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Abstract
The global earliest-deadline-first (GEDF) scheduler and its variants are soft-real-time (SRT) optimal
for periodic/sporadic tasks, meaning they provide bounded tardiness so long as the underlying
platform is not over-utilized. Although their SRT-optimality has long been known, tight tardiness
bounds for these schedulers have remained elusive. In this paper, a tardiness bound, that does
not depend on the processor or task count, is derived for pseudo-harmonic periodic tasks, which
are commonly used in practice, under global-EDF-like (GEL) schedulers. This class of schedulers
includes both GEDF and first-in-first-out (FIFO). This bound is shown to be generally tight via an
example. Furthermore, it is shown that exact tardiness bounds for GEL-scheduled pseudo-harmonic
periodic tasks can be computed in pseudo-polynomial time.
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1 Introduction

The rise of multicore platforms has generated much interest in global schedulers such as
the global earliest-deadline-first (GEDF) scheduler. Although the preemptive uniprocessor
earliest-deadline-first (EDF) scheduler is hard real-time (HRT) optimal, meaning it can
schedule any task system that does not over-utilize the underlying platform without any
deadline misses, preemptive GEDF1 is not HRT-optimal [10]. Despite this, GEDF and many
of its variants guarantee bounded tardiness on different types of multiprocessor platforms
for any task system that does not over-utilize the platform [9,20,26,28], making them soft
real-time (SRT) optimal. The significance of GEDF’s SRT-optimality is reflected by references
to it in the documentation of SCHED_DEADLINE [13], Linux’s GEDF implementation.

Unfortunately, all known tardiness bounds for GEDF and its variants increase with
respect to the number of processors. Moreover, experimental evaluations have shown that
these bounds tend to become looser as the processor count increases [27]. This causes the
corresponding SRT guarantees to be of questionable utility on large platforms and may
even increase system cost. For example, the ill effects of tardiness can be “hidden” by
buffering [11, 16] and the needed buffers must be sized based upon established tardiness
bounds. While HRT-optimal schedulers can ameliorate these problems by eliminating all
tardiness, they come at the expense of large overheads [2, 4, 5, 23]. Hence, a tardiness bound
that does not scale with the number of tasks or processors under practical global schedulers

1 All schedulers mentioned herein are assumed to be preemptive unless noted otherwise.
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like GEDF would be desirable; the derivation of such a bound has remained an open problem
since the first work on SRT-optimality in 2005 [8].

In this paper, we close this problem for an important category of task systems, namely
pseudo-harmonic periodic task systems, where every period divides the maximum period. In
particular, we establish a tight tardiness bound for pseudo-harmonic periodic tasks under
global-EDF-like (GEL) schedulers on identical multiprocessor platforms. Our tardiness bound
does not depend on the processor or task count, but scales with respect to the task parameters,
e.g, periods. The class of GEL schedulers includes not only GEDF, but first-in-first-out (FIFO)
and various other related schedulers. Pseudo-harmonic tasks are common in automotive
applications [17]. Moreover, the class of pseudo-harmonic task systems contains harmonic
task systems, where every period is an integer multiple of each smaller period. Harmonic
task systems are common in different application domains such as avionics, robotics, control
applications, etc. [3, 6, 14, 21,24]. To our knowledge, we are the first to establish a tardiness
bound that is tight in general for a class of task systems of practical interest under a job-level
fixed-priority global scheduler. Our work was inspired by prior seminal work on the periodic
behavior of GEDF schedules for HRT periodic systems [7, 15,22].
Prior work. The SRT-optimality of GEDF on identical multiprocessor platforms was first
shown by Devi and Anderson [9]. A tighter tardiness bound under GEDF can be obtained by
compliant vector analysis (CVA), proposed by Erickson et. al [11,12]. The current best-known
GEDF tardiness bound, the harmonic bound, was given by Valente [27]. Window-constrained
schedulers, a class of schedulers containing all GEL schedulers, were proven to be SRT-
optimal by Leontyev and Anderson [20]. Recent works have established the SRT-optimality
of both GEDF on uniform heterogeneous multiprocessor platforms, and window-constrained
schedulers on identical multiprocessor platforms with arbitrary affinity masks [25,28].
Contributions. Our contributions are four-fold. First, we give a tardiness bound that is
independent of the task or processor count for pseudo-harmonic periodic tasks under GEL
schedulers. In a GEL scheduler, each task has a task-level fixed parameter called its relative
priority point, which is used to assign a priority point (PP) to each of its jobs: the PP of a
job is determined by adding its task’s relative PP to the job’s release time. The priority of a
job is determined by its PP, with earlier PPs denoting higher priority. For example, under
GEDF (resp., FIFO), a job’s PP is given by its deadline (resp., release time). Additionally, we
show that our bound can be exploited to ensure tardiness bounds that do not depend on the
processor count for pseudo-harmonic sporadic tasks by using periodic servers scheduled by a
GEL scheduler. Second, we show the general tightness of our bound by an example. Third,
we give an upper bound on the length of the interval that needs to be simulated to derive an
exact tardiness bound of any task in a pseudo-harmonic periodic task system. Using this, we
show how to determine exact tardiness bounds in pseudo-polynomial time. To our knowledge,
this is the first work on GEL schedulers that shows how to bound tardiness exactly. Fourth,
we compare both of our bounds with each other and prior bounds by simulation experiments.
Organization. In the rest of this paper, we give necessary background information (Sec. 2),
derive a tight tardiness bound for GEL schedulers (Sec. 3), show how to determine exact
tardiness bounds in pseudo-polynomial time via schedule simulation (Sec. 4), discuss our
experimental results (Sec. 5), and conclude (Sec. 6).

2 Preliminaries

We consider a task system τ consisting of n implicit-deadline periodic tasks τ1, τ2, . . . , τn to
be scheduled on m identical processors. Each task τi releases a potentially infinite sequence
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of jobs τi,1, τi,2, . . .. The period of task τi, denoted by Ti, is the separation time between two
consecutive job releases by it. The largest period among all tasks is denoted by Tmax. A
task system is called sporadic when the separation time between consecutive jobs of each
task τi can be more than Ti. The worst-case execution cost of τi is denoted by Ci. The offset
of a periodic task τi, denoted by Φi, is the release time of τi,1. The relative deadline of τi is
Di = Ti. For brevity, we denote a periodic task τi by (Φi, Ci, Ti).

The release time, absolute deadline, completion time, and execution cost of job τi,k are
denoted by ri,k, di,k, fi,k, and Ci,k, respectively. The jobs of each task are sequential, i.e.,
τi,k+1 cannot start execution before τi,k completes. The tardiness of a job τi,k is defined as
max{0, fi,k − di,k}. The tardiness of task τi is the maximum tardiness among any of its jobs.

The utilization of τi is ui = Ci/Ti. The utilization of the task system τ is U =
∑n

i=1 ui.
We require ui ≤ 1.0 and U ≤ m to hold; both are necessary for bounded tardiness [9]. The
hyperperiod H is the least common multiple of all periods. The periods are pseudo-harmonic
when each period divides Tmax, i.e., H = Tmax holds.

The relative PP of a task τi is denoted by Yi. We assume Yi ≥ 0 holds for each task τi.
The maximum and minimum relative PP among all tasks in τ are denoted by Ymax and
Ymin, respectively. The priority point (PP) of a job τi,k, denoted by yi,k, is defined as

yi,k = ri,k + Yi. (1)

If yi,k < yj,ℓ, then job τi,k has higher priority than job τj,ℓ. We assume ties to be broken
arbitrarily but consistently by task index.

We assume time to be discrete and a unit of time to be 1.0. All scheduling decisions are
taken at integer points in time. We also assume all task parameters to be integers. Therefore,
when a task τi executes during an unit interval [t − 1, t), it means τi continuously executes
during [t − 1, t). A job completes execution at t if it executes for the last time during [t − 1, t).
A job completes execution before t if it completes at or before t − 1. (It can be shown that
the tardiness bound presented in Sec. 3 also holds when time is continuous.) The following
definitions closely follow from material in [1, 9, 28].

▶ Definition 1. A job τi,k is active at time t in a schedule S if ri,k ≤ t < di,k.

▶ Definition 2. A job τi,k is pending at time t in a schedule S if ri,k ≤ t and τi,k has not
completed execution at or before t in S.

Allocation. The cumulative processor capacity allocated to a task τi (resp., task system
τ) in a schedule S over an interval [t, t′) is denoted by Ai(t, t′, S) (resp., A(t, t′, S)). Thus,
A(t, t′, S) =

∑
τi∈τ Ai(t, t′, S).

Ideal schedule. Let π̂1, π̂2, . . . , π̂n be n processors with speeds u1, u2, . . . , un, respectively.
In an ideal schedule I, each task τi is partitioned to execute on processor π̂i. Each job
starts execution as soon as it is released and completes execution by its deadline in I. For
task τi (resp., task system τ), Ai(t, t′, I) ≤ ui(t′ − t) (resp., A(t, t, I) ≤ U(t′ − t)) holds. If
τi is periodic and each job executes for its worst case Ci, then Ai(t, t′, I) = ui(t′ − t) where
t, t′ ≥ Φi.
lag and LAG. The lag of a task τi at time t in a schedule S is defined as

lagi(t, S) = Ai(0, t, I) − Ai(0, t, S). (2)

Since lagi(0, S) = 0, for t′ ≥ t we have

lagi(t′, S) = lagi(t, S) + Ai(t, t′, I) − Ai(t, t′, S). (3)

ECRTS 2021
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Figure 1 (a) A GEDF schedule and (b) an ideal schedule of the task system in Ex. 3.

The LAG of a task system τ in a schedule S at time t is defined as

LAG(t, S) =
∑
τi∈τ

lagi(t, S) = A(0, t, I) − A(0, t, S). (4)

Since LAG(0, S) = 0, for t′ ≥ t we have

LAG(t′, S) = LAG(t, S) + A(t, t′, I) − A(t, t′, S). (5)

▶ Example 3. Consider a periodic task system τ with tasks τ1 = (0, 2, 3), τ2 = (0, 2, 3), and
τ3 = (0, 4, 6). A GEDF schedule S and an ideal schedule I of the task system is shown in
insets (a) and (b) of Fig. 1, respectively. τ1’s allocation over interval [0, 5) in S and I are 4.0
and 10/3 execution units, respectively. τ1’s lag in S at time 5 is lag1(5, S) = 10/3−4 = −2/3.
The LAG of the task system τ at time 5 is 1.0. ◀

3 Tardiness Bound

In this section, we derive a tardiness bound for pseudo-harmonic periodic task systems under
a GEL scheduler. We assume n > m as each job meets its deadline otherwise. We initially
assume the following, which we relax later.

(B) Each job of any task τi executes for its worst-case execution cost Ci.
We consider a GEL schedule S of τ satisfying (B) to derive our tardiness bound. We derive our
tardiness bound (Theorem 28) by giving an upper bound on per-task lag (Lemma 27) using a
lag-monotonicity property (Lemma 17). Informally, the lag-monotonicity property states that
no task τi receives more allocation in S than I, i.e., lag does not decrease, over any interval of
length Tmax beginning at or after Φi. We first establish the lag-monotonicity property using
a series of properties of lag proved in Sec. 3.1. We then use the lag-monotonicity property to
derive our tardiness bound in Sec. 3.2.

3.1 lag Properties
We begin by proving some properties of lag. All properties specified here also hold for
non-pseudo-harmonic periodic task systems satisfying (B) with Tmax replaced by H in the
properties that reference Tmax. Since the lag-monotonicity property compares lag values
between two time instants, we first establish several properties concering such comparisons
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between a pair of lag values (Lemmas 11–15) based on the simpler properties of lag (Lemmas 4–
10). Readers familiar with the concept of lag may skip the proofs of Lemmas 4–10.

▶ Lemma 4. For any task τi and interval [t, t′) with t ≥ Φi, the following hold.
(a) If τi continuously executes during [t, t′) in S, then lagi(t′, S) = lagi(t, S) + (t′ − t)(ui − 1).
(b) If τi does not execute during [t, t′) in S, then lagi(t′, S) = lagi(t, S) + (t′ − t)ui.

Proof. Since t ≥ Φi, by the definition of I, we have Ai(t, t′, I) = (t′ − t)ui.
(a) Since τi continuously executes throughout [t, t′) in S, Ai(t, t′, S) = (t′ − t) holds. Substi-
tuting Ai(t, t′, I) and Ai(t, t′, S) in (3), we have lagi(t′, S) = lagi(t, S) + (t′ − t)ui − (t′ − t) =
lagi(t, S) + (t′ − t)(ui − 1).
(b) Since τi does not execute during [t, t′) in S, we have Ai(t, t′, S) = 0. Substituting Ai(t, t′, I)
and Ai(t, t′, S) in (3), we have lagi(t′, S) = lagi(t, S)+(t′ −t)ui −0 = lagi(t, S)+(t′ −t)ui. ◀

▶ Lemma 5 ([28]). If lagi(t, S) > 0, then τi has a pending job at t in S.

The following lemma states that the lag of any task τi is non-negative in S at any time
instant t when it releases a job. Intuitively, all of τi’s jobs released before t complete execution
in I by time t, and thus, τi cannot receive more allocation in S than I.

▶ Lemma 6. For any task τi and non-negative integer c, lagi(Φi + cTi, S) ≥ 0.

Proof. If c = 0, then the lemma trivially holds. Assume that there is a task τi and an integer
c ≥ 1 such that lagi(Φi +cTi, S) < 0 holds. Then, by (2), Ai(0, Φi +cTi, S) > Ai(0, Φi +cTi, I)
holds. Since τi releases periodically, Φi + cTi is the deadline (resp., release time) of τi,c−1
(resp., τi,c). By the definition of I, all jobs of τi released before Φi + cTi complete execution
by time Φi + cTi in I. Since no job can execute before its release, Ai(0, Φi + cTi, S) cannot
be larger than Ai(0, Φi + cTi, I), a contradiction. ◀

Lemmas 7–10 give relationships among a task τi’s lag at time t, its utilization, and the
deadline or release time of a job of τi. We prove these lemmas by expressing τi’s allocation
in S by time t in terms of τi’s utilization and the deadline or release time of a job of τi.

▶ Lemma 7. If τi has no pending job at time t ≥ Φi in S and τi,k is the active job of τi at t,
then lagi(t, S) = (t − di,k)ui.

Proof. Since τi,k completes execution at or before t, all jobs of τi released at or before ri,k

complete execution at or before t. Since t < di,k, no jobs released after ri,k execute before t.
Hence, Ai(0, t, S) =

∑k
j=1 Ci =

∑k
j=1 Tiui =

∑k
j=1(ri,j+1 − ri,j)ui = (ri,k+1 − ri,1)ui =

(di,k − Φi)ui. By the definition of I, we have Ai(0, t, I) = (t − Φi)ui. Substituting Ai(0, t, I)
and Ai(0, t, S) in (2), we have lagi(t, S) = (t − Φi)ui − (di,k − Φi)ui = (t − di,k)ui. ◀

For the task set in Ex. 3 and its GEDF schedule in Fig. 1(a), τ1’s active job at time 2 is τ1,1 and
it has no pending job at time 2 in S. The lag of τ1 at time 2 in S is lag1(2, S) = (2−3) 2

3 = − 2
3 .

▶ Lemma 8. If τi,k completes execution at or before t ≥ Φi in S, then lagi(t, S) ≤ (t−di,k)ui.

Proof. Since τi,k completes execution at or before t, all jobs of τi released at or before
ri,k complete execution at or before t. Hence, Ai(0, t, S) ≥

∑k
j=1 Ci =

∑k
j=1 Tiui =∑k

j=1(ri,j+1 − ri,j)ui = (ri,k+1 − ri,1)ui = (di,k − Φi)ui. By the definition of I, we have
Ai(0, t, I) = (t − Φi)ui. Substituting Ai(0, t, I) and Ai(0, t, S) in (2), we have lagi(t, S) =
Ai(0, t, I) − Ai(0, t, S) ≤ (t − Φi)ui − (di,k − Φi)ui = (t − di,k)ui. ◀

▶ Lemma 9. If τi has a pending job τi,k at t ≥ Φi in S, then lagi(t, S) > (t − di,k)ui.

ECRTS 2021
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Proof. Since τi,k is pending at time t, we have Ai(0, t, S) <
∑k

j=1 Ci =
∑k

j=1 Tiui =∑k
j=1(ri,j+1 − ri,j)ui = (ri,k+1 − ri,1)ui = (di,k − Φi)ui. By the definition of I, Ai(0, t, I) =

(t−Φi)ui holds. Substituting Ai(0, t, I) and Ai(0, t, S) in (2), we have lagi(t, S) = Ai(0, t, I)−
Ai(0, t, S) > (t − Φi)ui − (di,k − Φi)ui = (t − di,k)ui. ◀

▶ Lemma 10. If τi,k is the earliest pending job of τi at t ≥ Φi in S, then lagi(t, S) ≤
(t − ri,k)ui.

Proof. Since τi,k is the earliest pending job of τi at t, all jobs of τi prior to τi,k complete
execution at or before t. Thus, Ai(0, t, S) ≥

∑k−1
j=1 Ci =

∑k−1
j=1 Tiui =

∑k−1
j=1 (ri,j+1 −ri,j)ui =

(ri,k −ri,1)ui = (ri,k −Φi)ui. By the definition of I, Ai(0, t, I) = (t−Φi)ui holds. Substituting
Ai(0, t, I) and Ai(0, t, S) in (2), we have lagi(t, S) ≤ (t−Φi)ui−(ri,k −Φi)ui = (t−ri,k)ui. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), τ3,1 is τ3’s earliest pending
job at at time 4. τ3’s lag at time 4 is 4 × 2/3 − 1 = 5/3. By Lemma 9, lag3(4, S) = 5/3 >

(4 − 6) × 2/3 = −4/3. By Lemma 10, lag3(4, S) = 5/3 ≤ (4 − 0) × 2/3 = 8/3.
Using Lemmas 7–10, we now prove Lemmas 11–14, which pertain to the relationship

between the lag of a task τi at a pair of time instants that are separated by an integer
multiple of τi’s period. For any integer c and any pair of time instants t, t + cTi ≥ Φi, the
active jobs of τi at t and t + cTi receive the same allocation in I by time t and t + cTi,
respectively. If τi’s active job τi,k at t completes execution in S at or before t, then τi,k+c

cannot receive more allocation by time t + cTi than τi,k receives by t. The following lemma
pertains to this scenario.

▶ Lemma 11. For any time t and integer c such that min{t, t + cTi} ≥ Φi, if τi has no
pending job at t in S, then lagi(t, S) ≤ lagi(t + cTi, S).

Proof. Let τi,k be the active job of τi at t, i.e., ri,k ≤ t < di,k. Since τi has no pending job
at t ≥ Φi, by Lemma 7 we have

lagi(t, S) = (t − di,k)ui. (6)

Since the jobs of a task are released periodically and t + cTi ≥ Φi holds, τi,k+c is the active
job of τi at time t + cTi. By Lemmas 7 and 9, we have

lagi(t + cTi, S) ≥ (t + cTi − di,k+c)ui

= {Since τi releases periodically, di,k+c = di,k + cTi}
(t + cTi − di,k − cTi)ui

= (t − di,k)ui

= {By (6)}
lagi(t, S). ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), τ2 has no pending job at time 5
but has a pending job at time 8 in S. By Lemma 11, lag2(5, S) = −2/3 ≤ 4/3 = lag2(8, S).

The following lemma considers the case when lagi(t, S) is not larger than lagi(t + cTi, S).
Informally, for any non-negative integer c, τi receives no more than cTiui = c · Ci units of
allocation over the interval [t, t + cTi). Therefore, if τi,k is pending at t, then τi,k+c must
also be pending at t + cTi.

▶ Lemma 12. For any integer c such that min{t, t + cTi} ≥ Φi, if lagi(t, S) ≤ lagi(t + cTi, S)
holds and τi,k is the earliest pending job of τi at t in S, then τi,k+c is pending at t + cTi in S.
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Proof. Assume for a contradiction that τi,k+c is not pending at time t + cTi. Since τi,k is
pending at t ≥ Φi, ri,k ≤ t holds, and by Lemma 9 we have

lagi(t, S) > (t − di,k)ui. (7)

Since jobs are released periodically and ri,k ≤ t holds, we have ri,k+c ≤ t + cTi. Thus, τi,k+c

finishes execution at or before t + cTi (as it is not pending then). By Lemma 8, we have

lagi(t + cTi, S) ≤ (t + cTi − di,k+c)ui

= {Since τi releases periodically, di,k+c = di,k + cTi}
(t + cTi − di,k − cTi)ui

= (t − di,k)ui

< {By (7)}
lagi(t, S),

a contradiction. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), lag2(4, S) = −1/3 ≤ 2/3 =
lag2(7, S). By Lemma 12, since τ2,2 is the earliest pending job of τ2 at time 4 in S and time 7
corresponds to c = 1, τ2,3 is pending at time 7 in S.

Similarly, we consider the case where lagi(t, S) is either not smaller or larger than
lagi(t + cTi, S).

▶ Lemma 13. For any integer c such that min{t, t + cTi} ≥ Φi, if τi,k is the earliest pending
job of τi at time t in S, then the following hold.
(a) If lagi(t, S) ≥ lagi(t + cTi, S), then all jobs of τi released before ri,k+c complete execution
at or before t + cTi in S.
(b) If lagi(t, S) > lagi(t + cTi, S), then all jobs of τi released before ri,k+c complete execution
before t + cTi in S.

Proof. If k + c = 1, then ri,k+c = ri,1 = Φi and the lemma trivially holds. So assume
k + c > 1. Since τi,k is the earliest pending job at t ≥ Φi, by Lemma 10,

lagi(t, S) ≤ (t − ri,k)ui. (8)

(a) Assume for a contradiction that τi has a job that is released before ri,k+c but does not
complete execution at or before t+cTi. Therefore, τi,k+c−1 does not complete execution at or
before t + cTi as the jobs of each task are sequential. Since τi,k is the earliest pending job of
τi at t, we have ri,k ≤ t. Since jobs are released periodically, we have ri,k+c ≤ t + cTi, which
implies ri,k+c−1 ≤ t + cTi. Therefore, τi,k+c−1 is pending at t + cTi. Thus, by Lemma 9,

lagi(t + cTi, S) > (t + cTi − di,k+c−1)ui

= {Since τi releases periodically, di,k+c−1 = di,k + (c − 1)Ti}
(t + cTi − di,k − (c − 1)Ti)ui

= (t − di,k + Ti)ui

= {Since ri,k = di,k − Ti}
(t − ri,k)ui

≥ {By (8)}
lagi(t, S),

ECRTS 2021
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a contradiction.
(b) Since lagi(t, S) > lagi(t+cTi, S), by (a), all jobs of τi released before ri,k+c finish execution
at or before t + cTi. Assume that they do not complete execution before t + cTi. Thus, they
complete execution at t + cTi, and no job released at or after ri,k+c executes at or before
t + cTi. Thus, Ai(0, t + cTi, S) =

∑k+c−1
j=1 Ci =

∑k+c−1
j=1 Tiui =

∑k+c−1
j=1 (ri,j+1 − ri,j)ui =

(ri,k+c − Φi)ui = (ri,k + cTi − Φi)ui. Thus, by the definition of I and (2), lagi(t + cTi, S) =
(t + cTi − Φi)ui − (ri,k + cTi − Φi)ui = (t − ri,k)ui ≥ lagi(t, S), a contradiction. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), lag2(8, S) = 4/3 > 1/3 =
lag2(11, S). By Lemma 13(b), since τ2,3 is the earliest pending job of τ2 at time 8 in S and
time 11 corresponds to c = 1, all jobs of τ2 prior to τ2,4 complete execution before time 11
in S.

We now utilize Lemmas 12 and 13(a) to establish a necessary condition for lagi(t, S) =
lagi(t + cTi, S) to hold. Intuitively, if lagi(t, S) = lagi(t + cTi, S) holds, then in S any job
τi,k’s allocation at or before t must equal the allocation of job τi,k+c at or before t + cTi.

▶ Lemma 14. For any time t and integer c such that min{t, t + cTi} ≥ Φi, if lagi(t, S) =
lagi(t + cTi, S), then the following hold.
(a) If there is no pending job of τi at t in S, then there is no pending job of τi at t + cTi in S.
(b) If τi,k is the earliest pending job of τi at t in S, then τi,k+c is the earliest pending job of
τi at t + cTi in S.

Proof. (a) Assume that there is a pending job of τi at t + cTi and let τi,k be the earliest
pending job of τi at t+ cTi. Substituting t and c in Lemma 12 by t+ cTi and −c, respectively,
job τi,k−c is pending at t, a contradiction.
(b) By Lemma 12, τi,k+c is pending at t + cTi. By Lemma 13(a), all jobs of τi released before
ri,k+c finish execution at or before t + cTi. Thus, τi,k+c is the earliest pending job of τi at
t + cTi. ◀

We now give a necessary condition for the lag-monotonicity property to not hold.

▶ Lemma 15. Let t ≥ Φi + Tmax be the first time instant (if one exists) such that lagi(t −
Tmax, S) > lagi(t, S) holds in S. Then, the following hold.
(a) t > Φi + Tmax.
(b) τi executes during [t − 1, t), but does not execute during [t − Tmax − 1, t − Tmax) in S.

Proof. (a) Assume that t = Φi + Tmax. Since t − Tmax = Φi, we have lagi(t − Tmax, S) =
lagi(Φi, S) = 0. Since Ti divides Tmax, by Lemma 6, we have lagi(t, S) = lagi(Φi +Tmax, S) ≥
0. Therefore, lagi(t − Tmax, S) ≤ lagi(t, S), a contradiction.
(b) By (a), t − 1 ≥ Φi + Tmax holds. By the definition of t, we have

lagi(t − Tmax − 1, S) ≤ lagi(t − 1, S). (9)

Assume that τi does not execute during [t−1, t) or does execute during [t−Tmax −1, t−Tmax).
Then, one of the following three cases holds.
Case 1. τi executes during both [t − Tmax − 1, t − Tmax) and [t − 1, t). By Lemma 4(a),

lagi(t − Tmax, S) = lagi(t − Tmax − 1, S) + ui − 1, (10)

and

lagi(t, S) = lagi(t − 1, S) + ui − 1. (11)
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Since lagi(t − Tmax, S) > lagi(t, S), by (10) and (11), we have lagi(t − Tmax − 1, S) >

lagi(t − 1, S), which contradicts (9).
Case 2. τi does not execute during both [t−Tmax −1, t−Tmax) and [t−1, t). By Lemma 4(b),

lagi(t − Tmax, S) = lagi(t − Tmax − 1, S) + ui, (12)

and

lagi(t, S) = lagi(t − 1, S) + ui. (13)

Since lagi(t − Tmax, S) > lagi(t, S), by (12) and (13), we have lagi(t − Tmax − 1, S) >

lagi(t − 1, S), which contradicts (9).
Case 3. τi executes during [t − Tmax − 1, t − Tmax) but does not execute during [t − 1, t).
Thus, (10) and (13) hold. Therefore, by (10), we have

lagi(t − Tmax − 1, S) = lagi(t − Tmax, S) + 1 − ui

≥ {Since ui ≤ 1}
lagi(t − Tmax, S)

> {By the definition of t}
lagi(t, S)

≥ {By (13) and ui ≥ 0}
lagi(t − 1, S),

a contradiction to (9). ◀

▶ Definition 16. Let hi = Tmax/Ti.

The following lemma gives a lag-monotonicity property for SRT-schedulable systems that is
similar to one given previously for HRT-schedulable systems under a job-level fixed-priority
scheduler [7]. Informally, we show that, using Lemmas 11–13 and 15, no task can receive more
allocation in S than I over an interval [t − Tmax, t) because of the existence of higher-priority
jobs of other tasks, i.e., over-allocating a task would require under-allocating another task,
violating the priority ordering of the jobs.

▶ Lemma 17. For any task τi and any time t ≥ Φi + Tmax, lagi(t − Tmax, S) ≤ lagi(t, S).

Proof. We use Fig. 2 to illustrate the proof. Assume for a contradiction that t is the first
time instant such that t ≥ Φi + Tmax and there is a task τi with lagi(t − Tmax, S) > lagi(t, S).
By Lemma 15(b), τi executes during [t − 1, t). Let τi,p be the job of τi that executes during
[t − 1, t). Since Ti divides Tmax, by the contrapositive of Lemma 11 (with t and c replaced
by t − Tmax and hi, respectively), there is a pending job of τi at t − Tmax. Let τi,k be the
earliest pending job of τi at t − Tmax.

▷ Claim. ri,k < t − Tmax.

Proof. Assume otherwise. Then, ri,k = t−Tmax and lagi(t−Tmax, S) = 0 hold. Since jobs
are released periodically and t = ri,k + Tmax holds, there is a non-negative integer c such
that t = Φi + cTi, which by Lemma 6 implies lagi(t, S) = lagi(Φi + cTi, S) ≥ 0. Therefore,
lagi(t − Tmax, S) = 0 ≤ lagi(t, S), and t cannot be a time instant with lagi(t − Tmax, S) >

lagi(t, S). Therefore, ri,k < t − Tmax holds. ◀

ECRTS 2021



11:10 Tight Tardiness Bounds under GEL Schedulers

tt− Tmaxt− Tmax − 1 t− 1
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release
deadline
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Figure 2 Illustration of the proof of Lemma 17.

By the above claim, τi,k is pending at t − Tmax − 1. By Lemma 15(b), τi,k does not execute
during [t − Tmax − 1, t − Tmax) (see Fig. 2). Since lagi(t − Tmax, S) > lagi(t, S), substituting
t and c in Lemma 13(b) by t − Tmax and hi (Def. 16), respectively, all jobs of τi released
before ri,k+hi

complete execution before t (at or before t − 1). Thus, p ≥ k + hi and we have

yi,p ≥ yi,k+hi

= {Since τi releases periodically, yi,k+hi
= yi,k + hiTi holds and by Def. 16}

yi,k + Tmax. (14)

Since τi,k is pending but does not execute during [t−Tmax −1, t−Tmax) and τi,p executes
during [t − 1, t), there must be a task τj that executes during [t − Tmax − 1, t − Tmax), but
does not execute during [t−1, t). Let τj,ℓ executes during [t−Tmax −1, t−Tmax) (see Fig. 2).
By Lemma 15(a), t > Φi + Tmax, and hence, t − 1 ≥ Φi + Tmax. Thus, by the definition of t,
lagj(t−Tmax −1, S) ≤ lagj(t−1, S) holds. Since τj,ℓ executes during [t−Tmax −1, t−Tmax),
it is the earliest pending job of τj at t − Tmax − 1. Substituting τi,k, t, and c in Lemma 12
by τj,ℓ, t − Tmax − 1, and hj , respectively, τj,ℓ+hj

is pending at t − 1. Therefore, τj has a
pending job at t − 1; let τj,q be the earliest pending job of τj at t − 1. Thus, we have

yj,q ≤ yj,ℓ+hj

= {Since τj releases periodically, yj,ℓ+hj
= yj,ℓ + hjTj holds and by Def. 16}

yj,ℓ + Tmax. (15)

Since τi,k is the earliest pending job of τi at t − Tmax − 1 but does not execute during
[t − Tmax − 1, t − Tmax), and τj,ℓ executes during [t − Tmax − 1, t − Tmax), we have two cases.
Case 1. yj,ℓ < yi,k. Substituting yj,ℓ by yi,k in (15), we have

yj,q < yi,k + Tmax

≤ {By (14)}
yi,p.

Therefore, τj,q has higher priority than τi,p. Hence, τi,p cannot execute during [t − 1, t), while
τj,ℓ is not executing during [t − 1, t), a contradiction.
Case 2. yj,ℓ = yi,k and j < i (as ties are broken by task index). Substituting yj,ℓ by yi,k in
(15), we have

yj,q ≤ yi,k + Tmax

≤ {By (14)}
yi,p.

Therefore, τj,q has higher or equal priority than τi,p. Since j < i, τi,p cannot execute during
[t − 1, t), while τj,ℓ is not executing during [t − 1, t), a contradiction. ◀

By (4) and Lemma 17, we have the following LAG-monotonicity property.



S. Ahmed and J. H. Anderson 11:11

▶ Corollary 18. For any time instant t ≥ Φmax + Tmax, LAG(t − Tmax, S) ≤ LAG(t, S).

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), we have Tmax = 6,
lag2(4, S) = −1/3 ≤ 2/3 = lag2(10, S) and LAG(4, S) = 1 ≤ 2 = LAG(10, S).

The following lemma, proved in [28], gives a relationship between lag and the deadline of
the earliest pending job of a task. The lemma, originally proved for GEDF, holds for any
schedule S provided that tasks are periodic and (B) holds.

▶ Lemma 19 ([28]). If τi,k is the earliest pending job of τi at time t in S, then

di,k ≤ t − lagi(t, S)
ui

+ Ti. (16)

▶ Corollary 20. If τi,k is the earliest pending job of τi at t in S, then yi,k ≤ t − lagi(t,S)
ui

+ Yi.

Proof. Adding (Yi − Ti) in both side of (16), we have

di,k + (Yi − Ti) ≤ t − lagi(t, S)
ui

+ Ti + (Yi − Ti),

which by (1) and the expression di,k = ri,k + Ti implies

yi,k ≤ t − lagi(t, S)
ui

+ Yi. ◀

The following lemma provides a relationship between lag and tardiness. The proof of this
lemma only depends on Lemma 19.

▶ Lemma 21 ([28]). If lagi(t, S) ≤ Li holds for any t, then the tardiness of τi is at most Li

ui
.

3.2 Deriving Tardiness Bounds
We now derive tardiness bounds for pseudo-harmonic periodic tasks using the properties of
lag derived in Sec. 3.1. We derive our tardiness bounds by first deriving an upper bound
on the lag (Lemma 27) of any task τi, and then applying Lemma 21 on the derived upper
bound. To derive an upper bound on per-task lag, we first give Lemmas 23–26. Def. 22 is
adapted from [1,9, 20].

▶ Definition 22. A time instant t is called busy if at least ⌈U⌉ tasks have pending jobs at
t, and non-busy otherwise. A time interval [t, t′) is called busy (resp., non-busy) if each
instant in the interval is busy (resp., non-busy).

▶ Lemma 23. If τi continuously executes during [t, t′) in S, then lagi(t′, S) ≤ lagi(t, S).

Proof. Follows from Lemma 4(a) and ui ≤ 1. ◀

▶ Lemma 24. If [t, t′) is a busy interval in S, then LAG(t′, S) ≤ LAG(t, S).

Proof. By the definition of I, A(t, t′, I) ≤ U(t′ − t) holds. By Def. 22, we have A(t, t′, S) ≥
⌈U⌉(t′ − t). Therefore, by (5) and U ≤ ⌈U⌉, LAG(t′, S) = LAG(t, S)+A(t, t′, I)−A(t, t′, S) ≤
LAG(t, S) + U(t′ − t) − ⌈U⌉(t′ − t) ≤ LAG(t, S). ◀

▶ Lemma 25. For any t ≥ Φmax + Tmax, if LAG(t − Tmax, S) = LAG(t, S) holds, then for
each τi, lagi(t − Tmax, S) = lagi(t, S) holds.
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Figure 3 Illustration of the proof of Lemma 27.

Proof. Assume that there is a task τi with lagi(t − Tmax, S) ̸= lagi(t, S). Since t ≥ Φmax +
Tmax, by Lemma 17, lagj(t − Tmax, S) ≤ lagj(t, S) holds for any task τj including τi.
Therefore, lagi(t − Tmax, S) < lagi(t, S) holds. By (4), we have

LAG(t − Tmax, S) =
∑

τj∈τ\{τi}

lagj(t − Tmax, S) + lagi(t − Tmax, S)

< {Since lagi(t − Tmax, S) < lagi(t, S) and for all j,
lagj(t − Tmax, S) ≤ lagj(t, S)}∑

τj∈τ\{τi}

lagj(t, S) + lagi(t, S)

= LAG(t, S),

a contradiction. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), LAG(7, S) = 2 = LAG(13, S)
holds. By Lemma 25, we have lag1(7, S) = lag1(13, S) = −1/3, lag2(7, S) = lag2(13, S) = 2/3,
and lag3(7, S) = lag3(13, S) = 5/3.

▶ Lemma 26. For any Li > 0, if t is the first time instant such that lagi(t, S) > Li, then τi

does not execute during [t − 1, t).

Proof. Since Li > 0 and for any t′ ≤ Φi, lagi(t′, S) = 0 holds, we have t > Φi. Therefore,
lagi(t−1, S) ≤ Li holds. Assume that τi executes during [t−1, t). By Lemma 23, lagi(t, S) ≤
lagi(t − 1, S) ≤ Li, a contradiction. ◀

We now show that each task τi’s lag cannot exceed (Tmax + Yi − Ymin)ui. Informally, assume
that t is the first time instant where a task τi’s lag exceeds (Tmax + Yi − Ymin)ui in S. If
[t−Tmax, t) is a busy-interval, then by Lemma 24 (LAG does not increase over a busy interval)
and Corollary 18 (LAG-monotonicity), LAG at t − Tmax and t must be the same in S, which
by Lemma 25 implies τi’s lag at t − Tmax and t is also same. Otherwise, if there is a non-busy
instant tb in [t − Tmax, t), then by Corollary 20, τi’s earliest pending job’s priority must be
higher than any job released at or after tb throughout [tb, t). Therefore, τi would execute
continuously throughout [tb, t), violating Lemma 26. We now give the formal proof.

▶ Lemma 27. For any task τi and any time instant t in S, lagi(t, S) ≤ (Tmax +Yi −Ymin)ui.

Proof. We use Fig. 3 to illustrate the proof. Assume that there is a time instant t such that
there is a task τi with lagi(t, S) > (Tmax +Yi −Ymin)ui and let t be the first such time instant.
Since I executes τi at the rate of ui, lagi(t′, S) ≤ Tmaxui holds for any t′ ≤ Φi + Tmax.
Therefore, t > Φi + Tmax ≥ Tmax holds.

We first prove that [t − Tmax, t) is a busy interval. Since t > Tmax, [t − Tmax, t) is a valid
time interval. By Lemma 5, there is a pending job of τi at t because lagi(t, S) > 0. Let τi,k
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be the earliest pending job of τi at t. By Corollary 20, we have

yi,k ≤ t − lagi(t, S)
ui

+ Yi

< {Since lagi(t, S) > (Tmax + Yi − Ymin)ui}

t − (Tmax + Yi − Ymin)ui

ui
+ Yi

= t − Tmax + Ymin. (17)

By (1), we have

ri,k = yi,k − Yi

< {By (17)}
t − Tmax + Ymin − Yi

≤ {Since Ymin ≤ Yi}
t − Tmax. (18)

Thus, τi,k is pending throughout [t−Tmax, t). Since t is the first time instant with lagi(t, S) >

(Tmax + Yi − Ymin)ui, by Lemma 26, τi,k does not execute during [t − 1, t). Thus, there are
at least m tasks with higher priority jobs than τi,k at t − 1. Let τh be the set of tasks having
higher priority jobs than τi,k at t − 1. Then, |τh| ≥ m holds. By the definition of τh, for
any task τj ∈ τh, yj,ℓ ≤ yi,k holds where τj,ℓ is the earliest pending job of τj at t − 1 (see
Fig. 3). By a calculation similar to that yielding (18), rj,ℓ < t − Tmax holds, which implies
τj,ℓ is pending throughout [t − Tmax, t). Thus, by (17) we have the following property.
Property P: Each task in τh ∪ {τi} has pending jobs with PPs less than Tmax + Yi − Ymin

throughout [t − Tmax, t).
By Property P, [t − Tmax, t) is a busy interval. By Lemma 24, we therefore have

LAG(t, S) ≤ LAG(t − Tmax, S). (19)

We now consider two cases.
Case 1. t ≥ Φmax + Tmax. By Corollary 18, we have

LAG(t, S) ≥ LAG(t − Tmax, S). (20)

By (19) and (20), we have

LAG(t, S) = LAG(t − Tmax, S). (21)

Since t ≥ Φmax + Tmax and (21) holds, by Lemma 25, lagi(t, S) = lagi(t − Tmax, S) holds.
Therefore, t cannot be the first time instant with lagi(t, S) > (Tmax + Yi − Ymin)ui.
Case 2. t < Φmax + Tmax. Let τs be the set of tasks such that for each τp ∈ τs,
t − Tmax < Φp ≤ Φmax holds. Since each task τp ∈ τs releases its first job after t − Tmax,
rp,1 > t − Tmax and lagp(t − Tmax, S) = 0 hold (see Fig. 3). Thus, by (1) and Yp ≥ Ymin, we
have

(∀τp ∈ τs : yp,1 > t − Tmax + Ymin). (22)

By Property P and (22), no task τp ∈ τs executes during [t − Tmax, t). Therefore, we have

(∀τp ∈ τs : lagp(t, S) ≥ 0 = lagp(t − Tmax, S)). (23)
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By the definition of τs, for any task τq ∈ τ \ τs, t − Tmax ≥ Φq holds, which implies
t ≥ Φq + Tmax. Therefore, by Lemma 17, we have

(∀τq ∈ τ \ τs : lagq(t, S) ≥ lagq(t − Tmax, S)). (24)

Since t is the first time instant with lagi(t, S) > (Tmax + Yi − Ymin)ui > 0, lagi(t′, S) ≤
(Tmax + Yi − Ymin)ui holds for any t′ < t. Thus, we have

lagi(t, S) > lagi(t − Tmax, S). (25)

By (4), we have

LAG(t, S) =
∑
τj∈τ

lagj(t, S)

=
∑

τj∈τs

lagj(t, S) +
∑

τj∈τ\(τs∪{τi})

lagj(t, S) + lagi(t, S)

> {By (23), (24), and (25)}∑
τj∈τs

lagj(t − Tmax, S) +
∑

τj∈τ\(τs∪{τi})

lagj(t − Tmax, S) + lagi(t − Tmax, S)

= LAG(t − Tmax, S),

a contradiction to (19). ◀

We now give our tardiness bound in the following Theorem.
▶ Theorem 28. The tardiness of task τi is at most Tmax + Yi − Ymin in S.

Proof. The theorem follows from Lemmas 21 and 27. ◀

By Theorem 28, we have following tardiness bounds under GEDF and FIFO.
▶ Theorem 29. The tardiness of a task τi in a GEDF and FIFO schedule is at most Tmax +
Ti − Tmin and Tmax, respectively.
Removing Assumption (B). Prior work has shown that removing Assumption (B) does
not invalidate GEDF tardiness bounds because its removal cannot cause work to shift later [28].
It can be similarly removed for any GEL scheduler.
▶ Theorem 30. Let τ be a periodic task set, S be a GEL schedule of τ satisfying (B), and
S ′ be a GEL schedule with the same PP for each job of τ without satisfying (B). Then no job
in S ′ finishes later than in S.

Tightness. The following example shows the tightness of the tardiness bound in Theorem 28.

▶ Example 31. Consider a task system τ with m + 1 tasks where τi = (0, m, m + 1). For any
job-level fixed-priority scheduler, the maximum tardiness among all tasks is m−1 = Tmax −2.
For both FIFO and GEDF, the tardiness bound of τ by Theorem 28 is Tmax. A GEDF/FIFO
schedule corresponding to m = 5 is shown in Fig. 4. Jobs τ6,1, τ5,2, and τ4,3 have tardiness
of 4.0, 3.0, and 2.0 time units, respectively. Similarly, τ3,4 has tardiness of 1.0 time unit (not
shown in Fig. 4). τ1 and τ2 have no tardy job. The schedule repeats after 30.0 time units.◀

Sporadic tasks. We can enable similar tardiness bounds for sporadic tasks using GEL-
scheduled periodic servers. For each task τi, we create a server task τs

i = (0, Ci, Ti). We
schedule the server tasks by a GEL scheduler where each server job of τs

i receives an allocation
of exactly Ci time units. We schedule job τi,k on server job τs

i,ℓ where di,k ∈ (rs
i,ℓ, ds

i,ℓ] (see
Fig. 5). Since both τi and τs

i have the same period, no other job of τi is scheduled on
τs

i,ℓ. Since τs
i,ℓ receives allocation of Ci time units, τi,k finishes execution at or before τs

i,ℓ

completes. Since ds
i,ℓ − di,k ≤ Ti, we have the following theorem.
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Figure 5 Scheduling sporadic tasks by GEL-scheduled periodic servers.

▶ Theorem 32. A pseudo-harmonic sporadic task system τ can be scheduled using periodic
servers scheduled by a GEL scheduler such that each task τi’s tardiness is at most Tmax +
Yi − Ymin + Ti.

Discussion. While the tardiness bound given in Theorem 28 is tight in general, the tardiness
bound is not tight for task systems with a smaller total utilization than m. For instance, a
HRT-schedulable task system also has the tardiness bound specified in Theorem 28. Although
the tardiness bounds in [9, 11, 27] can have smaller bounds when the total utilization is less
than m compared to systems with full utilization, they also have similar issues, e.g., positive
tardiness bounds for HRT-schedulable task systems.

Although the tardiness bound given in Theorem 28 is Tmax under FIFO, the tardiness
bound under GEDF can be larger than Tmax. The tardiness of a task can actually exceed
Tmax under GEDF as illustrated in the following example.

▶ Example 33. Consider a task system with five tasks τ1 = (1, 4, 5), τ2 = (3, 3, 4), τ3 =
(9, 19, 25), τ4 = (20, 99, 100), τ5 = (75, 70, 100) scheduled on four processors by GEDF. It can
be shown that the tardiness of the job τ4,48 is 104 time units, which is Tmax + 4.

4 Exact Tardiness Bounds

Having derived a tardiness bound for pseudo-harmonic periodic tasks that does not depend
on the processor or task count in Sec. 3, we now show how to derive an exact tardiness bound
in pseudo-polynomial time. We do so by deriving an upper bound on the length of the prefix
of a schedule during which tasks may experience increasing tardiness (afterwards, they do
not). We show, in Lemma 39, that if there is a time instant t ≥ Φmax when LAG has the
same values at t and t − Tmax, then for any t′ ≥ t, the LAG values at t′ and t′ − Tmax are also
equal. Intuitively, this implies that the schedule in the interval [t − Tmax, t) repeats after t.
Moreover, since the lag of each task is bounded (Lemma 27), we can derive an upper bound
on LAG (Lemma 38). Therefore, since LAG does not decrease over any interval of length
Tmax starting after Φmax (LAG-monotonicity), there must be a finite interval [Φmax, t′) such
that LAG strictly increases over any interval of length Tmax in [Φmax, t′). We derive an upper
bound on such an interval in Lemma 41. Intuitively, for each task, a job with the maximum
tardiness of the task must complete at or before the schedule starts to cycle. We first consider
task systems satisfying (B). We define a max-tardiness-increasing interval as follows.
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▶ Definition 34. Given a periodic task system τ , a max-tardiness-increasing interval in a
schedule S is a finite interval of time [0, t] such that for each task τi ∈ τ , if the maximum
tardiness of τi’s jobs that complete execution at or before t is xi in S, then the tardiness of
τi is xi in S.

We now derive an upper bound on the max-tardiness-increasing interval of a pseudo-harmonic
periodic task system τ satisfying (B).

▶ Definition 35. Let F be the sum of the n − 1 largest values of Ci(1 − ui); i.e., F =∑
n−1 largest Ci(1−ui). Let G be the sum of the ⌈U⌉−1 largest values of (Tmax +Yi −Ymin)ui;

i.e., G =
∑

⌈U⌉−1 largest(Tmax + Yi − Ymin)ui. Let E = ⌈F + G + 1⌉.

The following lemma gives a trivial lower bound on the lag of a task at any time t in S. A
task’s lag is minimum when its active job finishes execution as early as possible in S, i.e., Ci

time units after its release.

▶ Lemma 36. For any task τi and time instant t, lagi(t, S) ≥ −Ci(1 − ui).

Proof. If t ≤ Φi, then lagi(t, S) = 0, so assume t > Φi. Let τi,k be the active job of
τi at t and ei be the cost of the completed portion of τi,k at or before t in S. Therefore,
Ai(0, t, S) =

∑k−1
j=1 Ci +ei. By the definition of I, all jobs of τi prior to τi,k complete execution

by t in I. Since jobs can only execute after their release, by the time τi,k executes for ei units
in S, τi,k must execute at least eiui units of τi,k in I. Therefore, Ai(0, t, I) ≥

∑k−1
j=1 Ci + eiui.

Substituting Ai(0, t, I) and Ai(0, t, S) in (2), we have lagi(t, S) ≥
∑k−1

j=1 Ci +eiui −
∑k−1

j=1 Ci −
ei = −ei(1 − ui). Since ei ≤ Ci, we have lagi(t, S) ≥ −Ci(1 − ui). ◀

We now give a lower bound on LAG at Φmax in S. By the definition of Φmax, there is at
least one task with lag that equals 0 at Φmax.

▶ Lemma 37. LAG(Φmax, S) ≥ −F .

Proof. Let τ ′ be the set of tasks such that for any τi ∈ τ ′, Φi = Φmax holds. Therefore,
lagi(Φmax, S) = 0 holds for any τi ∈ τ ′. Thus,

∑
τi∈τ ′ lagi(Φmax, S) = 0. Hence, by (4), we

have LAG(Φmax, S) =
∑

τi∈τ lagi(Φmax, S) =
∑

τi∈τ\τ ′ lagi(Φmax, S), which by Lemma 36
implies, LAG(Φmax, S) ≥

∑
τi∈τ\τ ′ −Ci(1 − ui). By the definition of Φmax, |τ ′| ≥ 1 holds.

Therefore, by Def. 35, we have LAG(Φmax, S) ≥ −
∑

n−1 largest Ci(1 − ui) = −F . ◀

We now derive an upper bound on LAG at any time t in S by determining an upper bound
on LAG at the latest non-busy time instant at or before t.

▶ Lemma 38. For any t, LAG(t, S) ≤ G.

Proof. Let tb be the latest non-busy time instant at or before t, otherwise let tb = 0. We
first derive an upper bound on LAG(tb, S). If tb = 0, then LAG(tb, S) = 0. Otherwise, let
τ ′ ⊆ τ be the tasks with pending jobs at tb. By (4),

LAG(tb, S) =
∑

τi∈τ ′

lagi(tb, S) +
∑

τi /∈τ ′

lagi(tb, S)

≤ {By the contrapositive of Lemma 5, (∀τi /∈ τ ′ : lagi(tb, S) ≤ 0) holds}∑
τi∈τ ′

lagi(tb, S)

≤ {By Lemma 27}
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∑
τi∈τ ′

(Tmax + Yi − Ymin)ui

≤ {By Def. 22, |τ ′| < ⌈U⌉}∑
⌈U⌉−1 largest

(Tmax + Yi − Ymin)ui

= {By Def. 35}
G.

By Lemma 24, LAG(t, S) ≤ LAG(tb, S) ≤ G holds. ◀

Lemmas 37 and 38 imply that LAG cannot increase more than F + G units over any interval
[Φmax, t). We use this fact later in Lemma 41. We now show that once LAG(t, S) =
LAG(t − Tmax, S) holds for some t, the equality also holds for all time instances after t.
Informally, by Lemma 25, if LAG(t, S) = LAG(t − Tmax, S) holds, then for any task τi,
lagi(t, S) = lagi(t − Tmax, S) also holds. This implies that the scheduling decisions at t are
the same as at t − Tmax. Therefore, the schedule in [t − Tmax, t) repeats in [t, t + Tmax).

▶ Lemma 39. If there is a time instant t′ ≥ Φmax + Tmax such that LAG(t′ − Tmax, S) =
LAG(t′, S) holds, then for any t ≥ t′, LAG(t − Tmax, S) = LAG(t, S) holds.

Proof. Assume for a contradiction that there exists a t ≥ t′ such that LAG(t − Tmax, S) ̸=
LAG(t, S) and let t be the first such time instant. By the definition of t and t′, t > t′ ≥
Φmax +Tmax and t−1 ≥ Φmax +Tmax hold. Therefore, LAG(t−Tmax −1, S) = LAG(t − 1, S)
holds. Thus, by Lemma 25, we have

(∀τi : lagi(t − Tmax − 1, S) = lagi(t − 1, S)). (26)

Since Ti divides Tmax, by (26) and Lemma 14(a) (with t and c replaced by t − Tmax − 1 and
hi, respectively), we have the following property.
Property Q: Any task with no pending job at t − Tmax − 1 has no pending job at t − 1.
Let τ ′ ⊆ τ be the set of tasks with pending jobs at t − Tmax − 1. Let τi,k be the earliest
pending job of τi ∈ τ ′ at t − Tmax − 1. By Def. 16, (26) and Lemma 14(b) (with t and c

replaced by t − Tmax − 1 and hi, respectively), τi,k+hi
is the earliest pending job of τi at

t − 1. Since τi releases jobs periodically, we have yi,k+hi
= yi,k + hiTi = yi,k + Tmax. Thus,

the tasks in τ ′ have the same priority ordering at both t − Tmax − 1 and t − 1, which along
with Property Q implies that the same set of tasks execute during both [t − Tmax − 1) and
[t − 1, t). Hence, A(t − Tmax − 1, t − Tmax, S) = A(t − 1, t, S). Since t − Tmax − 1 ≥ Φmax,
we have A(t − Tmax − 1, t − Tmax, I) = A(t − 1, t, I). Thus, by (5) we have

LAG(t, S) = LAG(t − 1, S) + A(t − 1, t, I) − A(t − 1, t, S)
= {Since LAG(t − 1, S) = LAG(t + Tmax − 1)}

LAG(t − Tmax − 1, S) + A(t − 1, t, I) − A(t − 1, t, S)
= {Since A(t − 1, t, S) = A(t − Tmax − 1, t − Tmax, S) and

A(t − 1, t, I) = A(t − Tmax − 1, t − Tmax, I)}
= LAG(t − Tmax − 1, S) + A(t − Tmax − 1, t − Tmax, I)

− A(t − Tmax − 1, t − Tmax, S)
= {By (5)}

LAG(t − Tmax, S),
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a contradiction. ◀

▶ Corollary 40. If there is a time instant t′ ≥ Φmax + Tmax such that LAG(t′ − Tmax, S) =
LAG(t′, S) holds, then lagi(t − Tmax, S) = lagi(t, S) holds for any t ≥ t′ and τi ∈ τ .

Proof. Follows from Lemmas 39 and 25. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), LAG(6, S) = LAG(12, S) holds.
Therefore, for all task τi and t ≥ 12, LAG(t−Tmax, S) = LAG(t, S) = 2 and lagi(t−Tmax, S) =
lagi(t, S) hold. We now show that there is a time instant t after Φmax + Tmax and at or
before Φmax + ETmax where LAG has the same value at t and t − Tmax. Therefore, the
schedule starts to cycle at or before Φmax + ETmax. Intuitively, LAG must increase by at
least 1.0 execution unit, if not equal, over each interval [Φmax + iTmax, Φmax + (i + 1)Tmax)
where 0 ≤ i < E. Therefore, since E = ⌈F + G + 1⌉, LAG at Φmax + ETmax must be more
than G, contradicting Lemma 38.

▶ Lemma 41. There is a time instant t ∈ [Φmax + Tmax, Φmax + ETmax] such that LAG(t −
Tmax, S) = LAG(t, S) holds.

Proof. Assume LAG(t−Tmax, S) ̸= LAG(t, S) holds for all t ∈ [Φmax +Tmax, Φmax +ETmax].
Let t be any arbitrary time instant in [Φmax +Tmax, Φmax +ETmax]. Since t ≥ Φmax +Tmax,
by Corollary 18, we have LAG(t − Tmax, S) ≤ LAG(t, S). Thus, LAG(t − Tmax, S) < LAG(t, S)
holds. Since tasks release jobs periodically and t − Tmax ≥ Φmax holds, we have

A(t − Tmax, t, I) = UTmax. (27)

Since U =
∑n

i=1
Ci

Ti
and hi = Tmax/Ti, we have U =

∑n

i=1
hiCi

Tmax
. Therefore, UTmax =∑n

i=1 hiCi. Since both hi and Ci are integers, UTmax is also an integer. By (5), we have

A(t − Tmax, t, S) = A(t − Tmax, t, I) + LAG(t − Tmax, S) − LAG(t, S)
< {Since LAG(t − Tmax, S) < LAG(t, S)}

A(t − Tmax, t, I)
= {Since A(t − Tmax, t, I) = UTmax}

UTmax (28)

Since UTmax and A(t − Tmax, t, S) are integers, by (28) we have

A(t − Tmax, t, S) ≤ UTmax − 1. (29)

Now, by (5), we have

LAG(Φmax + ETmax, S) = LAG(Φmax, S) + A(Φmax, Φmax + ETmax, I)
− A(Φmax, Φmax + ETmax, S)

= {Since [Φmax, Φmax + ETmax) =
∪E−1

i=0 [Φmax + iTmax, Φmax + (i + 1)Tmax).}

LAG(Φmax, S) +
E−1∑
i=0

(A(Φmax + iTmax, Φmax + (i + 1)Tmax, I)

− A(Φmax + iTmax, Φmax + (i + 1)Tmax, S))
≥ {Substituting t = Φmax + (i + 1)Tmax in (27) and (29)}



S. Ahmed and J. H. Anderson 11:19

LAG(Φmax, S) +
E−1∑
i=0

(UTmax − UTmax + 1)

= LAG(Φmax, S) +
E−1∑
i=0

1

≥ {By Lemma 37 and Def. 35}
− F + F + G + 1

> G,

a contradiction to Lemma 38. ◀

We now show that a job with the maximum tardiness must complete execution at or before
Φmax + ETmax by Lemma 42 and Theorem 43.

▶ Lemma 42. If there is a time instant t′ ≥ Φmax + Tmax such that LAG(t′ − Tmax, S) =
LAG(t′, S) holds and xi is the maximum tardiness of any of task τi’s jobs that complete
execution at or before t′ in S, then the tardiness of τi is xi in S.

Proof. Assume that the tardiness of τi is more than xi and let τi,k be the first job with
tardiness exceeding xi. Let t be the time instant when τi,k finishes execution. Then, t > t′

holds. Since LAG(t′ − Tmax, S) = LAG(t′, S) and t − 1 ≥ t′ hold, by Corollary 40, we have
lagi(t − Tmax − 1, S) = lagi(t − 1, S). Since hi = Tmax/Ti and τi,k is pending at t − 1,
substituting t and c in Lemma 14(b) by t − 1 and −hi, respectively, τi,k−hi

is pending at
t − 1 − Tmax. Therefore, τi,k−hi finishes execution at or after t − Tmax. Hence, we have

fi,k−hi
− di,k−hi

≥ t − Tmax − di,k−hi

= {Since τi releases periodically, di,k−hi
= di,k − hiTi}

t − Tmax − di,k + hiTi

= {By the definition of t and Def. 16}
fi,k − di,k.

Therefore, max{0, fi,k−hi
− di,k−hi

} ≥ max{0, fi,k − di,k} holds and τi,k’s tardiness cannot
exceed τi,k−hi ’s tardiness. ◀

For the task system in Ex. 3 and its GEDF schedule in Fig. 1(a), LAG(t−Tmax, S) = LAG(t, S)
holds for the first time at time 12. Job τ3,1 has the maximum tardiness in S.

▶ Theorem 43. If the maximum tardiness of a task τi’s jobs that completes at or before
Φmax + ETmax is xi in S, then the tardiness of τi is xi in S.

Proof. By Lemma 41, there is a time instant t ∈ [Φmax + Tmax, Φmax + ETmax] such that
LAG(t − Tmax, S) = LAG(t, S) holds. Let zi be the maximum tardiness of τi’s jobs that
complete execution at or before t in S. By Lemma 42, the tardiness of τi is zi. Since
t ∈ [Φmax + Tmax, Φmax + ETmax], by the definition of xi, zi ≤ xi holds. Since the tardiness
of τi in S is zi, zi ≥ xi holds. Therefore, xi = zi. ◀

By Theorems 30 and 43, if the maximum tardiness of τi’s jobs that complete at or before
Φmax + ETmax is xi in a GEL schedule S satisfying (B), then τi’s tardiness is at most xi in a
GEL schedule S ′ not satisfying (B).
Deriving tardiness. By Theorem 43, we can determine an exact tardiness bound of
each task by simulating a schedule up to time Φmax + ETmax. By Def. 35, we have
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F =
∑

n−1 largest Ci(1 − ui) ≤
∑n

i=1 Ci =
∑n

i=1 Tiui ≤ Tmax

∑n
i=1 ui ≤ mTmax. By Def. 35,

G =
∑

⌈U⌉−1 largest(Tmax+Yi−Ymin)ui ≤
∑

m−1 largest(Tmax+Ymax) = (m−1)(Tmax+Ymax)
holds. Therefore, we have E = ⌈F + G + 1⌉ ≤ ⌈mTmax + (m − 1)(Tmax + Ymax) + 1⌉. Since
scheduling decisions at each time instant are determined in polynomial time, simulating a
schedule up to time Φmax + ETmax takes pseudo-polynomial time. By Lemma 42, we can
terminate the simulation early at time t ≥ Φmax + Tmax by checking whether LAG(t, S) =
LAG(t − Tmax, S) holds. This would require storing the last Tmax values of LAG at any time.
We can also store one value of LAG at any time, e.g., the last time instant that is multiple
of Tmax, and check for LAG-equality Tmax time after the last-stored instance. This would
require simulating for at most Tmax time units more than that required when Tmax values of
LAG are stored. We note that this method can be adapted for non-pseudo-harmonic systems
with Tmax and G replaced with H and a corresponding upper bound on LAG, respectively.

5 Experiments

We now present the results of simulation experiments we conducted to evaluate our tardiness
bounds and the effectiveness of our approach to derive exact tardiness bounds.

We generated task systems randomly for systems with 4 to 32 processors. We chose
light, medium, heavy, or wide task utilizations, for which task utilizations were uniformly
distributed in [0.01, 0.3], [0.3, 0.7], [0.7, 1], and [0.01, 1], respectively. We chose task periods
uniformly from {4, 5, 10, 20, 25, 50, 100}ms. In case there was no task with a period of 100ms,
we randomly chose a task and scaled its parameters to set its period to 100ms. We rounded
down each execution cost to its nearest integer and disregarded any task if its execution cost
became zero. We chose the offset of each task randomly between 0 and its period. For each
utilization cap m and utilization distribution, we generated 1,000 task systems by adding
tasks until five attempts to add a next task without exceeding the utilization cap failed. To
compare tardiness bounds with respect to system utilization, we considered a 24-processor
platform and generated 1,000 task systems for each utilization cap within [16, 24] with a step
size of 0.5.

We used relative tardiness bounds as our evaluation metric, where a task’s relative tardiness
is computed by dividing its tardiness by its period. For each task system, we computed exact
tardiness bounds using Theorem 43 and tardiness bounds using Theorem 28 under GEDF
(EDF-EXT and EDF-TGT, respectively) and FIFO (FIFO-EXT and FIFO-TGT, respectively).
We also computed tardiness bounds under GEDF and FIFO using methods by Devi and
Anderson [9] (EDF-DA), and Leontyev and Anderson [19] (FIFO-LA), respectively. We did not
compare against the tighter bounds under GEDF from [12,27] as they are computationally
expensive to compute and have trends similar to EDF-DA [27] (In our attempt to compute
tardiness bounds from [27] using the most efficient implementation from [18], we found that
computing tardiness bounds for a task system on 16 or more processors can take several
hours to complete). We measured the time taken to compute EDF-EXT and FIFO-EXT for
each task system. We present a representative selection of our results in Fig. 6.

▶ Observation 1. For heavy utilizations, the average relative tardiness bound for EDF-TGT
was 7.58% smaller than for EDF-DA for large processor counts (at least 12 processors). The
maximum relative tardiness bound for EDF-TGT was 56.83% smaller than for EDF-DA. The
average and maximum relative tardiness bounds for FIFO-TGT were 58.47% and 83.70%
smaller than for FIFO-LA, respectively.
This can be seen in insets (a) and (b) of Fig. 6. While the mean for EDF-DA can be smaller
than that for EDF-TGT for smaller processor counts (Fig. 6(a)), the maximum for EDF-DA
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(a) Average relative tardiness for
heavy task utilizations with re-
spect to processor count.
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(b) Maximum relative tardiness
for heavy task utilizations with re-
spect to processor count.
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(c) Average relative tardiness for
light task utilizations with respect
to processor count.
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(d) Average relative tardiness for
heavy task utilizations with re-
spect to system utilization.
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(f) Average relative tardiness for
wide task utilizations with respect
to system utilization.

Figure 6 Average and maximum relative tardiness with respect to the number of processors and
system utilizations.

is generally larger than for EDF-TGT (Fig. 6(b)). This is because EDF-DA and FIFO-LA tend
to be larger when task utilizations are large.
▶ Observation 2. For light utilizations, the average and maximum relative tardiness bounds
for EDF-TGT were 1199% and 447% larger than for EDF-DA, respectively. The average and
maximum relative tardiness bounds for FIFO-TGT were 90.47% and 13.65% larger than for
FIFO-LA, respectively.
This can be seen in Fig. 6(c). EDF-DA (resp., FIFO-LA) is tighter than EDF-TGT (resp.,
FIFO-TGT) for light per-task utilizations. This is because EDF-DA and FIFO-LA are functions
of the sum of largest m − 1 task utilizations, while EDF-TGT and FIFO-TGT do not depend
on task utilizations. Note that it is possible to derive a tardiness bound that is a function of
task utilizations by a method similar to [9,19] using the upper bound on LAG from Lemma 38.

▶ Observation 3. Across all task systems, the average relative tardiness for EDF-EXT and
FIFO-EXT was 0.09 and 0.17, respectively. The maximum relative tardiness for EDF-EXT and
FIFO-EXT was 4.75 and 14.0, respectively. For heavy and light utilizations, the average relative
tardiness for EDF-EXT was 1.11% larger and 99.9% smaller than FIFO-EXT, respectively.

This can be seen in insets (a), (b), and (c) of Fig. 6. Average and maximum relative tardiness
are usually smaller under GEDF than FIFO. However, average and maximum tardiness can
be larger under GEDF than FIFO (see Ex. 33).
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▶ Observation 4. For heavy utilizations and high system utilization, the average relative
tardiness for EDF-EXT was larger than FIFO-EXT. For the remaining utilization distributions,
the average relative tardiness for EDF-EXT were smaller than FIFO-EXT.

This can be seen in insets (d), (e), and (f) of Fig. 6. GEDF has smaller average relative
tardiness than FIFO on average.

▶ Observation 5. Across all task systems, the average time to compute EDF-EXT and
FIFO-EXT was 386 and 64.5 ms, respectively. The maximum time to compute EDF-EXT and
FIFO-EXT was 6.95 and 0.63 sec, respectively. (These computations were done on 2.50 GHz
Intel processors with 30M cache and 256GB RAM.)

This implies that exact tardiness bounds can often be efficiently computed. The running
time increases when the number of processors is large. Note that the running time may
increase significantly when Tmax is large.

6 Conclusion

In this paper, we have presented a tardiness bound for pseudo-harmonic periodic tasks under
GEL schedulers. This is the first tardiness bound under any practical global scheduler that
does not increase with respect to the number of tasks or processors. We have shown the
tightness of our bound and provided a method to determine similar tardiness bounds for
pseudo-harmonic sporadic tasks. We have also provided a method to compute exact tardiness
bounds for pseudo-harmonic periodic tasks under GEL schedulers.

Several other issues regarding tardiness under global schedulers remain unresolved. For
example, we plan to investigate whether non-preemptive GEL schedulers provide tardiness
bounds that do not depend on the processor or task count for pseudo-harmonic task systems.
We also want to investigate whether a similar tardiness bound exists for non-pseudo-harmonic
task systems under any GEL scheduler. Finally, we want to devise faster methods to compute
exact tardiness bounds for both pseudo-harmonic and non-pseudo-harmonic task systems.
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