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Let C be a set of n customers and F be a set of m facilities. An r-gather clustering
of C is a partition of the customers in clusters such that each cluster contains at least
r customers. The r-gather clustering problem asks to find an r-gather clustering which
minimizes the maximum distance between a pair of customers in a cluster. An r-gathering
of C to F is an assignment of each customer c ∈ C to a facility f ∈ F such that
each facility has zero or at least r customers. The r-gathering problem asks to find
an r-gathering that minimizes the maximum distance between a customer and his/her
facility. In this work we consider the r-gather clustering and r-gathering problems when
the customers and the facilities are lying on a “star”. We show that the r-gather clustering
problem and the r-gathering problem with customers and facilities on a star with d rays
can be solved in O(n + ddrddr log d) and O(n + m + (d + log m)d4r2 + ddrd2ddr log d)
time, respectively. Furthermore, we prove the hardness of a variant of the r-gathering
problem, called the min-max-sum r-gathering problem, even when the customers and
the facilities are on a star. We also study the r-gathering problem when the customers
and the facilities are on a line, and each customer location is uncertain. We show that
the r-gathering problem can be solved in O(nk+mn log n+(m+n log kn+nr

n
r ) log mn)

and O(mn log n+(n log n+m) log mn) time when the customers and the facilities are on
a line, and the customer locations are given by piecewise uniform functions of at most
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k + 1 pieces and “well-separated” uniform distribution functions, respectively.
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1. Introduction

The facility location problem and many of its variants are well studied [9]. In this
paper we study some variants of the facility location problem.

Let C be a set of n customers and d(p, q) be the distance between p, q ∈ C.
An r-gather clustering R of C is a partition of the customers of C in clusters such
that each cluster contains at least r customers. The cost cost(C) of a cluster C is
the maximum distance between a pair of customers in C. The cost cost(R) of an
r-gather clustering R is the maximum cost among the costs of the clusters. The
r-gather clustering problem asks to find an r-gather clustering of C with minimum
cost [4], and such a clustering is called an optimal r-gather clustering.

Let C be a set of n customers and F be a set ofm facilities, d(c, f) be the distance
between c ∈ C and f ∈ F . An r-gathering of C to F is an assignment A : C → F

such that each facility has zero or at least r customers assigned to it. The cost of
an r-gathering is maxc∈C{d(c, A(c))}, which is the maximum distance between a
customer and his/her facility. The r-gathering problem asks to find an r-gathering
of C to F having the minimum cost [8]. This problem is also known as the min-max
r-gathering problem. The other version of the problem is known as the min-sum r-
gathering problem that asks to find an r-gathering which minimizes

∑
c∈C d(c, A(c))

[14,11]. In this paper we consider the min-max r-gathering problem and we use the
term r-gathering problem to refer the min-max version unless specified otherwise.

Assume we wish to set up emergency shelters for residents C living on a locality
so that each shelter can accommodate at least r residents. We also wish to locate the
shelters so that evacuation time span can be minimized. We can model this scenario
by the r-gather clustering problem. For each cluster in an optimal r-gather clustering
of C, we set up a shelter at the center of the minimum enclosing circle covering the
residents of the cluster, and assign the residents to the shelter. If a set F of possible
locations for the shelters is also given, then the scenario can be modeled by the
r-gathering problem. In this case, an r-gathering corresponds to an assignment of
residents to shelters so that each “open” shelter serves at least r residents and the
r-gathering problem finds the r-gathering minimizing the evacuation time span.

Both r-gather clustering and r-gathering problems are NP-complete in general
[4,8]. For the r-gather clustering problem, a 2-approximation algorithm is known [4].
For the r-gathering problem, a 3-approximation algorithm is known and it is proved
that the problem cannot be approximated within a factor less than 3 for r > 3 unless
P = NP [8]. Recently, both problems are considered in a setting where all customers
and facilities are lying on a line. An O(n logn) time algorithm [7], and an O(rn)
time algorithm [15], and an O(n) time algorithm [16] are known for the r-gather
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Fig. 1. An optimal 3-gather clustering on a star.

clustering problem when all the customers are on a line. For the r-gathering problem
an O((n + m) log(n + m)) time algorithm [7], an O(n + m log2 r + m logm) time
algorithm [12], an O(n+r2m) time algorithm [15], and an O(n+m) time algorithm
[16] are known when all the customers and facilities are on a line. Recently, the
r-gather clustering problem is studied on mobile setting and a 4-approximation
distributed algorithm is known [22].

In this paper, we first consider both the r-gathering clustering and r-gathering
problem when the customers are on a star. When the customers are on a line,
each cluster of an optimal r-gather clustering consists of consecutive customers on
the line [15]. However, when the customers are on a star, some clusters may not
consists of consecutive customers in the optimal r-gather clustering. For example,
see Figure 1. We can observe that at least one cluster consists of non-consecutive
customers in any optimal r-gather clustering. Figure 1 demonstrates an optimal
r-gather clustering for this scenario.

In this paper we give anO(n+ddrddr log d) time algorithm for r-gather clustering
problem on a star, and an O(n+m+(d+logm)d4r2+ddrd2ddr log d) time algorithm
for the r-gathering problem on a star, where d is the number of rays that form the
star. We also proved the hardness of a variant of the r-gathering problem, called
the min-max-sum r-gathering problem.

We also consider the r-gathering problem when the customer and the facilities
are on a line, and each customer location is uncertain. Let F = {f1, f2, · · · , fm} be
a set of m facilities, and C = {c1, c2, · · · , cn} be a set of n customers where each
customer location is a random variable (Although random variables are traditionally
denoted by capital letters, we denote them by small letters for consistency). The
uncertain r-gathering problem asks to find an r-gathering such that the maximum
expected distance between a customer and his/her facility is minimum. Note that,
the uncertain r-gathering problem is NP-hard, since it contains the deterministic
version as a special case.

Problems under uncertain settings has become much popular recently. Uncer-
tainty in data occurs because of noise in measured data, sampling inaccuracy, limi-
tation of resources, etc. Hence, uncertainty is ubiquitous in practice and managing
the uncertain data has gained much attention [1,2,3,18]. Some variants of the facility
location problem have also been investigated under some uncertain settings. Setting
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Fig. 2. An instance of uncertain 3-gathering problem.

up a facility is costly and each facility is supposed to serve for a long period of time.
On the other hand existence, location and demand of a client can change over time.
Thus it is important to set up facilities by keeping the uncertainty in mind. For
the detailed state of the art of uncertain facility location problem, we refer to the
survey of Snyder [17]. There are two models for uncertainty: one is existential model
[13,21] and the other is locational model [1,2,19]. In the existential model, the exis-
tence of each customer is uncertain. Thus each customer has a specific location and
there is a probability for the existence of each customer. In the locational model
each customer is certain to exist, but his/her position is uncertain and defined by
a probability density function. In this paper we consider the locational model of
uncertainty. For customer locations, we consider two probability density functions:
piecewise uniform function (histogram) and “well-separated” uniform distribution
function.

When the customer and facility locations are deterministic and on a line, there
is an optimal r-gathering where the customers assigned to each facility are consec-
utive on the line [15]. However, when the customer locations are uncertain, finding
a suitable ordering of the customers is difficult. For example, consider Figure 2.
Here each customer location has a uniform distribution. The instance has only
one optimal r-gathering, and in the optimal r-gathering c1, c2, c4 are assigned to
f1, and c3, c4, c5 are assigned to f2. Although midpoint (or mean) of c3 is on the
left of the midpoint (or mean) of c4, in the optimal solution c4 is assigned to f1
and c3 is assigned to f2. We show that the r-gathering problem can be solved in
O(nk+mn logn+(m+n log kn+nr n

r ) logmn) andO(mn logn+(n logn+m) logmn)
time when the customers and the facilities are on a line, and the customer locations
are given by piecewise uniform functions of at most k+1 pieces and “well-separated”
uniform distribution functions, respectively.

The rest of the paper is organized as follows. In Section 2 we define terms used in
the paper. In Section 3 we give an algorithm for the r-gather clustering problem on
a star. In Section 4 we give an algorithm for the r-gathering problem on a star. We
show the hardness of the min-max-sum r-gathering problem on a star in Section 5.
In Section 6, we give algorithms for uncertain r-gathering problem when customer
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locations are specified by piecewise uniform functions and “well-separated” uniform
distribution functions. Finally Section 7 is a conclusion. Preliminary versions of
some results of this paper were presented at [6] and [5].

2. Preliminaries

In this section we define some terms used in this paper.
Let L = {l1, l2, · · · , ld} be a set of d rays where all the rays of L share a common

source point o. We call the set L of rays a star and the common source point o the
center of the star. The degree of a star is the number d of rays which form the star.
The Euclidean distance between two points u, v on a ray is denoted by dE(u, v).
The distance d(p, q) between two points p and q in L is defined as d(p, q) = dE(p, q),
if both p and q are on the same ray, and d(p, q) = dE(p, o) + dE(o, q) otherwise. For
ease of notation, the point where a customer ci (respectively, a facility fj) is located
is denoted by ci (respectively, fj). A cluster consisting of customers from two or
more rays is a multi-ray cluster, otherwise a single-ray cluster. Two customers p and
q are the end-customers of a cluster C if d(p, q) = cost(C).

In an r-gather clustering, the cost of a cluster C, denoted by cost(C), is defined as
maxp,q∈C d(p, q). The following result is known [15] regarding the r-gather clustering
problem. Note that any cluster with 2r or more customers can be divided into some
clusters so that each of which has at most 2r−1 customers and at least r customers.

Lemma 2.1 ([15]). There is an optimal r-gather clustering in which each cluster
has at most 2r − 1 customers.

In the r-gathering problem, a facility with one or more customers is called an
open facility. A(c) denotes the facility to which a customer c is assigned in an
assignment A. The cost of a facility f , denoted by cost(f), is max{d(f, ci)|A(ci) =
f} if f has one or more customers, and is 0 if f has no customer.

When the customer locations are on a line and uncertain, each uncertain cus-
tomer ci is associated with a probability density function (PDF), denoted by gi(x)
where x is a point on the line. The expected distance between a facility fj and an
uncertain customer ci, denoted by E[d(ci, fj)], is

∫∞
−∞ d(x, fj)gi(x)dx.

3. r-Gather Clustering on a Star

In this section we give an algorithm for the r-gather clustering problem on a star.
Let C be a set of customers on a star L = {l1, l2, · · · , ld} of d rays with center o.
We have the following lemma.

Lemma 3.1. There is an optimal r-gather clustering such that, for each ray li, the
customers on li assigned to the multi-ray clusters are consecutive customers on li
including the nearest customer to o on li.

Proof. A pair of customers cm, cs on li is called a reverse pair if cm is assigned to
a multi-ray cluster, cs is assigned to a single-ray cluster, and d(o, cs) < d(o, cm).
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Fig. 3. (a) Illustration of Case 1 and (b) illustration of Case 2 of proof of Lemma 3.1.

Assume for a contradiction that R is an optimal r-gather clustering with the mini-
mum number of reverse pairs but the number is not zero. Let cs and cm be a reverse
pair on li with maximum d(o, cm). Let Cs and Cm be the clusters containing cs and
cm, respectively. We have two cases.
Case 1: Cs has a customer c on li with d(o, cm) < d(o, c).
Let c′ be the nearest customer to o in Cs. Replacing Cs and Cm in the cluster-
ing by Cs \ {c′} ∪ {cm} and Cm \ {cm} ∪ {c′} generates a new r-gather clustering
with less reverse pairs as illustrated in Figure 3(a). A contradiction. Note that
cost(Cs \ {c′} ∪ {cm}) ≤ cost(Cs) and cost(Cm \ {cm} ∪ {c′}) ≤ cost(Cm) hold.
Case 2: Otherwise. (Thus d(o, c) < d(o, cm) for every customer c in Cs.)
The same replacing results in a new r-gather clustering with less reverse pairs as il-
lustrated in Figure 3(b). A contradiction. Note that cost(Cs\{c′}∪{cm}) ≤ cost(Cm)
and cost(Cm \ {cm} ∪ {c′}) ≤ cost(Cm) hold. �

Lemma 3.2. If an optimal r-gather clustering has multi-ray clusters, then there is
an optimal r-gather clustering where at most one multi-ray cluster contains more
than r customers.

Proof. Assume for a contradiction that there is no optimal r-gather clustering
where at most one multi-ray cluster contains more than r customers. Let R be an
r-gather clustering with the minimum number of multi-ray clusters having more
than r customers. Let Ci and Cj be two multi-ray clusters having more than r

customers. Let pi, qi be the two end-customers of Ci and pj , qj be the two end-
customers of Cj . Without loss of generality, assume that qj is the closest customer
to o among the four end-customers. Let C′j ⊂ Cj be {c ∈ Cj |d(o, c) > d(o, qj)}.
Any customer c ∈ C′j must be on the same ray as pj , otherwise qj would not be an
end-customer of Cj . We have two cases.
Case 1: |C′j | < r.
Let C′′j be a set of |Cj | − r arbitrary customers from Cj \ C′j . We now derive a new
r-gather clustering R′ by replacing Ci and Cj by Ci ∪ C′′j and Cj \ C′′j . Since qj is
the closest customer to o among the four end-customers pi, qi, pj , qj and d(o, c) ≤
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d(o, qj) for any customer c ∈ C′′j , we have d(o, c) ≤ d(o, pi) and d(o, c) ≤ d(o, qi).
Thus the cost of Ci ∪ C′′j does not exceed the cost of Ci. Hence the cost of R′ is not
greater than the cost of R. Thus R′ has less multi-ray clusters with more than r

customers, a contradiction.
Case 2: Otherwise. Thus |C′j | ≥ r.
In this case we derive a new r-gather clustering R′ by replacing Ci and Cj by
Ci ∪ (Cj \ C′j) and C′j . In this case, C′j is a single-ray cluster. By a similar argument
of Case 1, the cost of R′ does not exceed the cost of R. Thus R′ has less multi-ray
clusters with more than r customers than R, a contradiction. �

We solve the problem by computing all possible r-gather clusterings consisting
of only multi-ray clusters of suitable S ⊂ C near o and an r-gathering clustering for
each remaining ray. We now give the following lemma, which is used in the proof
of Lemma 3.4 and Lemma 3.6.

Lemma 3.3. If there is an optimal r-gather clustering consisting of only multi-
ray clusters, then there is an optimal r-gather clustering with the multi-ray cluster
consisting of the farthest customer from o and his/her r − 1 nearest customers.

Proof. Let p be the farthest customer from o and let N be the r − 1 nearest
customers of p. Assume for a contradiction that there is no optimal solution in
which N ∪ {p} is a cluster. We first prove that N ∪ {p} is contained in the same
cluster. Let R be an optimal solution with cluster Cp containing p has the maximum
number of customers in N . Let q be a customer in N assigned to a cluster Cq 6= Cp.
Since the number of customers in Cp is at least r, there is a customer p′ ∈ Cp not in
N . Let q′ be the farthest customer from o in Cq \{q}. We now derive a new r-gather
clustering by replacing Cp and Cq by Cp \ {p′} ∪ {q} and Cq \ {q} ∪ {p′}. Thus a
contradiction. Note that, cost(Cp \{p′}∪{q}) ≤ cost(Cp) and cost(Cq \{q}∪{p′}) ≤
max{cost(Cp), cost(Cq)}, since d(o, p) ≥ d(o, q′).

We now prove that N ∪{p} form a multi-ray cluster. Assume for a contradiction
that there is no optimal r-gather clustering where N ∪ {p} is a cluster. Let R′ be
an optimal r-gather clustering with cluster Cp containing p having the minimum
number of customers not in N . Let p′′ be the farthest customer in Cp not in the
ray lp containing p, and Cs be a cluster in R′ other than Cp. Let s be the farthest
customer from o in Cs. We now derive a new r-gather clustering by replacing Cp

and Cs with Cp \ {p′′} and Cs ∪ {p′′} without increasing cost, a contradiction. Since
d(o, s) ≤ d(o, p), we have d(s, p′′) ≤ d(p, p′′) and thus cost(Cs ∪ {p′′}) ≤ cost(Cp).�

We now have the following lemma.

Lemma 3.4. If an optimal r-gather clustering consists of only multi-ray clusters,
then there is an optimal r-gather clustering with at most d− 1 multi-ray clusters.

Proof. We give a proof by induction on the number d of rays in the star. Clearly,
the claim holds for d = 2, since in such case only one multi-ray cluster can exist.
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Assume that the claim holds for any star with less than d rays. We now prove that
the claim also holds for any star of d rays. Assume for a contradiction that there
is no optimal solution with at most d − 1 multi-ray clusters. Let p be the farthest
customer from o. By Lemma 3.3, there is an optimal r-gather clustering with the
multi-ray cluster Cp containing p and his/her r − 1 nearest customers, denoted by
N . Let lp be the ray containing p. Since Cp is a multi-ray cluster and N consists
of the r − 1 nearest neighbors of p, all the customers on lp are contained in Cp.
Thus the customers in C \ Cp are lying on other d− 1 rays except lp. By inductive
hypothesis there is an optimal r-gather clustering of C \ Cp with at most d − 2
multi-ray clusters. Thus the claim holds. �

Algorithm 1 Multi-rayClusters(C, d)
Input A set C of customers on a star, and degree d of star
Output An optimal r-gather clustering with only multi-ray clusters if exists

1: if |C| < r or the number of rays containing at least one customer is at most
one then

2: return ∅
3: end if
4: i← 1
5: while |C| 6= 0 do
6: if |C| < 2r then
7: Create new cluster Ci = C

8: else
9: p← farthest customer from o in C

10: Ci ← {p, p1, p2, · · · , pr−1} where pj is the j-th nearest customer of p in
C

11: end if
12: if Ci is a single-ray cluster then
13: return ∅
14: end if
15: C ← C \ Ci

16: i← i+ 1
17: end while
18: return {C1, C2, C3, · · · , Ci−1}

Corollary 3.5. If an optimal r-gather clustering consists of only multi-ray clusters,
then C has at most (d− 2)r + 2r − 1 = dr − 1 customers.

We now give an outline of our algorithm which constructs an optimal r-gathering
clustering on a star. We first choose set S of customers for multi-ray clusters. For
each possible set S of customers we find the optimal r-gather clustering consisting
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of only multi-ray clusters, by repeatedly searching for the farthest customer from
o and his/her r − 1 nearest customer as a multi-ray cluster of the remaining set of
customers, by the algorithm Multi-rayClusters.

We now have the following lemma.

Lemma 3.6. Let R = {C1, C2, C3, · · · } be the clusters computed by Algorithm
Multi-rayClusters. If R has only multi-ray clusters, then R is an optimal r-gather
clustering of C.

Proof. The proof of this lemma is immediate from Lemma 3.3. �

Lemma 3.7. Algorithm Multi-rayClusters runs in O(dr log d) time.

Proof. To construct each cluster, Algorithm Multi-rayClusters first picks the
farthest customer p in C, which can be done in O(d) time. Each of the remaining
customers in the cluster is either on the same ray as p or on a different ray. Each
customer on the same ray as p can be determined in constant time. Each customer
on different rays can be determined in O(log d) time by maintaining a min-heap of
the closest customer to o on each remaining rays. Thus, each cluster can be formed
in O(r log d) time, and constructing all clusters takes O(dr log d) time. �

We now give an algorithm rGatherClusteringOnStar to construct an optimal
r-gather clustering of C on a star. We have the following theorem.

Algorithm 2 rGatherClusteringOnStar(C, d)
Input A set C of customers on a star, and degree d of star
Output An optimal r-gather clustering

1: if |C| < r then
2: return ∅
3: end if
4: Best← ∅
5: for each set S consists of at most dr − 1 customers near to o do
6: Rm ← Multi-rayClusters(S, d)
7: Ri ← r-gather clustering of customers of C lying on li by [16]
8: R← Rm ∪R1 ∪R2 ∪ · · · ∪Rd

9: if R is better than Best then
10: Best← R

11: end if
12: end for
13: return Best
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Theorem 3.8. The algorithm rGatherClusteringOnStar constructs an optimal
r-gather clustering of C on star in O(n+ ddrddr log d) time.

Proof. We first prove that the algorithm rGatherClusteringOnStar(C, d) correctly
produces an optimal r-gather clustering. By Lemma 3.1 multi-ray clusters in an opti-
mal r-gathering are located near o, and by Corollary 3.5 the number of customers in
the multi-ray clusters is at most dr−1. The algorithm rGatherClusteringOnStar
checks every possible partition of C into (1) S consisting of customers for multi-ray
clusters (near o), and (2) the remaining customers for single-ray clusters (far from
o), and finds r-gather clusterings separately, then obtains an r-gather clustering of
C by combining them. Finally outputs the best one.

We now estimate the running time of the algorithm. Let ni be the number of
customers on set S lying on ray li. By construction of set S,

∑d
i=1 ni ≤ dr−1 holds

because possible S consists of at most dr − 1 consecutive customers in each ray
close to o. The number of ways

∑d
i=1 ni equals to some x < dr is

(
x+d−1

d−1
)
, which

is O
(

(dr)d−1
)
. Therefore, the number of ways S can be formed is O(ddrd). For

each such S we compute an r-gather clustering consists of only multi-ray clusters
by algorithm Multi-rayClusters which runs in O(dr log d) time. We also compute
single-ray clusters for the remaining customers (far from o). Rather than computing
the single-ray clusters each time in the loop, we compute the r-gather clustering
for customers consisting of i farthest customers from o, for each i, and for each ray
in O(n) time in total [16]. Thus, to compute all the required cases for single-ray
cluster we need total O(n) time. Therefore, the time complexity of the algorithm is
O(n+ ddrddr log d). �

If d is constant then the running time of the algorithm rGatherClusteringOn-
Star is polynomial.

4. r-Gathering on a Star

In this section we give an algorithm for the r-gathering problem on a star.
Let C be a set of customers and F be a set of facilities on a star L =

{l1, l2, · · · , ld} of d rays with center o. In any optimal r-gathering each open fa-
cility serves at least r customers. However the number of customers assigned to an
open facility can be more than 2r − 1. In such case we regard the set of customers
assigned to a facility as the union of clusters C1, C2, · · · , Ck sharing a facility and
each of which satisfies r ≤ |Ci| < 2r. Thus we can think of the r-gathering problem
in a similar way to the r-gather clustering problem in Section 3, and Lemma 2.1
holds for the clusters of any r-gathering. We denote by A(C) the facility to which
the customers in C are assigned in r-gathering A. We define the cost of a cluster
C, denoted by cost(C), in r-gathering A as maxc∈C{d(c, A(c))}. It is easy to ob-
serve that Lemma 3.1 also holds for the clusters of r-gatherings. We now prove that
Lemma 3.2 also holds for the r-gathering problem.
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Lemma 4.1. There is an optimal r-gathering where at most one multi-ray cluster
has more than r customers.

Proof. Assume for a contradiction that there is no optimal r-gathering having
at most one multi-ray cluster of size more than r. Let A be an r-gathering with
the minimum number of multi-ray clusters having more than r customers. Let Ci

and Cj be two multi-ray clusters with more than r customers. Let fi = A(Ci) and
fj = A(Cj). Let fi and fj are located on ray li and lj , respectively. Without loss of
generality, assume that d(o, fi) ≤ d(o, fj). Let C′j be the subset of Cj located on lj .
We have two cases.
Case 1: |C′j | < r. Let C′′j be a set of |Cj | − r arbitrary customers from Cj \ C′j . We
now derive a new r-gathering A′ by replacing Ci and Cj by Ci ∪ C′′j and Cj \ C′′j ,
and assigning Ci ∪ C′′j and Cj \ C′′j to fi and fj , respectively. Note that Cj \ C′′j has
exactly r customers. Let c be a customer in C′′j . Since fi is closer to o than fj and c
is not on lj , we have d(fi, c) ≤ d(o, fi) + d(o, c) ≤ d(o, fj) + d(o, c) = d(c, fj). Thus
the cost of Ci ∪ C′′j does not exceed the cost of max{cost(Ci), cost(Cj)}. Hence the
cost of A′ is not greater than the cost of A. Thus A′ has less multi-ray clusters with
more than r customers, a contradiction.
Case 2: Otherwise. Thus |C′j | ≥ r. In this case we derive a new r-gathering A′ by
replacing Ci and Cj by Ci ∪ (Cj \ C′j) and C′j , and assigning Ci ∪ (Cj \ C′j) and C′j to fi

and fj , respectively. In this case, C′j is a single-ray cluster. By a similar argument
of Case 1, the cost of A′ does not exceed the cost of A. Thus A′ has less multi-ray
clusters having more than r customers than A, a contradiction. �

A customer on a ray l ∈ L is the boundary customer of l if it is the farthest
customer on l from o. We now give the following lemma.

Lemma 4.2. If there is an optimal r-gathering A with only multi-ray clusters, then
there is an optimal r-gathering with a multi-ray cluster consisting of a boundary
customer and his/her r − 1 nearest neighbors.

Proof. Let f be the farthest open facility from o in A and l be the ray containing
f . We have two cases to consider.
Case 1: l has a customer. Let p be the boundary customer on l and N be the set
of the r− 1 nearest customers of p. We first prove that there is an optimal solution
with the customers in N ∪ {p} are assigned to f . Assume for a contradiction that
there is no optimal solution where N ∪ {p} is assigned to f . Let A be an optimal
solution with the maximum number of customers in N ∪ {p} are assigned to f .
Let Cp be the multi-ray cluster assigned to f , and q be a customer in N ∪ {p}
but q /∈ Cp. Let q is assigned to f ′. Since Cp has at least r customers, there is a
customer p′ ∈ Cp not in N ∪ {p} and lying on a ray except l. We now derive a new
r-gathering A′ by reassigning q to f and p′ to f ′. Since d(o, f ′) ≤ d(o, f), we have
d(f ′, p′) ≤ d(o, f ′) + d(o, p′) ≤ d(o, f) + d(o, p′) = d(f, p′). Now if q is (1) not on
l or (2) q is on l with d(o, q) ≤ d(o, f) then d(f, q) ≤ d(f, p′). Otherwise, q is on l
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with d(o, q) > d(o, f) holds, then we have d(f, q) ≤ d(f, p). Thus the cost of A′ does
not exceed the cost of A, and A′ has more customers in N ∪ {p} assigned to f . A
contradiction. Thus the customers in N ∪ {p} are contained in Cp.

We now prove that N ∪{p} form a multi-ray cluster. Assume for a contradiction
that there is no optimal r-gathering in which N ∪ {p} is a cluster. Let A′ be an
optimal r-gathering with the cluster Cp containing p having the minimum number
of customers not in N ∪ {p}. Since Cp is a multi-ray cluster, Cp has a customer p′
not in N ∪ {p} and lying on a ray except l. Let Cs be a cluster in A′ other than
Cp and A′(Cs) = f ′. We now derive a new r-gathering by replacing Cp and Cs by
Cp \ {p′} and Cs ∪ {p′}. We now derive a new r-gathering by reassigning p′ to f ′.
Since d(o, f ′) ≤ d(o, f), d(p′, f ′) does not exceed d(p′, f). A contradiction.
Case 2: l has no customer. We first prove that all customers are assigned to
f . Assume for a contradiction that there is an open facility f ′ 6= f to which some
customers are assigned. Since f is the farthest open facility from o and there is no
customer on l, we can reassign all customers to f ′ without increasing the cost of
the r-gathering. A contradiction. Let p be a boundary customer on ray l′ 6= l, and
N be his/her r− 1 nearest neighbors. Since |C| ≥ 2r, we can form a cluster Cp with
N ∪ {p}. �

We now prove that Lemma 3.4 also holds for r-gathering.

Lemma 4.3. If an optimal r-gathering consists of only multi-ray clusters, then
there is an optimal r-gathering consisting of at most d− 1 multi-ray clusters, where
d is the number of rays containing a customer.

Proof. We give a proof by induction on d.
We first show the claim holds for d = 2. Assume for a contradiction that there is

no optimal r-gathering having at most one multi-ray cluster. Let A be an optimal
r-gathering with the minimum number of multi-ray clusters, and f be the farthest
open facility from o in A and l be the ray containing f . If there is no customer on
l, then by Lemma 4.2(b) all customers are assigned to f and the farthest boundary
customer p and his/her r − 1 nearest customers N form a cluster C. Otherwise by
Lemma 4.2(a) the boundary customer p of l and his/her r− 1 nearest customers N
form a cluster C. In both case either C or the other cluster is a single-ray cluster, a
contradiction.

Now we consider for d > 2. Assume that the claim holds if the customers are
on less than d rays. We now prove that the claim also holds if the customers are
on exactly d rays. Assume for a contradiction that there is no optimal r-gathering
having at most d− 1 multi-ray clusters. Let A be an optimal r-gathering with the
minimum number of multi-ray clusters. Let f be the farthest open facility from o

in A. Let l be the ray containing f . We have the following two cases.
Case 1: There is a customer on l. Let p be the boundary customer of l and N be
the r− 1 nearest customers of p. By Lemma 4.2(a), there is an optimal r-gathering



May 2, 2021 21:50 WSPC/INSTRUCTION FILE output

r-Gatherings on a Star and Uncertain r-Gatherings on a Line 13

consisting of only multi-ray clusters with cluster Cp = N ∪ {p}. Now the customers
in C \ Cp are lying on other d− 1 rays except l. By inductive hypothesis there is an
optimal r-gathering of C \ Cp with at most d− 2 multi-ray clusters. Thus the claim
holds.
Case 2: Otherwise. By Lemma 4.2(b), there is an optimal r-gathering where all
customers are assigned to f . Since there are at least dmulti-ray clusters, the number
of customers is at least dr. Thus there is a ray l′ with r or more customers. We can
form a single-ray cluster with the r customers on l. A contradiction. �

We now give algorithm Multi-rayClusters2. If there is an optimal r-gathering
with only multi-ray clusters, then the algorithm finds such an r-gathering, by re-
peatedly removing a cluster ensured by Lemma 4.2.

Lemma 4.4. If there is an optimal r-gathering consisting of only multi-ray clusters,
then Algorithm Multi-rayClusters2 finds an optimal r-gathering. The running
time of the algorithm is O((d+ logm)d4r2 + 2ddr log d).

Proof. If there is an optimal r-gathering with only multi-ray clusters, then, by
repeatedly removing a cluster ensured by Lemma 4.2, we can find a sequence
C1, C2, · · · , Ck of multi-ray clusters such that Ci consists of exactly r customers
in C \ (C1 ∪ C2 ∪ · · · Ci−1) except the last cluster Ck with r ≤ |Ck| ≤ 2r − 1. The
algorithm checks every possible sequence of the rays containing at least one cus-
tomer and chooses the best one as an optimal r-gathering. Note that if a cluster is
a single-ray cluster, then the algorithm skips recursive call, since it try to find an
r-gathering consisting of only multi-ray clusters.

We now estimate the running time of the algorithm.
By Lemma 4.3 the depth of the recursive calls is at most d−1. Thus, by the tree

structure of the calls, the number of calls is at most d!. The algorithm repeatedly
constructs a multi-ray cluster with exactly r customers by Lemma 4.2. Construction
of each multi-ray cluster takes O(r log d) time for each and O(dr log d) time in total.
The cluster is assigned to its best facility of the cluster. The best facility of a multi-
ray cluster is the nearest facility to the mid-point of pi and the farthest customer
from pi which is on a ray except li. The best facility can be found in O(d+ logm)
time for each cluster. For each possible pair of customers we precompute the best
facility. The number of such possible pairs is (d2r)2. Thus the algorithm runs in
O(d!dr log d+ (d+ logm)d4r2) time.

We can improve the running time by modifying the algorithm to store the solu-
tion of each subproblem in a table. The number of distinct subproblems is the num-
ber of the combinations of the rays checked (If we check l1 then l2, then the remain-
ing subproblem is the same one which is derived if we check l2 then l1. Only com-
bination matters). Thus the number of distinct subproblems is

∑d−1
j=1

(
d
i

)
= O(2d).

Then the running time is O((d+ logm)d4r2 + 2ddr log d). �

Theorem 4.5. An optimal r-gathering of C to F can be computed in O(n + m +
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Algorithm 3 Multi-rayClusters2(C,F, d)
Input A set C of customers, a set F of facilities on a star, and degree d of
star
Output An optimal r-gathering with only multi-ray clusters if exists

1: if |C| < r or the number of rays containing at least on customer is at most one
or F = ∅ then

2: return ∅
3: end if
4: if |C| < 2r or the number of rays containing customers is two then
5: f ← the best facility for customers in C
6: A← Assignment of all customers in C to f
7: return A

8: end if
9: Ans← ∅
10: Best←∞
11: for each ray li containing a customer do
12: Ci ← pi and his/her r − 1 nearest customers in C /* Lemma 4.2 */
13: if Ci is a multi-ray cluster then
14: A′ ← Multi-rayClusters2(C \ Ci, F, d)
15: if A′ 6= ∅ then
16: f ← the best facility for customers in Ci

17: A← Assignment of customers in Ci to f and C \ Ci according to A′
18: if cost(A) < Best then
19: Best← cost(A)
20: Ans← A

21: end if
22: end if
23: end if
24: end for
25: return Ans

(d+ logm)d4r2 + ddrd2ddr log d) time.

Proof. Similar to Theorem 3.8 we can prove the number of possible choices of the
multi-ray clusters is O(ddrd) . For each choice we compute an r-gathering with
Multi-rayClusters2 and compute r-gatherings of the remaining one-dimensional
problems, then combine them to form an r-gathering of C to F . Then output the
best one. This construction of multi-ray clusters needsO((d+logm)d4r2+2ddr log d)
for each. We need not compute the best facility of each possible pair of customers
for each call of Multi-rayClusters2 independently. We precompute such best fa-
cilities just once for an execution of the algorithm. Such precomputation takes
O(d2r2(d + logm)) time. We can solve all possible one dimensional r-gathering
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problem in O(n+m) time in total [16] and we store the solutions in a table. Note
that when we solve one dimensional r-gathering problem of ray l, we may assign
a cluster to the nearest facility to o located on other ray, however one can com-
pute such f quickly. Thus the time complexity of finding an optimal r-gathering is
O(n+m+ (d+ logm)d4r2 + ddrd2ddr log d). �

If d is constant then the running time of the algorithm is polynomial.

5. Min-max-sum r-Gathering Problem

In this section we introduce a new cost function for the r-gathering problem and
show that a variant of the r-gathering problem, called the min-max-sum r-gathering
problem, is NP-hard even when the customers and facilities are on a star.

Let C be a set of customers, F be a set of facilities and A be an r-gathering of C
to F . We define the tree cost of a facility f as

∑
c:A(c)=f d(c, A(c)). The min-max-

sum r-gathering problem asks to find an r-gathering such that the maximum tree
cost among all the facilities is minimum. The decision min-max-sum r-gathering
problem is defined as follows.

Problem: Decision Min-max-sum r-Gathering Problem.
Instance: A set of customers C and a set of facilities F , an integer r, and a

number q.
Question: Does there exist an r-gathering A such that for each f ∈ F ,∑

c:A(c)=f d(c, A(c)) ≤ q?
We show the hardness of the decision min-max-sum r-gathering problem by

reduction from the 3-partition problem [10]. The 3-partition problem is defined as
follows.

Problem: 3-Partition Problem.
Instance: A multi-set S = {a1, a2, · · · , a3k} of 3k integers and a number b such

that b
4 < ai <

b
2 for each 1 ≤ i ≤ 3k and

∑
ai

= kb.
Question: Can S be partitioned into k subsets S1, S2, · · · , Sk such that for each

i = 1, 2, · · · , k;
∑

a∈Si
a = b?

We now give the following theorem.

Theorem 5.1. The decision min-max-sum r-gathering problem is NP-hard even
when the customers and facilities are on a star .

Proof. We prove the hardness of the decision min-max-sum r-gathering problem
by giving a polynomial time reduction from the 3-partition problem.

Given an instance I(S, b) of the 3-partition problem, we construct an instance
I(C,F, r, q) of the decision min-max-sum r-gathering problem such that I(S, b) has
an affirmative answer if and only if I(C,F, r, q) has an affirmative answer. We first
construct a star L = {l1, l2, · · · , l3k} of degree 3k and center o. For each ai ∈ S we
take a customer ci, lying on li, such that d(o, ci) = ai. Note that, b

4 < d(o, ci) < b
2

holds, since b
4 < ai <

b
2 for each ai. We now take 3k facilities f1, f2, · · · , f3k such
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that fi is lying on ray li and d(o, fi) = ε where ε < min{d(o, ci)}. Finally we set
q = b+ ε and r = 3. In the following we prove that there is a solution to an instance
I(S, b) if and only if I(C,F, r, q) has a solution.

We first assume that I(S, b) has an affirmative answer. Let S1, S2, · · · , Sk be the
partition of S such that

∑
a∈Si

a = b for each Si. We can construct an r-gathering
of instance I(C,F, r, k) in the following way: for each Si = {ai1 , ai2 , ai3} we assign
the customers ci1 , ci2 , ci3 to the facility fi1 . Note that fi1 is lying on the same ray
li1 as ci1 . Now the cost of the facility fi1 is d(o, ci1)−ε+d(o, ci2)+ε+d(o, ci3)+ε =
b + ε. Thus each open facility fi serves exactly 3 customers and for each f ∈ F ,∑

c:A(c)=f d(c, A(c)) = b+ ε.
Conversely, assume that I(C,F, r, q) has an affirmative answer. Let A be the

corresponding r-gathering. We first claim that, each open facility in A serves exactly
3 customers. For a contradiction, assume otherwise. Let fi be an open facility such
that fi serves at least four customers. Since b

4 < d(o, ci) < b
2 holds for each ci,∑

c:A(c)=fi
d(fi, c) ≥

∑
c:A(c)=fi

d(o, c)+2ε > 4× b
4 +2ε = b+2ε, a contradiction. We

now claim that,
∑

c:A(c)=fi
d(fi, c) = b + ε holds for each open facility fi. Assume

for a contradiction that,
∑

c:A(c)=fi
d(fi, c) < b + ε holds for an open facility fi.

Thus we get
∑

c:A(c)=fi
d(o, c) < b. Let C ′ be the set of customers assigned to

some facility other than fi. Clearly |C ′| = 3k − 3. Since
∑

c∈C d(o, c) = kb and∑
c:A(c)=fi

d(o, c) < b, we get
∑

c∈C′ d(o, c) > (k − 1)b. Then there is at least one
facility fj for which

∑
c:A(c)=fj

d(o, c) > b holds. Thus
∑

c:A(c)=fj
d(fj , c) > b + ε.

A contradiction. �

6. One-dimensional Uncertain r-Gathering Problem

In this section we give two algorithms for the uncertain r-gathering problem on a
line.

Let C = {c1, c2, · · · , cn} be a set of n uncertain customer on a horizontal line
where the location of each customer ci is specified by his/her PDF gi : IR →
IR+ ∪ {0}, and F = {f1, f2, · · · , fm} be a set of m facilities on the horizontal line.
We consider the facilities are ordered from left to right. We sometime regard fi as
its coordinate.

6.1. Histogram

In this section we give an algorithm for the uncertain r-gathering problem when
the location of each customer is specified by a piecewise uniform function, i.e., a
histogram.

We consider the PDF of each customer ci is defined as a piecewise uniform
function gi, i.e., a histogram. The PDF of each uncertain customer is independent.
We consider the histogram model since it can be used to approximate any PDF
[1]. The histogram model is considered by Wang and Zhang [20] for the uncertain
k-center problem on a line. Each gi consists of at most k+1 pieces where each piece
is a uniform function. Each customer ci has k+ 2 points xi0, xi1, · · · , xi(k+1) on the
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Fig. 4. (a) Illustration of a histogram with 6 pieces and (b) corresponding function of expected
distance.

line, where xi0 < xi1 < · · · < xi(k+1), and k + 1 values yi0, yi1, · · · , yik such that
gi(x) = yij if xij ≤ x < xi(j+1). We consider xi0 = −∞, xi(k+1) = ∞, yi0 = 0,
and yik = 0. Figure 4(a) illustrates a histogram of 6 pieces. The expected distance
E[d(p, ci)] from a point p to ci is defined as follows.

E[d(p, ci)] =
∫ ∞
−∞

gi(x)|x− p|dx

A function h : IR → IR is called a unimodal function if there is a point p such that
h(x) is monotonically decreasing in (−∞, p] and monotonically increasing in [p,∞).
Wang and Zhang gave the following lemma [20].

Lemma 6.1 ([20]). Let ci be an uncertain customer on a line which is specified by
a histogram of k + 1 pieces. Then the function E[d(p, ci)] for p ∈ IR is a unimodal
function consisting of a parabola in each interval [xij , xi(j+1)). Furthermore the
function E[d(p, ci)] can be explicitly computed in O(k) time.

Outline of Proof Without loss of generality, assume that xit ≤ p ≤ xi(t+1). Then
the function E[d(p, ci)] can be written as follows [20].

E[d(p, ci)] = yitp
2

+

t−1∑
j=0

yij

(
xi(j+1) − xij

)
−

k∑
j=t+1

yij

(
xi(j+1) − xij

)
− yit(xit + xi(t+1))

 p
+ 1

2

 k∑
j=t+1

yij

(
x2

i(j+1) − x
2
ij

)
−

t−1∑
j=0

yij

(
x2

i(j+1) − x
2
ij

)
+ yit(x2

it + x2
i(t+1))


(6.1)

Thus we can write E[d(p, ci)] as ai1(t)p2 + ai2(t)p+ ai3 where each of ai1(t), ai2(t),
and ai3(t) depends on t satisfying xit ≤ p ≤ xi(t+1). Note that if yit = 0 then the
function E[d(p, ci)] is a straight line in the interval [xit, xi(t+1)) which we consider as
a special parabola. Figure 4(b) illustrates the E[d(p, ci)] function for the histogram
in Figure 4(a). We can compute the co-efficients ai1(j) for all j in O(k) time.
Moreover, the summation terms in ai2(j) and ai3(j) for all j can be computed in
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O(k) time in total. Thus for all j, we can compute the ai2(j) and ai3(j) in O(k)
time. Hence the function E[d(p, ci)] can be computed explicitly in O(k) time. �

We now give the following lemma.

Lemma 6.2. Let ci be an uncertain customer on a line which is specified by a
histogram of k + 1 pieces, and F = {f1, f2, · · · , fm} be a set of m facilities on the
line. We can compute the expected distances between all facilities and the uncertain
customer in O(m+k) time. Furthermore the expected distances between the facilities
and the uncertain customer can be sorted in O(m) time.

Proof. We first precompute the co-efficients ai1(j), ai2(j), ai3(j) of function
E[d(p, ci)] for all j in O(k) time by Lemma 6.1. With the precomputed function
E[d(p, ci)], the expected distance between the uncertain customer and a facility
fu can be computed in O(log k) time using binary search to find the [xit, xi(t+1))
where fu is located. Thus the expected distance between all facilities and the un-
certain customer can be computed in O(m log k) time. However, we can improve
the running time to O(m + k) by a plane sweep from left to right. We take the
facilities from left to right, determine the corresponding interval [xij , xi(j+1)), and
compute the expected distance. Since both the facilities and the xi1, xi2, · · · , xik

are ordered from left to right, the search for the interval in which fu is located can
start from the interval in which fu−1 is located. Hence each xij will be considered
once. Thus the total running time is O(m + k). We now show that the sorted list
of the expected distances between the facilities and the uncertain customer can
be constructed in O(m + k) time. Since E[d(p, ci)] is a unimodal function, there
is a facility fu such that E[d(fv−1, ci)] ≥ E[d(fv, ci)] for any 1 < v ≤ u, and
E[d(fv, ci)] ≤ E[d(fv+1, ci)] for any u ≤ v < m. Thus we have a descending list
of expected distances for f1, f2, · · · , fu and ascending list of expected distances for
fu+1, fu+2, · · · , fm. We can merge these two lists into an ascending list of expected
distances in O(m) time.

Corollary 6.3. Let C = {c1, c2, · · · , cn} be set of n uncertain customers on a line
each of which is specified by a histogram of k+1 pieces, and F = {f1, f2, · · · , fm} be
a set of m facilities on the line. The expected distances between all pair of uncertain
customers and facilities can be computed and sorted in O(nk +mn logn) time.

Proof. By Lemma 6.2, we can compute n sorted list of expected distances between
customers and facilities in O(nk+mn) time. The n sorted lists can be merged into
a single list using min-heap in O(mn logn) time.

We first consider the decision version of the uncertain r-gathering problem on
a line. Given a set of uncertain customers C, a set of facilities F on a line, and a
number b, the decision uncertain r-gathering problem asks to determine whether
there is an r-gathering A of C to F such that E[d(c, A(c))] ≤ b for each c ∈ C. The
following lemma is known [20].
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Lemma 6.4 ([20]). Let c be an uncertain customer on a line which is specified
by a histogram of k + 1 pieces, and b be a number. Then the points p for which
E[d(c, p)] ≤ b holds form an interval on the line.

We call the interval which admits E[d(c, p)] ≤ b for customer c a (c, b)-interval
and denote the interval by [sb(c), tb(c)]. Furthermore, in any r-gathering A with
cost at most b, A(c) is in [sb(c), tb(c)]. Thus to find whether there is an r-gathering
satisfying E[d(c, p)] ≤ b for each customer c, it is sufficient to solve the following
problem. Given a set of facilities F on a line and a set of customers C where each
customer c ∈ C has an interval [s(c), t(c)] on the line, the interval r-gathering
problem asks to determine whether there is an r-gathering A such that each facility
f ∈ F serves zero or at least r customers and for each customer c ∈ C, s(c) ≤
A(c) ≤ t(c) holds.

We now give an algorithm for the interval r-gathering problem. Let F =
{f1, f2, · · · , fm} be a set of facilities and C = {c1, c2, · · · , cn} be a set of customers
on a line where each customer ci has an interval Ii = [s(ci), t(ci)]. An interval Ii is
called the leftmost interval if for each cj 6= ci, t(ci) ≤ t(cj) holds, and the customer
ci is called the leftmost customer. We call a customer ci is in left with respect to
customer cj if and only if t(ci) ≤ t(cj). A facility fu is called the preceding facility
of ci if s(ci) ≤ fu ≤ t(ci) and there is no facility fv such that fu < fv ≤ t(ci).
Similarly a facility fu is called the following facility of ci if s(ci) ≤ fu ≤ t(ci) and
there is no facility fv such that s(ci) ≤ fv < fu. We call a customer cj a right
neighbor of ci if t(cj) ≥ t(ci) and s(cj) ≤ t(ci).

Let F = {f1, f2, · · · , fm} be a set of facilities and C = {c1, c2, · · · , cn} be a
set of customers on a line where each customer ci has an interval Ii. Let ci be the
leftmost customer, fu be the preceding facility of ci, and Pu be the set of customers
containing fu in their intervals, i.e., potential customers that can be assigned to fu.
We have the following lemmas.

Lemma 6.5. If there is an interval r-gathering of C to F , then there is an inter-
val r-gathering where fu is the leftmost open facility. Furthermore, the customers
assigned to fu have consecutive right end-points in Pu including ci.

Proof. We first prove that there is an interval r-gathering where fu is the leftmost
open facility. Assume for a contradiction that there is no interval r-gathering where
fu is the leftmost open facility. Let A be an interval r-gathering where fv 6= fu

is the leftmost open facility. We can observe that fv ≤ fu, since in each interval
r-gathering, ci is assigned to a facility within the interval Ii and fu is the preceding
facility of ci. Let Cv be the set of customers assigned to fv in A. For any customer
cj in Cv, we have s(cj) ≤ fv ≤ fu ≤ t(ci) ≤ t(cj), since Ii is the leftmost interval.
We now derive a new interval r-gathering by reassigning the customers Cv to fu, a
contradiction.

We now prove that the customers assigned to fu have consecutive right end-
points in Pu. We call a pair cj , ck ∈ Pu a reverse pair if t(cj) < t(ck), ck assigned to
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fu, and cj assigned to fv > fu. Assume for a contradiction that there is no interval
r-gathering where the customers assigned to fu have consecutive right end-points
in Pu. Let A′ be an interval r-gathering with minimum number of reverse pairs
but the number is not zero. Let cj , ck be a reverse pair in A′ where t(cj) < t(ck),
and cj is assigned to facility fw, and ck is assigned to fu. Since t(ck) > t(cj) and
fw ≥ fu, we get s(ck) ≤ fw ≤ t(ck). We now derive a new interval r-gathering with
less reverse pairs by reassigning cj to fu and ck to fw, a contradiction.

Lemma 6.6. Let cj be the leftmost customer in C \ Pu, and P ′u ⊆ Pu be the
customers such that for each c ∈ P ′u, t(c) < t(cj). If there is an interval r-gathering,
then there is an interval r-gathering satisfying one of the following.
(a) If |P ′u| < r, then the customers assigned to fu are the r leftmost customers in
Pu.
(b) If |P ′u| ≥ r , then max{|P ′u| − r+ 1, r} leftmost customers of Pu are assigned to
fu (possibly with more customers).

Proof. (a) By Lemma 6.5, there is an interval r-gatering where the customers
assigned to fu have consecutive right end-points in Pu and the leftmost customer ci

is assigned to fu. Thus the leftmost r customers P l
u in Pu are assigned to fu. We now

prove that there is an interval r-gathering where no customer in Pu \P l
u is assigned

to fu. Assume for a contradiction that in every interval r-gathering there are some
customers in Pu \ P l

u which are assigned to fu. Let A be an interval r-gathering
where the number of customers in Pu \ P l

u assigned to fu is minimum, and ck be a
customer in Pu \ P l

u which is assigned to fu. Since |P ′u| < r, we get t(ck) > t(cj).
Let cj is assigned to fv in A. We now derive a new r-gathering by reassigning ck to
fv, a contradiction.
(b) We first consider r ≤ |P ′u| < 2r. In this case max{|P ′u| − r+ 1, r} = r. Hence by
Lemma 6.5 the leftmost r customers in Pu are assigned to fu.
We now consider |P ′u| ≥ 2r. In this case, max{|P ′u|− r+ 1, r} = |P ′u|− r+ 1. Let P ′′u
be the leftmost |P ′u| − r+ 1 customers in Pu. Note that, by the definition of P ′u, P ′′u
are also the |P ′u| − r+ 1 leftmost customers in P ′u. Assume for a contradiction that
there is no interval r-gathering where P ′′u are assigned to fu. Let A′ be an interval
r-gathering with the maximum number of customers Qu ⊂ P ′′u assigned to fu. Let
ck ∈ P ′′u be the customer with smallest t(ck) which is not assigned to fu. Let ck

is assigned to fv ≥ fu. By Lemma 6.5, any customer cx ∈ P ′′u with t(cx) ≥ t(ck)
is not assigned to fu. Let Cv be the customers assigned to fv. We first claim that
|Cv| = r, otherwise we can reassign ck to fu, contradicting our assumption. We
now claim that Cv consists of r customers with consecutive right end-points in Pu.
Assume otherwise for a contradiction. Let A′′ be an interval r-gathering with the
minimum number of reverse pairs where a reverse pair is a pair of customer cx, cy

with t(cx) ≤ t(cy), cy assigned to fv, cx assigned to fw > fv. Since t(cx) ≤ t(cy)
and fv ≤ fw, we get s(cy) ≤ fw ≤ t(cy). We now derive a new interval r-gathering
by reassigning cx to fv and cy to fw, a contradiction. Now since |Qu| < |P ′u|−r+1,
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we get |P ′u \Qu| ≥ r. Thus Cv ⊂ P ′u ⊆ Pu. We now derive a new interval r-gathering
by assigning Cv to fu. A contradiction.

We now give an algorithm Interval-r-gather for the interval r-gathering prob-
lem.

We have the following theorem.

Theorem 6.7. The algorithm Interval-r-gather decides whether there is an in-
terval r-gathering of C to F , and constructs one if it exists in O(m+n logn+nr

n
r )

time.

Proof. The correctness of Algorithm Interval-r-gather is immediate from lemma
6.5 and 6.6. We check every possible cases with backtracking.

We now estimate the running time of the algorithm. We can sort the customers
based on their right end-points in O(n logn) time. For each customer we can pre-
compute the preceding facility fu in O(n + m) time in total. For each facility fu

we can precompute the sets of customers Pu containing each facility and the left-
most customer cj having left end-point on right of fu in O(n+m) time in total. In
each call to Interval-r-gather, we need O(|Pu|) time and at most r recursive calls to
Interval-r-gather. Let T (n) be the running time of the algorithm for n customers.
We have T (n) ≤ O(|Pu|) +

∑r
i=1 T (n− r+ 1) ≤ O(nr n

r ). Thus the running time of
the algorithm is O(m+ n logn+ nr

n
r ).

We now have the following theorem.

Theorem 6.8. Let C = {c1, c2, · · · , cn} be a set of uncertain customers on a
line each of which is specified by a histogram consisting of k + 1 pieces, and
F = {f1, f2, · · · , fm} be a set of m facilities on the line. Then the optimal r-
gathering can be constructed in O(nk + mn logn + (m + n log kn + nr

n
r ) logmn)

time.

Proof. We give outline of an algorithm to compute optimal r-gathering. We first
compute the E[d(p, ci)] function for each ci ∈ C. This takes O(nk) time in total by
Lemma 6.1. By Corollary 6.3, we compute the sorted list of all expected distances
between customers and facilities in O(nk + mn logn) time. We find the optimal
r-gathering by binary search, using the O(m+n logn+nr

n
r ) time algorithm for the

interval r-gathering problem logmn times. For each r-interval gathering problem,
we compute the (ci, b)-intervals in O(n log k) time. Thus finding optimal r-gathering
by binary search requires O(nk +mn logn+ (m+ n log kn+ nr

n
r ) logmn) time.

6.2. Uniform Distribution

In this section we give an algorithm for the uncertain r-gathering problem when
each customer location is specified by a well-separated uniform distribution.
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Algorithm 4 Interval-r-gather(C,F )
1: if |C| < r or F = ∅ then
2: return ∅
3: end if
4: ci ← leftmost customer in C
5: fu ← preceding facility of ci

6: Pu ← the set of customers containing fu in their intervals
7: cj ← leftmost customer in C \ Pu

8: P ′u ← the set of customers in Pu having smaller right end-point than t(cj)
9: F ′ ← the set of facilities right to f

10: if |Pu| < r then
11: return ∅
12: end if
13: if |P ′u| < r then
14: Cu ← the set of r leftmost customers in Pu /* Lemma 5(a) */
15: A← Assignment of Cu to fu

16: Ans← Interval-r-gather(C \ Cu, F
′)

17: if Ans 6= ∅ then
18: return Assignment of Cu and C \ Cu by A and Ans, respectively
19: end if
20: return ∅
21: end if
22: Cu ← the set of max{r, |P ′u| − r + 1} leftmost customers in Pu /* Lemma 5(b)

*/
23: A← Assignment of Cu to fu

24: P ′′u ← P ′u \ Cu

25: while P ′′u is not empty do
26: Ans← Interval-r-gather(C \ Cu, F

′)
27: if Ans 6= ∅ then

return Assignment of Cu and C \ Cu by A and Ans, respectively
28: end if
29: ck ← leftmost customer in P ′′u /* (possibly with more customers) */
30: Cu ← Cu ∪ {ck}
31: A← Assignment of Cu to fu

32: P ′′u ← P ′′u \ {ck}
33: end while
34: return ∅

In the uniform distribution model, location of each customer ci is specified by
a probability density function gi : IR → IR+ ∪ {0} where gi(p) = 1/(ti − si) if
si ≤ p ≤ ti and gi(p) = 0 otherwise. We denote the uniform distribution between
[si, ti] by U(si, ti). The customer ci having a uniform distribution U(si, ti) is denoted
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Fig. 5. (a) Illustration of a uniform distribution and (b) corresponding function of expected dis-
tance.

by ci ∼ U(si, ti). Figure 5(a) illustrates a uniform distribution where si = 0 and
ti = 3. The range of U(si, ti), denoted by ei, is the value of ti − si, and the mean
of U(si, ti), denoted by µi, is the value of si+ti

2 . The uniform distribution model is
a special case of the histogram model described in Section 6.1. We now have the
following lemma.

Lemma 6.9. Let c ∼ U(s, t) be an uncertain customer. Then the function E[d(p, c)]
consists of a parabola in the interval [s, t] and two straight lines of slope +1 and
-1 in interval (t,∞) and (−∞, s), respectively. Furthermore, the minimum value of
E[d(p, c)] is e

4 and the value of E[d(p, c)] at s, t is e
2 .

Proof. We use the Equation 6.1 to compute the function E[d(p, c)].

E[d(p, c)] =


µ− p if p < s

1
e (p− µ)2 + e

4 if s ≤ p ≤ t
−µ+ p if p > t

(6.2)

At p = s we get E[d(s, C)] = 1
t−s

(
s− s+t

2
)2 + t−s

4 = t−s
2 = e

2 . Similarly,
E[d(t, C)] = e

2 . Now for p < s and p > t, E[d(p, c)] ≥ t−s
2 . The minimum value of

the parabola 1
t−s

(
p− s+t

2
)2 + t−s

4 is e
4 at p = s+t

2 .

We have the following lemma.

Lemma 6.10. Let c ∼ U(s, t) be an uncertain customer and b be a number. Then
the (c, b)-interval can be computed in O(1) time.

Proof. To find the (c, b)-interval, we first compute the inverse of the Equation 6.2.
For E[d(p, c)] = b > e

2 , we have p < s or p > t. Thus we get, p = µ ± b. For
e
4 ≤ E[d(p, c)] = b ≤ e

2 , we have s ≤ p ≤ t. Thus we get p = µ±
√
l(b− e

4 ). Finally
there is no p for which E[d(p, C)] < e

4 . Hence the (c, b)-interval for b < e
4 is empty.
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Thus the (c, b)-interval I can be written as following.

I =


[µ− b, µ+ b] if b > e

2

[µ−
√
l(b− e

4 ), µ+
√
l(b− e

4 )] if e
4 ≤ b ≤

e
2

∅ if b < e
4

(6.3)

By Equation 6.3 we can compute (c, b)-interval in O(1) time.

Let ci ∼ U(si, ti), cj ∼ U(sj , tj) be two uncertain customers. Let emax =
max{ei, ej} and emin = min{ei, ej}. We call ci, cj well-separated if none of
the intervals [si, ti] and [sj , tj ] is contained within the other and |µi − µj | ≥
1
2
√
emin(emax − emin).

Lemma 6.11. Let ci ∼ U(si, ti), cj ∼ U(sj , tj) be two uncertain well-separated
points and b be a number. Let Ii, Ij be the (ci, b)-interval and (cj , b)-interval respec-
tively. Then none of Ii and Ij is properly contained in the other.

Proof. Since ci and cj are well-separated, it is easy to observe that si = sj if and
only if ti = tj . In this case the claim trivially holds. We thus consider otherwise.
Without loss of generality we assume that, si < sj , ti < tj and ei ≤ ej . Since
si < sj and ti < tj , we get µi = si+ti

2 <
sj+tj

2 = µj . We now have two cases.
Case 1: ej ≥ 2ei. In this case we have three subcases to consider.

Case 1a: b > ej

2 .
By Equation 6.3 we get Ii = [µi − b, µi + b]. Similarly, we get Ij = [µj − b, µj + b].
Now since µi < µj , we get µi − b < µj − b and µi + b < µj + b. Thus none of Ii, Ij

is contained within the other.
Case 1b: ej

4 ≤ b ≤
ej

2 .
Since ej ≥ 2ei, we have ei

2 ≤
ej

4 . By Equation 6.3, Ii = [µi − b, µi + b] and Ij =
[µj −

√
ej(b− ej/4), µj +

√
ej(b+ ej/4)]. Assume for a contradiction that either Ii

or Ij is contained within the other. We first consider Ii is contained within Ij . Since
b > ei

2 , we get µi − b < si and µi + b > ti. On the other hand, since b ≤ ej

2 we get
µj −

√
ej(b− ej/4) ≥ sj and µj −

√
ej(b− ej/4) ≤ tj . Now since Ii is contained

within Ij , we have µj −
√
ej(b− ej/4) ≤ µi − b and µj +

√
ej(b− ej/4) ≥ µi + b.

Thus we get sj < si and ti < tj , a contradiction.
We now consider Ij is contained within Ii. In this case, µi− b ≤ µj−

√
ej(b− ej/4)

and µi + b ≥ µj +
√
ej(b− ej/4). Note that, the absolute value of the slope of

tangent of parabola 1
ej

(p− µj)2 + ej

4 at any point p ∈ [sj , tj ] is less than 1. Hence
the interval Ij at b = ej

4 must be contained within the interval Ii at b = ej

4 . At
b = ej

4 , we have Ii = [µi− ej

4 , µi + ej

4 ] and Ij = [µj , µj ]. Since Ij is contained within
Ii, we get µj − µi ≤ ej

4 . Now since Ii is not contained within Ij and ej ≥ 2ei, we
get sj = µj − ej

2 ≤ µi + ej

4 −
ei

2 = µi − ei

4 ≤ µi − ei

2 = si

Similarly, we can show tj ≥ ti. Thus Ii is contained within Ij , a contradiction.
Case 1c: b < ej

4 .
Since b < ej

4 , we get Ij = ∅. Thus the claim holds.
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Case 2: ej < 2ei. For this case, we have four subcases to consider.
Case 2a: b > ej

2 . Similar to Case 1a.
Case 2b: ei

2 < b ≤ ej

2 .
In this case by Equation 6.3, Ii = [µi− b, µi + b] and Ij = [µj −

√
ej(b− ej/4), µj +√

ej(b+ ej/4)]. Assume for a contradiction that either Ii or Ij is contained within
the other. We first consider Ii is contained within Ij . Since b > ei

2 , we get µi−b < si

and µi + b > ti. On the other hand, since b ≤ ej

2 we get µj −
√
ej(b− ej/4) ≥

sj and µj −
√
ej(b− ej/4) ≤ tj . Now since Ii is contained within Ij , we have

µj −
√
ej(b− ej/4) ≤ µi − b and µj +

√
ej(b− ej/4) ≥ µi + b. Thus we get sj < si

and ti < tj , a contradiction.
We now consider Ij is contained within Ii. In this case, µi− b ≤ µj−

√
ej(b− ej/4)

and µi + b ≥ µj +
√
ej(b− ej/4). Since the absolute value of the slope of tangent

of parabola 1
ej

(p − µj)2 + ej

4 at any point p ∈ [sj , tj ] is less than 1, the interval Ij

at b = ei

2 must be contained within the interval Ii at b = ei

2 . At b = ei

4 , we have
Ii = [µi − ei

2 , µi + ei

2 ] and Ij = [µj −
√
ej( ei

2 −
ej

4 ), µj +
√
ej( ei

2 −
ej

4 )]. Thus Ij is

contained within Ii if and only if µj −µi ≤ ei

2 −
1
2

√
ej( ei

2 −
ej

4 ). Now since ei ≤ ej ,
we have 2ei − ej ≤ ej . Hence we get,

ei

2 −
1
2

√
ej(ei

2 −
ej

4 ) ≤ ei

2 −−
1
2

√
(ei

2 −
ej

4 )2 = ej − ei

2

Thus Ij is contained within Ii if and only if µj − µi ≤ ej−ei

2 . Now since, none of
Ii, Ij is contained within the other, we have µj − µi >

ej−ei

2 .
Case 2c: ej

4 ≤ b ≤ ei

2 . In this case, Ii = [µi −
√
ei(b− ei/4), µi +

√
ei(b+ ei/4)]

and Ij = [µj −
√
ej(b− ej/4), µj +

√
ej(b+ ej/4)]. Assume for a contradiction

that Ii or Ij is contained within the other. We first consider Ii is contained within
Ij . Since µi ≤ µj , Ii is contained within Ij if and only if µi −

√
ei(b− ei/4) ≥

µj−
√
ej(b− ej/4) which yields µj−µi ≤

√
ej(b− ej/4)−

√
ei(b− ei/4). Similarly,

Ij is contained within Ii if and only if µj−µi ≤
√
ei(b− ei/4)−

√
ej(b− ej/4). Thus

either Ii or Ij is contained within the other if and only if µj−µi ≤ |
√
ej(b− ej/4)−√

ei(b− ei/4)|.
Let h(b) =

√
ej(b− ej/4)−

√
ei(b− ei/4). We now show that, the function h(b) is

increasing at any point b ≥ ej/4. Clearly, h(b) is not defined for b < ej/4. We can
calculate the derivative of h(b) as follows.

d

db
h(b) =

√
ej

4b− ej
−
√

ei

4b− ei
=
√
ej(4b− ei)−

√
ei(4b− ej)√

(4b− ej)(4b− ei)
.

Since ei ≤ ej , we get
√
ej(4b− ei) ≥

√
ei(4b− ej). Thus d

dbh(b) > 0 for any
b ≥ ej/4, and hence the function h(b) is increasing. We now show that the max-
imum value of |h(b)| within interval [] ej

4 ,
ei

2 ] is at b = ej/4. We first observe that
h(b) = 0 at b = ei+ej

4 . Since ej ≥ ei, ej+ei

4 ≥ ei

2 . Thus |h(b)| is decreasing in the
interval [ ej

4 ,
ei

2 ]. Hence the maximum value of |h(b)| within the interval [ ej

4 ,
ei

2 ] is at
b = ej

4 . Thus the maximum value of |h(b)| is
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∣∣∣h(ej

4

)∣∣∣ =
∣∣∣∣√ej

(ej

4 −
ej

4

)
−
√
ei

(ej

4 −
ei

4

)∣∣∣∣ = 1
2

√
ei (ej − ei)

Since ci, cj are well-separated, µj − µi cannot be greater than 1
2
√
ei(ej − ei), a

contradiction.
Case 2d: b < ej

4 . Similar to Case 1c.

If the customer locations are specified by well-separated uniform distributions,
we can solve the decision version of uncertain r-gathering problem by dynamic
programming as follows. A subproblem asks to determine whether there is an r-
gathering with cost at most b for the set of customers c1, c2, · · · , ci. Thus we have
at most n distinct subproblems, and to solve a subproblem we need to check n

smaller subproblems, so we can design an O(m+ n2) time algorithm.
We can improve the running time as follows. A subproblem SP (i) asks to find

a set of customers Ci and an interval r-gathering A of customers Ci ⊆ C to Fi =
{f1, f2, · · · , fi} such that (1) Ci contains every customer ci with t(ci) ≤ fi (possibly
with more customers), (2) fi serves at least r customers, and (3) maxc∈Ci

{t(c)} is
minimum. Let cz(i) be the customer with maxc∈Ci

{t(c)}. We can observe that there
is a proper interval r-gathering of C to F if and only if some SP (i) with fi ≥ s(cn)
has a solution.

Lemma 6.12. If SP (i) has a solution, then there is an interval r-gathering where
customers assigned to each open facility have consecutive right end-points.

Proof. In an interval r-gathering A we call a pair of customers cu, cv a reverse pair,
if t(cu) < t(cv) and A(cu) ≥ A(cv). Let Ci be the set of customers corresponding
to SP (i). For a contradiction, assume that there is no interval r-gathering where
customers assigned to each open facility is consecutive. Let Ai be an interval r-
gathering corresponding to SP (i) with minimum number of reverse pairs. Let cu, cv

be a reverse pair. Since all the intervals are proper, s(cu) < s(cv). Thus we have
s(cu) ≤ Ai(cv) ≤ t(cu), and s(cv) ≤ Ai(cu) ≤ t(cv). Now we can derive a new
r-gathering by reassigning cu to Ai(cv) and cv to Ai(cu), which reduces the number
of reverse pairs by one. A contradiction.

We now have the following lemma.

Lemma 6.13. If SP (i) and SP (j) have solutions and i < j, then t(cz(i)) ≤ t(cz(j)).

Proof. For a contradiction assume that t(cz(i)) > t(cz(j)). Let Aj be an interval
r-gathering corresponding to SP (j). Since all the intervals are proper, we have
s(cz(i)) > s(cz(j)), and s(cz(j)) ≤ fi. Let Cj be the set of customers assigned to
any facility between fi to fj (including fi, fj) in Aj . For any customer ck ∈ Cj , we
have s(ck) ≤ fi and t(ck) ≥ fi. We now derive a new interval r-gathering A′j by
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reassigning the leftmost r customers Cj to fi. Clearly, maxc∈Cj
{t(c)} < t(cz(i)) and

thus A′j is a solution of SP (i), a contradiction.

Using Lemma 6.12 and 6.13, we can determine whether SP (i) has a solution or
not. We have two cases. If fi ≤ t(c1), then SP (i) may have a solution with exactly
one open facility fi, and the solution exists if and only if fi is contained within at
least r intervals. Otherwise fi > t(c1), then SP (i) may have a solution with two or
more open facilities. In this case SP (i) has a solution if and only if for some j < i,
SP (j) has a solution, there is no customer c with fj < s(c) ≤ t(c) < fi, and there
are at least r customers in C \ Cj containing fi. Intuitively fj is a possible second
rightmost open facility in a solution of SP (i).

We fix the SP (j) with minimum j, if SP (i) has a solution, and we say fj the
mate of fi, and denoted as mate(fi). We have the following lemma.

Lemma 6.14. If SP (i) and SP (i+1) have solutions, then mate(fi) ≤ mate(fi+1).

Proof. For a contradiction assume that mate(fi) > mate(fi+1). Let fj = mate(fi)
and fj′ = mate(fi+1). By Lemma 6.13 we have t(cz(j)) ≥ t(cz(j′)). Since fj′ is mate
of fi+1, there is no customer c such that fj′ < s(c) ≤ t(c) < fi+1. If t(cz(j)) < fi,
then fj′ is also a mate of fj , a contradiction. Now if t(cz(j)) ≥ fj , then fj′ is a mate
of fj since t(cz(j′)) ≤ t(cz(j)), a contradiction.

We now have the following lemma.

Lemma 6.15. Let fi be a facility with fi > t(c1) and for some j < i, SP (j) has a
solution, and C \ Cj contains no customer c with fj < s(c) and t(c) < fi. Fix the
SP (j) with minimum j. Then the following holds.
(a) If C \ Cj has less than r customers containing fi, then no facility fj′ with
fj′ ≥ fj is a mate of fi, and SP (i) has no solution.
(b) If SP (i+ 1) has a solution, then mate(fi+1) ≥ fj.

Proof. (a) By Lemma 6.13 for any facility fj′ ≥ fj , if SP (j′) has a solution, then
t(cz(j′)) ≥ t(cz(j)). Thus the number of customers in C \ Cj′ containing fi in their
interval is less than r.
(b) Assume for a contradiction that mate(fi+1) ≤ fj . Let fi′ = mate(fi+1). Thus
there is no customer c with fi′ < s(c) and t(c) < fi+1. Since fi′ ≤ fi ≤ fi+1, there
is no customer c such that fi′ < s(c) and t(c) < fi. Hence, fi′ is the leftmost facility
such that SP (i′) has a solution and there is no customer c with fi′ < s(c) and
t(c) < fi, a contradiction.

By Lemma 6.14 and 6.15, we observe that we can search for mate(fi+1) from
where the search for mate of mate(fi) ends. We now give the following Algorithm
called Proper-interval-r-gather.

If the intervals are sorted according to their right end-points and the facilities are
ordered from left to right, then we can preprocess the set of customers containing
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Algorithm 5 Proper-interval-r-gather(C,F )
1: if |C| < r or F = ∅ then
2: return ∅
3: end if
4: i← 1
5: /* One open facility */
6: while fi ≤ t(c1) do
7: if fi ≥ s(cr) then
8: z(i)← r

9: mate(i)← −1 /* No mate */
10: end if
11: i← i+ 1
12: end while
13: j ← 1
14: /* Two or more open facilities */
15: while i ≤ m do
16: Ci ← {c1, c2, · · · , cz(i)}
17: while j ≤ i do
18: if C\Cj has at least r customers containing fi and C\Cj has no customer

c with fj < s(c) and t(c) < fi then
19: /* SP (i) has a solution */
20: z(i)← index of the r-th customer in C \ Cj containing fi

21: mate(i)← j

22: break
23: end if
24: if There is no customer between fj and fi, and C \ Cj has less than r

customers containing fi then
25: break /* SP (i) has no solution, Lemma 6.15(a) */
26: end if
27: j ← j + 1
28: end while
29: i← i+ 1
30: end while
31: if Some SP (i) with fi ≥ s(cn) has a solution then
32: j, last, A← mate(i), n, empty assignment
33: while j 6= −1 do
34: A′ ← assign {cz(j)+1, cz(j)+2, . . . , clast} to fi

35: Add assignment A′ to A
36: last, i← z(j), j
37: j ← mate(i)
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38: end while
39: return A

40: end if
41: return ∅

each facility in linear time. Each customer and each facility have to be processed
for a constant number of times. Hence the algorithm runs in O(n + m) time. We
thus have the following theorem.

Theorem 6.16. Let F = {f1, f2, · · · , fm} be a set of facilities on a line and C =
{c1, c2, · · · , cn} be a set of customers where each customer ci has an interval Ii =
[s(ci), t(ci)] and no interval is contained within any other interval. The algorithm
Proper-interval-r-gather decides whether there is an interval r-gathering of C
to F , and constructs one if exists in O(n+m) time.

We now give an outline of the algorithm to solve uncertain r-gathering problem
on a line where the customer locations are specified by well-separated uniform dis-
tributions. We first explain about preprocessing. Computing the function E[d(p, ci)]
for all the customers takes O(n) time. We can compute the expected distances be-
tween customer ci and all the facilities in O(m) time. Since the function E[d(p, ci)]
is unimodal, the expected distances between ci and all the facilities can be sorted
in O(m) time. Computing the expected distances between each pair of customers
and facilities takes O(mn) time and we can merge the of n sorted list of expected
distances in O(mn logn) time using min-heap. Thus we need O(mn logn) time
for the preprocessing. Now we explain about the main algorithm. We do binary
search on the ordered list of expected distances to find the optimal r-gathering.
Given b we can compute the (c, b)-intervals for all customers in O(n) time. The
(c, b)-intervals can be sorted in O(n logn) time. Then solving each decision instance
takes O(m + n) time. Thus we need O(n logn + m) time to solve the decision in-
stance. To find the optimal solution by binary search we need to solve the decision
instances logmn times, so O((n logn+m+ n) logmn) in total. Hence the running
time is O(mn logn+ (n logn+m) logmn). Thus we have the following theorem.

Theorem 6.17. Let F = {f1, f2, · · · , fm} be a set of facilities on a line and C =
{c1, c2, · · · , cn} be a set of customers where each customer ci has a well-separated
uniform distribution. Then an optimal r-gathering of C to F can be constructed in
O(mn logn+ (n logn+m) logmn) time.

7. Conclusion

In this paper we presented an O(n + ddrddr log d) time algorithm to solve rhe r-
gather clustering problem when all customers are lying on a star with d rays. We
also gave an O(n+m+(d+logm)d4r2 +ddrd2ddr log d) time algorithm to solve the
r-gathering problem when all customers and facilities are lying on a star with d rays.
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We also showed the hardness of min-max-sum r-gathering problem on a star. We also
give an O(nk+mn logn+ (m+n log kn+nr

n
r ) logmn) time algorithm for the one-

dimensional r-gathering problem when the customer locations are given by piecewise
uniform functions of at most k+1 pieces, and an O(mn logn+(n logn+m) logmn)
time algorithm for the one-dimensional r-gathering problem when the customer lo-
cations are given by well-separated uniform distributions.
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