.

After being successfully revised, the number of train-
ing examples that is able to build a reliable sparse model
needs to be discovered. We also need to find the related
parameters of the model such as a minimum size of a
dictionary.

Third, our one-shot learning algorithm should be ap-
plied to resource-constrained systems. How can the al-
gorithm fit into a system with a limited computing re-
source such as memory and computational power?

Specifically, a large size of the dictionary should be
stored in a limited memory space of such devices. It
might be done by reducing the size of a dictionary or
improving the density of information that it is able to
hold.

Also, heavy computations that need to be performed
for sparse model such as sparse coding, dictionary learn-
ing should be able to run on them by reducing a compu-
tational complexity of the algorithm. To overcome these
limitations, sparse model including one-shot learning al-
gorithm needs to be revised or modified even more to
fit it into resource-constrained systems.

Even though we might be able to reduce the number
of training examples by successfully applying one-shot
learning algorithm to resource-constrained systems, sparse
model can be still computationally expensive to them.
Then, what is the lower bound of required resource for
one-shot learning? The minimum requirement of com-
puting resource will determine which system is able to
run one-shot learning algorithm and which is not.

Lastly, actual applications should be implemented based
on our algorithm. We need to find useful examples that
are feasible to resource-constrained systems. An appli-
cation requiring to learn a huge number of categories
with only a few available training examples per cate-
gory can be a potential target of one-shot learning.

Several potential applications would be the following.
1) A mobile phone facing toward in a car. It only takes
a photo or records a video when some user-defined con-
texts or activities happen (car accident, broken road
sign or road signal) by learning only a few examples
of them. 2) Home security cameras can alert when
some dangerous situation happens or a suspicious per-
son is detected. Both are also pre-defined by a user and
learned with only a few examples.

The research challenges we investigate in this paper
are the followings:

• Definition and goal of one-shot learning: What is
one-shot learning and how it should learn? How
many and what kind of training examples to be
learned?

• Sparse model revised: How the traditional sparse
model should be utilized for one-shot learning?
How is it revised or modified for it?

• Applicability of one-shot learning to resource-constrained
systems: Given a limited computation ability and
memory space, how to make one-shot learning al-
gorithm run in such environment?

• Implementation: As an example of one-shot learn-
ing, a human video activity recognition system is
implemented for a resource-constrained system.

4. ONE-SHOT LEARNING
In this section, the definition and goal of one-shot

learning especially for classification problem are defined
and its connection to sparse model is introduced. Also,
the design philosophy of one-shot learning for resource-
constrained systems are discussed.

4.1 Definition
We define one-shot learning as a learning algorithm or

system that is able to learn only a few examples which
are much smaller than the number of examples that
the traditional learning models such as NN require and
show an equivalent or similar performance as them.

It should be able to learn or train by using only small
number examples. From those few examples, it also
should be able to create or build its own knowledge
that can be utilized for generalization.

Specifically for classification, one-shot learning takes
n� m number of training examples for one class, where
n is the required number of training examples per class
and m is the required number of training examples per
class for other learning algorithms such as NN.

For example, Omniglot character dataset which is the
encyclopedia of writing systems and languages can be
learned with one-shot learning approach. It is one of
the best datasets for one-shot learning since it has a
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relatively small number of training examples per class
compared to the number of the class itself.

An ideal one-shot learning algorithm only requires
one example per class which is n = 1. However, at
present, it is almost impossible to achieve a reasonable
performance by only learning one example since it can
provide only a limited and biased information that is
unable to represent and cover all the other example of
the same class.

Therefore, many one-shot learning algorithms try to
solve this problem by taking more than one training
example. Usually, they take tens of examples per class
which is n 6= 1� m. Note that n is still much less than
m.

Unfortunately, this approach does not address the
problem entirely. In order to overcome the problem,
a one-shot learning algorithm requires another piece
called prior knowledge.

4.2 Prior Knowledge
One-shot learning needs a help from some other knowl-

edge in order to overcome its shallow understanding
provided by a small number of training examples.

As mentioned above, an assistant called prior knowl-
edge is able to fill the gap. Here, prior knowledge is
defined as any existing knowledge that can provide ba-
sic knowledge or understanding of target data or class
that one-shot learning examples cannot construct or un-
derstand due to its limited or biased information.

With help of prior knowledge which originates from
either the learning process of one-shot learning itself
or other learning systems such as trained NN or other
knowledge systems, it creates its own unique knowledge
that can be applied to one-shot learning examples such
their features or abstraction of them.

As mentioned above, prior knowledge can be con-
structed by our own one-shot learning system or can
be borrowed from a totally different system. Specif-
ically, in our model, we use sparse model as a prior
knowledge. In particular, we focus on a dictionary of
sparse model and leverage it as prior knowledge for our
one-shot learning algorithm.

Sparse model is chosen as a base for one-shot learning
algorithm for the following reasons:

• Richness of sparse model especially dictionary is
expected to fill the gap between shallow knowl-
edge of one-shot learning example and statistical
correctness such as variation.

• Compact representation of data is possible with
sparse model since it represents data with a sparse
coding based on a dictionary. This is a huge ben-
efit to resource-constrained systems.

• It has been proven effective in many areas such as
Computer Vision and Image Processing. Specif-

ically, it shows one of the best performances for
image-related tasks.

Since the conventional sparse model which is widely
used is not designed for one-shot learning, it needs to be
modified for our purpose. The next section describes in
more detail on how it is changed and the consequential
variation is applied to one-shot learning.

4.3 Design goals for Resource-Constrained Sys-
tem

Before exploring sparse model in detail, we need to
clarify design goals of one-shot learning for resource-
constrained systems.

One-shot learning is an ideal model for resource-constrained
systems. No need for a large number of training exam-
ples and its relatively simple learning process makes it
an alternative learning model for them.

However, such systems’ limited resource such as com-
putational power and memory space still prevents one-
shot learning based on sparse model which will be de-
scribed in the following sections from being directly ap-
plied to them.

Specifically, the following constraints need to be con-
sidered for resource-constrained systems.

• Small memory space: A number of dictionaries
that requires a large memory space or a large num-
ber of training examples cannot be handled and
saved.

• Computational limitation: Computationally expen-
sive operations that need to be performed for sparse
model such as dictionary learning or sparse coding
can be hardly or slowly computed.

• Miscellaneous constraints: Other constraints caused
by a limited resource such as a limitation on the
type of data that can be learned, real-time require-
ment or s/w (or h/w) limitation of implementa-
tion.

By keeping in mind these constraints, the following
sections describe revised sparse model for a general sys-
tem as well as resource-constrained systems in detail.

5. SPARSE MODEL REVISED
In this section, we revise the traditional sparse model

to fit it into one-shot learning algorithm. First, the tra-
ditional sparse model is introduced briefly. Then, the
revised model which includes sparse coding, one dic-
tionary, reconstruction is described in detail. Lastly,
the entire learning and inference algorithm is presented
based on them.

5.1 Introduction to Sparse Model
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In sparse model, a vector x is represented by x = Dα
where D is a m × p matrix (m � p) and x ∈ Rm,
α ∈ Rm. D is called the dictionary or the design matrix.
The problem is to estimate the signal α, subject to the
constraint that it is sparse. The underlying motivation
for sparse problems is that even though the signal is in
high-dimensional (p) space, it can actually be obtained
in some lower-dimensional subspace (m < p) due to it
being sparse (k < m), where k denotes the sparsity of
α. Sparsity implies that only a few (k) components of α
are non-zero and the rest are zero. This implies that x
can be decomposed as a linear combination of only a few
m×1 vectors in D, called atoms. The column-span of D
is over-complete (m � p). Such vectors are sometimes
called the basis of x, even though being over-complete
means they are not a basis. In addition, unlike other
dimensionality reducing decomposition techniques such
as Principal Component Analysis, the basis vectors are
not required to be orthogonal.

The sparse decomposition problem is represented as,

min
α∈Rp

‖α‖0 s.t. x = Dα (1)

where ‖α‖0 = #{i : αi 6= 0, i = 1, . . . , p} is a pseudo-
norm, l0, which counts the number of non-zero com-
ponents of α = [α1, . . . , αp]T . This problem is NP-
Hard with a reduction to NP-complete subset selec-
tion problems in combinatorial optimization. A con-
vex relaxation of the problem can instead be obtained
by taking the `1 norm instead of the `0 norm, where
‖α‖1 =

∑p
i=1 |αi|. The `1 norm induces sparsity under

certain conditions involving the mutual coherence of D.
The `1 problem is called basis pursuit.

We use dictionary D as our prior knowledge. Our
goal is to find out α that reproduces x based on D (x =
Dα). Here, the vector x represents a training example.
At the same time the dictionary D is also learned by
itself using x. Thus, the problem of sparse model for
one-shot learning is reduced as in the following.

min
D,A

p∑
j=1

‖Dαj − xj‖22 s.t.∀j, ‖αj‖pp≤ k (2)

where A denotes matrix of α. In order to compute
the optimal values of D and α in Equation (2), K-SVD
algorithm [11] is used. It fixes one of the value D, α
then computes the optimal value for the other one. It
alternates the target value for optimization repeatedly.
For example, if α is first fixed, the optimal values of D
is computed. Then, D is fixed and α is updated next.
This process continues repeatedly until convergence.

5.2 Sparse Coding
If we assume that dictionary D is given, the problem

of sparse coding for one training example x is given by:

α = min
α
‖Dα− x‖22 s.t. ‖α‖pp≤ k (3)

which is derived from Equation 2. α which is he sparse
representation of x can be obtained by various algo-
rithms. Basis Pursuit [12] and Matching Pursuit are
the most popular solution for it. For our algorithm,
Orthogonal Matching Pursuit [13] is chosen to obtain
α and x. Equation (3) is performed for every training
example x one by one. Then their summation minimizes
the error.

Once α is obtained, an original training example x is
approximated by x̂ = Dα and its error is calculated as
ε = x− x̂

5.3 One Universal Dictionary
A dictionary D in Equation 2 is also learned (up-

dated) as well as α which is computed using sparse
coding in Equation 3.

A dictionary can be updated at once if all training ex-
amples are available. However, one-shot learning algo-
rithm assumes that it is only able to access a small num-
ber of examples and they can be accessed one by one
at a time. Therefore, a dictionary needs to be updated
every time a new example becomes available. That is
called online dictionary learning [14]. Specifically for
our algorithm, mini-batch version of online dictionary
learning is used based on Coordinate descent algorithm
(block-coordinate algorithm).

Next, unlike an ordinary sparse model, we create and
update only one dictionary D since a resource-constrained
system has a limited amount of memory.

Usually, a learning algorithm using sparse model has
a number of dictionaries. Each dictionary corresponds
to one class and the number of dictionary increases as
the number of classes increase. With multiple dictio-
naries, each example for one class is reconstructed by
finding α using Dn, where n is the total number of
classes.

Although it is able to classify a new example with
high accuracy by using multiple dictionaries, it requires
a large memory space because the size of one dictio-
nary is large. This might increase the accuracy of clas-
sification, multiple dictionaries with huge size cannot
be stored in a limited space especially for resource-
constrained systems. Moreover, it requires a huge com-
putational resource since there are a number of dictio-
naries to be managed and updated.

Instead, we use only one universal dictionary for our
one-shot learning algorithm. It does not construct each
dictionary for different classes. Thus, only one dictio-
nary is updated every time a new example comes in an
online manner regardless of its class. One dictionary
requires a fixed amount of memory space even though
the number of classes increases. Also, it can be learned
faster than multiple dictionaries.

It might degrade the accuracy since only one dictio-
nary is available for all classes. However, one dictionary
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with online learning enables a resource-constrained sys-
tem to perform one-shot learning even though their lim-
ited memory space and computational power.

However, it requires an additional memory space to
keep the current state of online learning. The additional
space required for online learning is p× p+m× p since
the two matrix A = [a1, . . . ,ap] ∈ Rp×p =

∑t
i=1αiα

T
i

and B = [b1, . . . ,bp] ∈ Rm×p =
∑t

i=1 xiα
T
i are used

to keep the current state of learning [14]. Although
the size of matrix A ∈ Rp×p is larger than that of a
dictionary D ∈ Rm×p, it can be reduced to size of p
since it is a diagonal matrix.

By keeping only one dictionary D and multiple spar-
sity representations As which is the column matrix of
α for one class, we can save a large memory space since
the size of As is much smaller than the size of a whole
dictionary D ((m × 1) × n � m × p, where n is the
number of sparsity for one class).

5.4 Reconstruction
Given a dictionary D, a vector signal x which is a

training example can be reconstructed by performing
sparse coding in Equation 3.

First, a dictionary D is initialized by randomizing or
borrowing an existing dictionary from another system.

For example, if the first vector x1 comes and the dic-
tionary D is updated online, then the first vector x1

becomes able to be reconstructed by performing sparse
coding.

x̂j
i = Djαji (4)

Here, x̂ is the reconstructed vector of the original vector
x. Also, superscript j indicates the total number of ex-
amples that are used to update dictionary and subscript
i denotes the i vector.

Since the dictionary Dj is updated to Dj+1 every time
a new example xi+1 comes, x̂j

i in Equation (4) can be

no longer reconstructed. Thus, new reconstruction x̂j+1
i

has to be also updated by calculating Equation (3) as
in the following.

αj+1
i = min

α
j+1
i

‖Dj+1αj+1
i −Djα

j
i‖

2
2 s.t. ‖α‖pp≤ k (5)

Note that x̂j
i = Djαji is used instead of x in Equa-

tion (5). Therefore, every time a new example comes,

every sparsity variable αj+1
i has to be updated by using

old dictionary Dj and old sparsity variable αji itself.
However, the number of classes increases, the recon-

struction error also increases. Since a reconstructed
value x̂j

i = Djαji is saved instead of the actual value

of vector xi, the reconstruction error εji = xi − x̂j
i be-

comes larger as the number of xi increases since

ε1i = xi − x̂1
i = xi −D1α1

i

ε2i = x̂1
i − x̂2

i = D1α1
i −D2α2

i

...

εji = x̂j−1
i − x̂j

i = Dj−1αj−1
i −Djαji

(6)

If all equations in (6) are summed up, the error be-
tween vector xi and reconstructed vector obtained from
dictionary Dj becomes xi − x̂j

i = xi −Djαji = ε1i +ε2i +

· · ·+εji . Therefore, the number of training examples in-
crease, the reconstruction error also increases.

5.5 Learning and Classification Algorithm
Now that all the necessary computations including

sparse coding, dictionary learning, and reconstruction
are ready, one-shot learning algorithm can be constructed
from them. It is depicted as shown in Algorithm 1.

Algorithm 1 One-shot Learning using Revised Sparse
Model
1: take a new matrix Xi

2: if D = ∅ then
3: initialize D ∈ Rm×p by randomizing Xi

4: initialize A ∈ Rp×p, B ∈ Rm×p as 0
5: else
6: load D, A, B
7: Dold ← D
8: ε← MaxValue
9: t = 1

10: while t < MaxIter or ε < ErrorThreshold do
11: A← A + AsAsT where As is matrix of α
12: B← B + XAsT where As is matrix of α
13: D,A,B← online learning(D,A,B) [14]
14: As,i ← sparse coding(D,As,i)
15: ε = Xi −DAs,i

16: t← t+ 1

17: for j = 1 to i− 1 do
18: X̂j = DoldAs,j

19: X← X ∪ X̂j

20: As ← sparse coding(X,D)
21: D,As ← dictionary learning(X,D,As)

Also, classification algorithm is depicted in the below.
More detail description of it is provided in the next
implementation section.

5.6 Memory Space and Computational Com-
plexity

The performance of the revised sparse model needs
to be compared with the traditional sparse model.

In terms of memory space, one dictionary updated
by online learning requires 2m× p+ p+m× p+ nm =
(3m+1)p+nm memory space while multiple dictionary
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Algorithm 2 Classification

1: take a new matrix X
2: As ← sparse coding(X,D)
3: for j=1 to j=i do
4: pj = HI(As, As,i) (histogram intersection)
5: pg ← Gaussian pdf(n(As), n(As,i))
6: pj ← p× pg
7: classify X as class arg max

m
pm

requires n(m × p) = nmp memory space. Therefore,
one dictionary needs less memory space than multiple
dictionaries if the number of class is n ≥ 4 since (3m+
1)p+ nm ≤ nmp for n ≥ 4 for the same dictionary size
(m× p).

In terms of computational complexity analysis, our
one dictionary approach requires total i number of on-
line dictionary update every time a new training exam-
ple xi comes. Meanwhile, the traditional sparse model
with the multiple-dictionary approach requires to con-
structing only one dictionary Di when a new training
example xi comes. Thus, the revised sparse model re-
quires i times more computations than the traditional
one for learning.

However, the revised model requires less computation
for classification. It just needs to perform one sparse
coding using one dictionary D to obtain α and com-
pare it with a i number of αi to find the closest match.
On the other hand, the traditional model needs to per-
form a i number of sparse coding to obtain αi. Thus,
for classification, the revised model requires i times less
computation.

6. IMPLEMENTATION
In this section, we implement a real application of

one-shot learning for resource-constrained systems. One-
shot learning is a great solution for such systems since
it does not impose a heavy burden on the systems that
other learning models such deep learning do.

6.1 Human Video Activity Recognition
As an example of one-shot learning algorithm using

sparse model, we implement human activity recognition
in video. Activities such as walking, running, waving or
bending are classified with only a few examples per each
activity class.

We implement it with a limited resource such as small
memory space and not heavy computational power. As
described in the previous section, only one dictionary is
used for the all activity classes and they are classified
based on their sparsities α.

A video including a human activity with the resolu-
tion of 180 × 144 is taken as an input data (training
example). The dataset used for implementation is de-

Figure 1: Time-series frames of video are sepa-
rated into individual frames. Then, the frame-
difference is obtained by subtracting two consec-
utive frames.

scribed in more detail in the next evaluation section.
Then, the input video is decomposed into a number

of image frames. The difference between frames is cal-
culated by subtracting the previous frame from the next
frame as shown in Figure 1. Only frame difference that
exceeds a certain level of energy is taken.

Then, the frame difference is divided into multiple
sub-patches with size 64 = 8 × 8 without overlap. Ex-
ample patches are shown in Figure 5. 8× 8 2D patches
are converted to a vector pk with length 64 = 8× 8.

Generally, creating patches using overlap usually en-
riches a dictionary and results in better performance.
However, in a limited resource environment, it is com-
putationally too heavy and memory space is not enough.
Thus, we extract patches from one frame difference with-
out overlapping.

The dictionary has a fixed size of 64×1024 and spar-
sity level k is 1.

6.2 Learning
As described in the previous section, a dictionary is

updated every time a new training activity comes. A set
of sub-patch vectors pk (maximum 405 patches) form
an input matrix X with size 64× k.

Thus, every time a new activity video comes, max-
imum 405 number of patches (64 × 1 vector per each)
are created. Then, they construct the final input matrix
X and it is learned through online learning in order to
update the dictionary D. The process of constructing
x is shown in Figure 2.

We do not update the dictionary D for one patch at
a time. Instead, a mini-batch update is performed for
every 50 patches. By doing this, we improve the conver-
gence speed of our algorithm by learning more than one
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Figure 2: Patches that only has a larger amount
of energy than a threshold are extracted each
frame-difference matrix. They are used to build
an input matrix X which is shown as a column
matrix in the below.

patch at each iteration instead of a single one, which is
a classical heuristic in stochastic gradient descent algo-
rithms.

The online dictionary learning is iterated maximum
10 times. Or, it stops learning if the reconstruction
error ε = X−DAs does not decrease anymore.

Therefore, the 2D video stream in time series is con-
verted to a matrix of concatenated column patches to
construct X,D. It is considered as space-time data.

By constructing D, the sparsity representation matri-
ces As,i for each class of activity are obtained by using
sparse coding method described in the previous section.
They are not required for learning but classification task
is performed based on them later.

6.3 Classification
In order to classify activities from given videos, the

same decomposition that is performed for learning is
conducted again.

After patches of input video are created from the
given video, we reconstruct the matrix X and obtain
a sparsity matrix As by using sparse coding based on
the current dictionary D (X = DAs).

Then, As is compared to a set of As,i, where As,i

represents a sparsity matrix that reconstructs video ac-
tivity of class i. If As best matches to one of the As,i,
the given video is classified as same class as class i.

In order to find the best match, we use a modified
version of histogram intersection method and Gaussian
distribution.

For histogram intersection method, we make it simple
by creating a new sparsity vector hr by summing each
row of sparsity matrix As and put them into the vector

Figure 3: Sparsity matching process for classi-
fication. Sparsity matrix As,n obtained from a
new video is compared to each As,i which repre-
sents an activity of class i to find the best match.

hr as shown in the following equation.

hr =

k∑
j=1

Asr,j (7)

Here, k is the number of patches of the given video.
Then, histogram intersection HI is given by:

HI(h1,h2) =

∑r
j=1 min(h1,j,h2,j)∑r

j=1 h2,j
(8)

By comparing h of the given video to a set of hi

one by one and finding the largest matching score, the
activity of the video is easily classified without imposing
any computational burden.

We concatenate all the patches in different time frame
into one matrix X and then try to match it to each class.
That is because 1) activities we are trying to classify are
performed repeatedly during a certain amount of time,
and 2) we do not need to synchronize the starting time
of an activity if we put all patches to one matrix and
try to match it.

Also, we compare the number of patches between two
activities to improve classification accuracy. In order to
do that Gaussian distribution with a mean and variance
is used to obtain the probability of how they are likely to
be in the same class. The final classification algorithm
is depicted in Algorithm 2.

7. EVALUATION
In this section, we evaluate the one-shot learning algo-

rithm for human activity recognition system described
in section the previous section.

7.1 Target Dataset
For evaluation, we took human activity video data

from the study of Weizmann Institute of Science [15].
Original dataset’s number of action classes are ten in-
cluding walking, running, jumping, gallop sideways, bend-
ing, one-hand waving, two-hands waving, jumping in
place, jumping jack, skipping. The total 90 videos with
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(a) Activity1: walking (b) Activity2: running

(c) Activity3: waving (d) Activity5: bending

Figure 4: Snapshots of four kinds of human
video activity. Walking (a), running (b), hand
waving (c), and bending (d) with resolution
180× 144.

the resolution of 180×144 were filmed in a homogeneous
outdoor background using a static camera.

The goal of our system is to recognize activities given
a human activity video by learning only one training
example per class.

Thus, it is a multi-class recognition problem. It needs
to classify the four activities correctly by learning only
one example per class according to our one-shot learning
philosophy. Therefore, a dataset for one class is divided
into two sub-dataset – training and test dataset.

Since our target platform is a resource-constrained
system, it learns only four activities and classifies them.
The four classes of activities it tries to learn are walking,
running, waving, and bending. Figure 4 shows snap-
shots of each activity.

7.2 Patches and Dictionary
As described in the previous section, every video ac-

tivity training example is decomposed into frames. Then,
one frame (image) is subtracted from its next frame in
order to obtain a frame difference. After obtaining it,
the frame difference is subdivided into sub-patches with
size 8. Figure 5 shows the top 64 patches that have the
largest energy for each activity.

Then, a universal dictionary is created based on patches
using a dictionary learning algorithm described in the
previous section. Every time it takes a new example
(frame difference patch) for one class, the existing dic-
tionary is updated since only one dictionary is used for
classification of all the classes. The universal dictionary
that changes when it takes a new example is depicted in

Figure 6. The change of dictionary which is conducted
by learning a new example (patch) is observable in the
figure every time a new activity is added to the dictio-
nary. Also, the background color of dictionary turns
into gray from black when the dictionary is updated.

7.3 Classification Accuracy
Now that the universal dictionary is created by learn-

ing each activity, a new video can be recognized in a
one-shot learning manner.

The entire dataset has 9 videos per class and one of
them is used for learning. Thus, the rest 8 videos per
class are used for testing the accuracy of classification.
Figure 7 shows the classification result of the system.

We make some observations from the test result. First,
the classification accuracy of running and waving shows
better performance than other two activities even though
it learns the same number of example for each class –
one example per class.

Next, the classification accuracy of walking and bend-
ing activity is relatively lower than other two activities.
Walking activity show 55% of accuracy and bending ac-
tivity shows 50% of accuracy.

For walking activity, most of the false classifications
fall into running activity. One plausible explanation is
that running activity has a larger set of patches that
intersects with walking activity. The other way of false
classification – running activity classified as the walking
activity does not happen often since walking activity
has not enough patches that are able to cover running
patches.

Bending activity shows the lowest accuracy (50%).
It has the smallest number of patches (76 patches) that
have enough amount of energy. In light of a larger num-
ber of patches generated from other activities (average
400 patches), the chance of bending activity to be cor-
rectly classified might be influenced by the sheer volume
of patches. Even though it is taken to be accounted in
Algorithm 2 by applying Gaussian distance, it does not
work well for this case.

8. CONCLUSION
We introduced an one-shot learning algorithm for resource-

constrained system based on sparse model. One-shot
learning is a learning model trying to build a knowl-
edge system by learning only one or a few examples.
In order to achieve the goal of one-shot learning, the
conventional sparse model is revised in our algorithm.
With the sparse model revised for one-shot learning, it
becomes able to build a reliable knowledge by leverag-
ing a dictionary as a prior knowledge. It helps one-
shot learning algorithm create more general and bias-
free knowledge by letting it overcome the weakness of
a small number of training examples. In order to make
one-shot learning run on resource-constrained system, a

9



0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(a) Activity1: walking
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

(b) Activity2: running
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(d) Activity4: bending

Figure 5: The top 64 frame-difference patches
of each activity. They are used to create and
update an universal dictionary.

(a) Dictionary of one class (b) Dictionary of two classes

(c) Dictionary of three
classes

(d) Dictionary of four classes

Figure 6: Universal dictionary evolves every
time it learns a new example (patch) for one
class. (a) Dictionary after learning walking ac-
tivity. (b) After walking and running. (c) After
walking, running, and waving. (d) After walk-
ing, running, waving, and bending.

Figure 7: Test result of video activity classifica-
tion.

new learning algorithm of sparse model which only re-
quires one dictionary is devised. In this way, the tradi-
tional sparse model which requires heavy computation
for a number of dictionary becomes available to such
systems. Our implementation of human video activ-
ity classification for resource-constrained system shows
that one-shot learning on resource-constrained system
is feasible with the proposed algorithm.
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