
Overrun-Resilient Multiprocessor Real-Time
Locking
Zelin Tong !

University of North Carolina at Chapel Hill, USA

Shareef Ahmed !

University of North Carolina at Chapel Hill, USA

James H. Anderson !

University of North Carolina at Chapel Hill, USA

Abstract
Existing real-time locking protocols require accurate worst-case execution time (WCET) estimates for
both tasks and critical sections (CSs) in order to function correctly. On multicore platforms, however,
the only seemingly viable strategy for obtaining such estimates is via measurements, which cannot
produce a true WCET with certainty. The absence of correct WCETs can be partially ameliorated
by enforcing execution budgets at both the task and CS levels and by using a locking protocol that is
resilient to budget overruns, i.e., that ensures that the schedulability of non-overrunning tasks is not
compromised by tasks that do overrun their budgets. Unfortunately, no fully overrun-resilient locking
protocol has been proposed to date for multiprocessor systems. To remedy this situation, this paper
presents two such protocols, the OR-FMLP and the OR-OMLP, which introduce overrun-resiliency
mechanisms to two existing multiprocessor protocols, the spin-based FMLP and suspension-based
global OMLP, respectively. In devising such mechanisms, undo code can be problematic. For the
important locking use case of protecting shared data structures, it is shown that such code can
be avoided entirely by using abortable critical sections, a concept proposed herein that leverages
obstruction-free synchronization techniques. Experiments are presented that demonstrate both the
effectiveness of the mechanisms introduced in this paper and their cost.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases Real-Time Systems, Real-Time Synchronization, Budget Enforcement

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.9

Funding Supported by NSF grants CPS 1837337, CPS 2038855, and CPS 2038960, ARO grant
W911NF-20-1-0237, and ONR grant N00014-20-1-2698.

1 Introduction

Many safety-critical systems require real-time safety certification that hinges on both timing
analysis and schedulability analysis. The goal of timing analysis is to produce worst-case
execution times (WCETs) for executable code. Schedulability analysis then determines
whether a system’s timing constraints are met, assuming valid WCETs are provided. Due to
the advent of multicore technologies, work on timing and schedulability analysis has largely
focused on the multiprocessor case in recent years [11,17,34].

A troubling disconnect. In the multiprocessor case, a largely unnoticed fundamental
disconnect exists when using timing- and schedulability-analysis together to validate real-
time correctness. There is consensus today that static timing-analysis tools may never be
a practical reality for multicore machines due to the highly complex nature of multicore
architectures [43]. The only alternative is to use measurement-based timing analysis, a topic
that has been the focus of considerable recent work [16,18]. With measurement-based timing
analysis, however, one can never be certain that the true WCET of a piece of code is ever

© Zelin Tong, Shareef Ahmed, and James H. Anderson;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 9; pp. 9:1–9:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ztong@cs.unc.edu
mailto:shareef@cs.unc.edu
mailto:anderson@cs.unc.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Overrun-Resilient Multiprocessor Real-Time Locking

captured (hereafter, we assume “WCET” means “true WCET”). Thus, it is necessary to
distinguish between the WCET of a piece of code and its provisioned execution time (PET)
as obtained via measurements and assumed in schedulability analysis. Note that WCETs are
generally unknowable, and a PET may likely be less than the corresponding WCET.

Mitigating this disconnect. Any safety risk introduced by assuming such PETs can be
avoided by instead using (guaranteed) execution-time (upper) bounds (ETBs) obtained under
unrealistically pessimistic conditions. For example, any execution speedups due to caches and
pipelining might be defined away, bus contention might be over-approximated, etc. While
such ETBs might be safe to use as PETs, this would likely be impractical on a multicore
machine, as an ETB could easily be many times larger than the corresponding WCET. In
fact, system-wide pessimism could be high enough to negate the processing capacity of all
“additional” cores [32]. Thus, more reasonable measurement-based PETs are inevitable.

A system provisioned assuming such PETs can have correct tasks whose PETs are at least
their WCETs, and faulty tasks whose PETs are less than their WCETs. Hopefully, PET
overruns (faults) should be rare. Moreover, when they do occur, they should be contained.
The usual approach here is to treat PETs as execution-time budgets that are enforced by the
operating system (OS). Such an approach can ensure the following desirable property.
P1 The response times of correct tasks, as derived using PETs, are not increased by a PET

overrun of a faulty task.

Task-level budgeting is not enough. Unfortunately, due to various realities of real sys-
tems, task-level budget management alone is an incomplete solution to the timing/schedulab-
ility disconnect. This paper is directed at providing a deep look at one such reality: the need
to support locking protocols for arbitrating accesses to shared resources. In this setting, we
actually care about various different PETs, WCETs, and ETBs. For example, in addition to
task-level PETs, PETs are needed for individual critical sections (CSs), and various locking-
protocol and OS code sequences. To avoid confusion, we will add a qualifying prefix when
referring to non-task-level terms—e.g., “CS PET” refers to the PET of a CS, while “PET”
(without qualification) refers to a task-level PET. When locking protocols are introduced,
CS PETs (and also various protocol- and OS-related PETs) are used to determine blocking
times when tasks access shared resources. Incorrect blocking-time estimates due to inaccurate
PETs can completely compromise schedulability guarantees.

Overrun-resilient locking protocols. To address this issue, we propose in this paper the
notion of an overrun-resilient locking protocol. In addition to not causing a violation of P1,
such a protocol must also uphold its CS-level variant:
P2 The response times of correct tasks, as derived using PETs, are not increased by a CS

PET overrun of a faulty task.

It’s not so easy. The obvious solution to satisfying P1 and P2 is to assign budgets to
both tasks and CSs as given by their respective PETs. The main new complication that
arises when doing this is the need to abort the CS of some task when one of these budgets is
overrun. Such aborts should be avoided if possible, but they cannot be entirely precluded.
For example, a CS budget overrun will necessarily cause a CS abort. The usual approach to
aborting work is to execute undo code. Presumably, a PET would have to be associated with
such code. What happens if the abort code overruns its PET? Additionally, certain code
sequences exist pertaining to lock and budget management for which overruns are similarly
problematic. For example, when a CS is aborted, the unlock logic must execute to free the
resource. What if the PET associated with this unlock code is overrun? It is not clear how
these perplexing “chicken and egg” problems can be addressed. Whatever the solution, an

Z. Tong, S. Ahmed, and J. H. Anderson 9:3

Table 1 Properties satisfied by prior work. (“NC” means the work does not consider how to
satisfy the specified property. As explained in Sec. 9, some of these “NC” entries can be changed to
“Y” at the expense of very pessimistic provisioning assumptions.)

Protocol Multi-
processor P1 P2 P3 Protocol Multi-

processor P1 P2 P3

ICSs [30] N Y Y Y FMLP [9] Y N N N
RRP [3] N Y Y NC M-BWI [20] Y N N NC

RACPwP [39] N Y Y NC vMPCP [31] Y Y N NC
SIRAP [6] N Y N NC M-BROE [8] Y Y N NC
OMLP [12] Y N N N This Work Y Y Y Y

overrun-resilient locking protocol must uphold a third property:

P3 The response times of correct tasks, as derived using PETs, are not increased by the
budget-enforcement mechanism.

Related work. Various locking protocols have been proposed in prior work that considers
budget overruns. However, no prior work focusing on multiprocessors fully considers properties
P1–P3. Relevant prior work is summarized in Tbl. 1 and discussed in detail in Sec. 9.

Contributions. In this paper, we present overrun-resilient multiprocessor locking protocols
that satisfy P1–P3. Our contributions are fourfold. First, we introduce the overrun-resilient
flexible multiprocessor locking protocol (OR-FMLP), an overrun-resilient extension of the
spin-based FMLP [9]. Second, we introduce the overrun-resilient global optimal multiprocessor
locking protocol (OR-OMLP), an overrun-resilient extension of the suspension-based global
OMLP [12]. Third, for the important locking use case of coordinating accesses to shared data
structures, we propose the concept of an abortable CS, which facilitates satisfying P2 and P3.
Finally, we present the results of an experimental evaluation of the cost of overrun-resilient
locking and its isolation benefits with respect to timing faults.

Both the OR-FMLP and OR-OMLP use a concept called a “forbidden zone” [28] to satisfy
P1. A forbidden zone (FZ) is a length of time at the end of a job’s task budget during which
any lock request will be denied. However, the application of this concept is very different in
the two protocols. To circumvent the various chicken-and-egg problems related to P3, ETBs
must be used for certain code sequences. As ETBs can be very pessimistic, reliance on them
should be minimized. With this in mind, we carefully sift through the various design choices
and conclude that in a spinlock like the OR-FMLP, coarse-grained FZs should be used that
include both CS execution time and blocking time, while in a suspension-based lock like the
OR-OMLP, fine-grained FZs based on CS execution times only are better.

Our notion of an abortable CS requires no undo code when aborting CSs. An abortable
CS uses word-based obstruction-free [25] software transactional memory (STM) techniques
to linearize a CS to a single write instruction. Obstruction-freedom is a type of non-blocking
synchronization that must be used with a contention manager to ensure progress under
contention. In our case, the contention manager is a locking protocol. We show that using
such a strong contention manager enables significant simplifications in obstruction-free code.

Organization. In the rest of this paper, we provide necessary background information
(Sec. 2), delve further into task and CS budget management (Sec. 3), present the OR-FMLP,
the OR-OMLP, and the abortable CS concept (Secs. 4–6), present our experimental results
(Sec. 7), discuss certain practical implications of our work (Sec. 8), review related work (Sec. 9),
and conclude (Sec. 10).

ECRTS 2022

9:4 Overrun-Resilient Multiprocessor Real-Time Locking

2 System Model and Background

Task model. We consider a system of n implicit-deadline1 sporadic tasks τ1, τ2, . . . , τn to
be scheduled on m identical processors by a global job-level fixed-priority scheduler; we
assume global earliest-deadline-first (G-EDF) scheduling, unless stated otherwise. Each task
τi releases a potentially infinite sequence of jobs Ji,1Ji,2 . . . (we omit the job index if it is
irrelevant). Each task τi has a period Ti specifying the minimum spacing between consecutive
job releases. Each task has a PET obtained via measurement-based timing analysis.

Resource model. We consider a system that has a set {ℓ1, . . . , ℓnr } of serially reusable
shared resources. To ensure mutually exclusive resource access, a locking protocol must be
employed. When a job Ji requires a resource ℓk, it issues a request R for ℓk. R is satisfied
as soon as Ji holds ℓk, and completes when Ji releases ℓk. R is active from its issuance to its
completion. Ji must wait until R can be satisfied if it is held by another job. It may do so
either by busy-waiting (or spinning) in a tight loop, thereby wasting processor time, or by
being suspended by the OS until R is satisfied. A resource access is called a critical section
(CS). Each CS has a CS PET obtained via measurement-based timing analysis. We consider
non-nested resource requests only. We let Γk to denote the set of tasks that share ℓk.

Priority inversions. Priority-inversion blocking (or pi-blocking) occurs when a job is delayed
and this delay cannot be attributed to higher-priority demand for processing time. Under a
given real-time locking protocol, a job may experience pi-blocking each time it requests a
resource—this is called request blocking. In addition, a preemptive ready job may experience
pi-blocking due to the non-preemptive execution of lower-priority jobs—this is called non-
preemptive blocking. On multiprocessors, the formal definition of pi-blocking actually depends
on how schedulability analysis is done. For example, of relevance to suspension-based locks,
analysis may be either suspension-oblivious (s-oblivious) or suspension-aware (s-aware) [12].
Under s-oblivious analysis, suspension time is analytically treated as computation time.

FMLP. Under the FMLP [9], non-preemptive spin locks are used to ensure mutually exclusive
resource access.2 Each job that is blocked on a resource busy-waits within a FIFO queue.

Global OMLP. The global OMLP [12] is a suspension-based locking protocol that has
asymptotically optimal pi-blocking under s-oblivious analysis. The global OMLP ensures
O(m) pi-blocking by utilizing a dual-queue structure, with an m-element FIFO queue fed into
by a priority queue, as shown in Fig. 1. A new request is enqueued in the FIFO queue (resp.,
priority queue) if there are fewer than (resp., at least) m active requests. When the request
at the head of the FIFO queue (i.e., the resource holder) completes, it is dequeued, the next
request (if any) in the FIFO queue becomes satisfied, and the highest-priority request (if
any) in the priority queue is moved to the tail of the FIFO queue.

▶ Example 1. Fig. 2 shows five jobs that issue requests to the global OMLP with m = 3.
Fig. 1 shows the global OMLP queues at time 3.5, where Ji’s request is denoted by Ri. The
first three issued requests are enqueued directly in the FIFO queue. Thus, R4 is satisfied
before R3, although J4 has lower priority than J3. Since the FIFO queue is full, R5 and
R3 are enqueued in the priority queue upon issuance. When R1 completes at time 6, R2

1 The results of this paper do not depend on the choice of deadline constraints. Implicit deadlines are
assumed for simplicity.

2 There are actually two FMLP variants: short (spin-based) and long (suspension-based). We are
considering the short variant here.

Z. Tong, S. Ahmed, and J. H. Anderson 9:5

R1R2R4

resource
holder

FIFO queuepriority queue

Figure 1 The global
OMLP queue structure for 3
processors. Time

J1

J2

J3

J4

J5

0 5 10

Critical Section
Normal Execution

Suspension

Lock Release
Request Issuance
Job Completion
Job Deadline
Job Release

Spinning

Figure 2 Jobs issuing requests to the global OMLP
with m = 3. (The notation in this figure is also used in
subsequent figures.)

becomes satisfied, and R3 is moved from the priority queue to the FIFO queue, as J3 has
higher priority than J5. Thus, R3 is satisfied before R5, despite being issued later.

For ease of notation, we henceforth assume that all jobs of each task include one request
for the same resource, and this request is preceded and followed by non-resource-accessing
code. This assumption enables us to refer to a job’s CS without ambiguity. We stress that
we are making this assumption only for simplicity; none of our results actually depend on it.

3 Budget Management

Execution budgets that are enforced at runtime are obtained by inflating base budgets that
pertain to the execution of task code by adding certain overheads. Additional overheads
are then added to obtain analytical budgets that are used in schedulability analysis. In this
section, we provide details concerning these budgeting notions and relevant overheads.

Base budgets. We define the base task budget (resp., base CS budget) of a task τi (resp.,
τi’s CS), denoted by Cb

i (resp., Lb
i), as its PET (resp., CS PET).

What is and is not included in base budgets. Timing analysis is applied to determine
relevant PETs for a task independently of the task system that contains it. As lock-related
blocking times are system-dependent, we assume that they are not included in base task
budgets. The lock/unlock logic of a suspension-based lock is executed in the OS and hence
would not be included in base task budgets. In contrast, for a spinlock, this logic executes at
user level. However, as seen later, to satisfy P3, we must take special care in dealing with
this logic, so we assume it is not included in base task budgets.

When measurement-based timing analysis is applied, preemptions are notoriously difficult
to deal with due to difficulties in predicting cache interactions. For this reason, we assume
that CSs are executed non-preemptively and that their base budgets are determined assuming
cold caches. However, we do not preclude preemptions outside of CSs, as long as base task
budgets include cache-related preemption and migration delay (CPMD), which is a cost that
is incurred by a job to re-establish lost cache affinity after a preemption or migration. As
the focus of this paper is not timing analysis, determining valid CPMDs is out of scope.

Timers. To enforce base task and CS budgets, we require the usage of timers supported
by the OS, which we call task- and CS-budgeting timers, respectively. Such a timer starts
when the relevant entity (an entire job or a CS) starts executing and stops when the entity
is preempted (not allowed for CSs), aborted (see below), or completes execution. Between
starting and stopping, a timer is active.

ECRTS 2022

9:6 Overrun-Resilient Multiprocessor Real-Time Locking

Time
Ji

t1 t2 t3 t4 t5

Base budget
Execution budget
Analytical budget

Task-budgeting
timer start
Task-budgeting
timer stop

Figure 3 Illustration of base, execution, and ana-
lytical budgets. Time

τ1

τ2

τ3

0 5 10 15

Budget of τ3

2

9

τ3’s CS
budget

τ3’s task
budget

Figure 4 Budget consumption and re-
plenishment. Overheads/delays other than
spinning are omitted to avoid clutter.

Execution budgets. In reality, timers cannot be started and stopped in zero time. To
start a timer, timer-handling code executes in the OS. We assume no knowledge of the exact
structure of this code but do require that an ETB is specified for it. When this code executes,
we know that the timer starts at some time point, but not precisely when. Stopping a timer
is similar. In order to safely police base budgets, we must account for these timer activities.
To do so, we instead police adjusted execution budgets as defined next.

The task execution budget Ce
i of a task τi is obtained by inflating its base task budget Cb

i

by adding the worst-case cost of all task- and CS-budgeting timer overheads, as provisioned
by their ETBs, that may be incurred by a job of τi. The CS execution budget Le

i of τi’s CS
is similarly obtained by inflating its base CS budget Lb

i by adding the worst-case cost of all
CS-budgeting timer overheads, as provisioned by their ETBs, associated with that CS.

In overrun-resilient locking protocols that we propose, these execution budgets are enforced
at runtime. Specifically, we set the task- or CS-budgeting timer of a job to expire when
the corresponding task or CS execution budget is exhausted. A job overruns its task/CS
execution budget if it does not complete execution before the relevant timer expires.

▶ Example 2. Consider job Ji in Fig. 3. (We consider analytical budgets later.) Starting
(resp., stopping) Ji’s task-budgeting timer entails executing OS code during [t2, t3) (resp.,
[t4, t5)). Thus, Ji’s task execution budget is derived by inflating its base task budget by
(t3 − t2) + (t5 − t4) units.

We assume that execution budgets are managed via the following rules.

Consumption Rule: A job Ji consumes its task (resp., CS) execution budget
at the rate of one execution unit per unit of time when its task-budgeting (resp.,
CS-budgeting) timer is active.

Since a task- or CS-budgeting timer expires when the corresponding execution budget is
exhausted, a job cannot consume that execution budget when it is 0.

Replenishment Rule: Ji’s task execution budget is set to Ce
i when it is released.

Ji’s CS execution budget is set to Le
i when it issues a lock request.

▶ Example 3. Fig. 4 depicts three G-EDF-scheduled tasks on two processors. τ1 and τ3 use
resource ℓ1, which is protected by a spinlock. τ3’s task (resp., CS) execution budget is 9.0
units (resp., 2.0 units). At time 0, J3,1 is scheduled and its task-budgeting timer starts.
J3,1 consumes 1.0 unit of its task execution budget within the time interval [0, 1) during
which its task-budgeting timer is active. J3,1 is preempted by J2,1 at time 1, causing its

Z. Tong, S. Ahmed, and J. H. Anderson 9:7

Table 2 OR-FMLP and OR-OMLP overhead impact.

Overheads Base task budgets Task exec. budgets
OR-FMLP OR-OMLP OR-FMLP OR-OMLP

Budgeting-timer × × ✓ ✓
Locking & unlocking × × ✓ ✓
Request blocking × × ✓ ×
Non-preemptive blocking × × × ×

task-budgeting timer to stop. Thus, J3,1’s task execution budget remains the same during
the time interval [1, 3). At time 3, J3,1 is scheduled again and it continues executing until
completing at time 11, consuming 8.0 units of its task execution budget.

J3,1 issues a request for ℓ1 at time 6 that is satisfied at time 8 (when its CS-budgeting
timer starts) and completes at time 10 (after consuming its entire CS execution budget).

Analytical budgets. Some overhead/delay sources do not cause task or CS execution
budget to be consumed. However, such sources can impact schedulability. We define the
analytical task budget of task τi, denoted Ca

i , by inflating its task execution budget to account
for all overheads/delays. We define the analytical CS budget of τi’s CS, denoted La

i , by
inflating its CS execution budget to account for all overheads/delays affecting that CS.

▶ Example 2 (Cont’d). Ji in Fig. 3 suffers pi-blocking during the time interval [t1, t2) due to
a non-preemptively executing lower-priority job. Since Ji is not scheduled during [t1, t2), its
execution budget does not decrease during this interval. However, Ji may miss its deadline
due to the delay caused by this pi-blocking. Thus, Ji’s analytical task budget is derived by
inflating its task execution budget by t2 − t1.

Overheads/Delays. We consider the following overheads/delays that are either locking- or
timer-related overheads. We summarize the overheads/delays that affect base and execution
task and CS budgets under the OR-FMLP and OR-OMLP in Tbl. 2 and all introduced notation
in Tbl. 3. Note that we require ETBs of these overheads to avoid introducing “chicken and
egg” problems in satisfying P3, as discussed in Sec. 1.

(i) Budgeting-timer overheads. We denote the ETBs of starting, stopping, and expiring a
budgeting-timer by ∆tb, ∆te, and ∆tt, respectively. Since we focus on timer overheads
that are due to a CS execution, accounting for overheads due to starting/stopping a
task-budgeting timer for resuming/suspending a job’s non-CS code is out of scope.

(ii) Locking and unlocking overheads. We denote the ETBs of executing the lock and unlock
logic (for both spinlocks and suspension-based locks) by ∆lock and ∆unlock, respectively.

(iii) Request blocking. We let Bi denote a bound on request blocking incurred by τi’s request.
(iv) Non-preemptive blocking. We let NPBi denote a bound on non-preemptive blocking

incurred by τi.
Accounting for these overheads in analytical budgets is a well-researched topic [10]. We detail
the required overhead inflation in task and CS execution budgets under the OR-FMLP and
OR-OMLP in Secs. 4 and 5, respectively.

Simplifying assumptions. In order to focus only on those overheads/delays of direct
relevance to overrun-resilient locking and to simplify the description of the OR-FMLP and
OR-OMLP, we make the following assumptions.

A1 ETBs of all overheads are known.
A2 The cost of aborting a CS is included in the ETB of expiring the CS-budgeting timer.

ECRTS 2022

9:8 Overrun-Resilient Multiprocessor Real-Time Locking

Table 3 Notation summary.

Symbol Meaning Symbol Meaning
n Number of tasks La

i Analytical CS budget of τi’s CS
m Number of processors ∆tb ETB of starting overhead for a task- or CS-

budgeting timer
τi ith task ∆te ETB of stopping overhead for a task- or CS-

budgeting timer
Ji,j jth job of τi ∆tt ETB of expiring overhead for a task- or CS-

budgeting timer
Ti Period of τi ∆lock ETB of locking overhead
ℓk kth shared resource ∆unlock ETB of unlocking overhead
Cb

i Base task budget of τi ∆abort ETB of overhead for aborting a request
Ce

i Task execution budget of τi Bi Maximum request blocking time of τi

Ca
i Analytical task budget of τi NPBi Maximum non-preemptive blocking time of

τi

Lb
i Base CS budget of τi’s CS Γk Set of tasks that shares a resource ℓk

Le
i CS execution budget of τi’s CS fi Forbidden-zone length for Ji

A3 All overheads/delays other than task- and CS-budgeting timer overheads, locking and
unlocking overheads, and request and non-preemptive blocking are negligible.

We discuss how A1 and A3 can be relaxed in Sec. 8 and how to support A2 in Sec. 6.

Refining P1–P3. Properties P1–P3 can be ensured by maintaining the following properties.
P1.1 If a job’s task execution budget expires, then it has no active request (to satisfy P1).
P2.1 If the CS execution budget of a CS expires, then the CS is aborted without corrupting

shared-resource state (to satisfy P2).
P3.1 Execution-time variances in executing timer-handling and lock/unlock logic cannot

cause task and CS execution budgets to be exceeded (to satisfy P3).
We show how to satisfy P1.1 and P3.1 in the OR-FMLP and OR-OMLP in Secs. 4 and 5. We
also show how to satisfy P2.1 in Sec. 6 for the case of shared data structures. In order to
focus on P1.1 and P3.1 for now, we make the following assumption.
A4 Property P2.1 is satisfied.

4 OR-FMLP

In this section, we introduce the overrun-resilient flexible multiprocessor locking protocol
(OR-FMLP), an extension of the FMLP [9] that achieves overrun resiliency by enforcing
task and CS execution budgets. Like the FMLP, a job is non-preemptive when executing
the OR-FMLP (while both spinning and executing its CS). The OR-FMLP satisfies P1.1 by
using a previously proposed concept called a forbidden zone (FZ) [27] that aids in budget
enforcement—in fact, the OR-FMLP is very similar to a protocol called the “Skip Protocol”
presented in [27]. In our setting, however, much care is required in deriving execution budgets
so that “chicken and egg” problems are avoided. The goal of avoiding such problems has a
major bearing on the overall lock design and its analysis.

Design goal. Spinlocks provide mutual exclusion without OS support, eliminating system-
call overheads. While some timer-related OS support is needed, our overriding design goal is
nonetheless the following.
G1 Minimize the number of the OS invocations.

Z. Tong, S. Ahmed, and J. H. Anderson 9:9

Time
J1

J2

0 5

Denied
request

Budget of J2

5
7

fi

Forbidden zone

(a) OR-FMLP

Time
J1

J2

0 5

Aborted
request

Budget of J2

3
7

fi

Forbidden zone

(b) Fine-grained variant

Figure 5 Illustration of FZs. Overheads/delays other than spinning are omitted to avoid clutter.

Managing CS-budgeting timers. To prevent CS execution budget overruns, OS invoca-
tions are needed, contrary to G1, to manage CS-budgeting timers. It is perhaps theoretically
possible to avoid using such timers by having the CS itself repeatedly monitor the CS
execution budget remaining, but such an approach would have very high overhead.

Satisfying P1.1. We satisfy P1.1 by employing FZs, as mentioned above. When a job is
allocated its task execution budget, a portion of that budget at the end constitutes its FZ. A
job is not allowed to issue a resource request during its FZ. The length of Ji’s FZ, denoted
by fi, is the maximum task execution budget of Ji that can be consumed when a request of
Ji is active. Under the OR-FMLP, this task execution budget consumption includes both
its CS length and spinning time. The OR-FMLP adds an additional “FZ check” prior to
performing the locking logic of the FMLP. This check, which is assumed to be part of the
locking overhead of the OR-FMLP, can be implemented entirely in user space by having
the OS record the current time as given by the local timestamp counter (TSC) in a shared
control page whenever a job begins or resumes execution. Using this recorded value and the
current local TSC value, a job can determine whether it is in its FZ.

▶ Example 4. Fig. 5(a) depicts two jobs that issue requests to the OR-FMLP for resource ℓ1.
Assume that J2’s task execution budget is 7.0 units and its CS execution budget is 2.0 units.
J2 could potentially be blocked by J1 for 3.0 time units, the length of J1’s CS execution. J2
enters its FZ at time 2 as it does not have sufficient task execution budget to spin for 3.0
time units and then execute its CS for 2.0 time units. Thus, its request is denied at time 4.

Satisfying P3.1. To satisfy P3.1, we derive task and CS execution budgets by accounting
for all lock- and timer-related overheads/delays, given in Tbl. 2, using their ETBs. Before
deriving these terms, we first give the rules of the OR-FMLP.

OR-FMLP Rules. We assume the following properties, which we justify later.
B1 The execution and analytical budgets of all tasks and CSs have been determined.
B2 A job’s FZ length can be derived from task/CS base, execution, and analytical budgets.
When a job Ji attempts to issue a request R for a resource ℓk, it proceeds according to the
following rules (Ji is non-preemptive while executing according to these rules).
F1 R is issued only if Ji’s remaining task execution budget is at least fi; otherwise, R is

denied. Issued requests spin (if necessary) in per-resource FIFO queues until satisfied.
(Policies for handling denied or aborted requests are an application-level concern.)

F2 When R is satisfied, Ji’s CS-budgeting timer is set to expire Le
i time units in the future.

F3 When Ji’s CS completes, Ji’s CS-budgeting timer is stopped and Ji releases ℓk. If the
CS-budgeting timer expires prior to CS completion, then ℓk is released (i.e., Ji’s CS is
aborted, as allowed by Assumption A4).

ECRTS 2022

9:10 Overrun-Resilient Multiprocessor Real-Time Locking

Lb
i

Le
i

La
i

Cb
i

Ce
i

fi

Time
R

t1 t2 t3 t4 t5 t6 t7 t8 t9

Lock

Unlock

CS-budgeting
timer start
CS-budgeting
timer stop

Figure 6 OR-FMLP request timeline with overheads included.

Addressing B1 and B2. We now address Properties B1 and B2. Fig. 6 depicts the
execution of a request R of a job Ji, with overheads included, during the time interval from
R’s issuance until its completion. During this interval, Ji issues R by inserting R into the
FIFO spin-queue during [t1, t2), spins (if required) during [t2, t3), starts its CS-budgeting
timer during [t3, t5), executes its CS during [t5, t6), stops its CS-budgeting timer during
[t6, t8), and unlocks its acquired resource during [t8, t9). Using this figure as a reference, we
now derive the various terms mentioned in B1 and B2.

CS execution budget. We derive Le
i by inflating Lb

i to account for its CS execution budget
consumption due to CS-budgeting timer overheads. Since Ji’s CS executes non-preemptively
under the OR-FMLP, Ji incurs CS-budgeting timer overheads only when its CS starts and
completes execution. However, the CS-budgeting timer can start or stop at an arbitrary
time point within the OS’s timer-handling code, as shown by times t4 and t7 in Fig. 6,
respectively. Since (t5 − t4) ≤ ∆tb and (t7 − t6) ≤ ∆te, Ji’s CS execution budget is consumed
by at most ∆tb + ∆te units due to starting and stopping its CS-budgeting timer. Expiring
the CS-budgeting timer does not consume any CS execution budget because it occurs only
when the CS execution budget is fully consumed. Thus, we have

Le
i = Lb

i + ∆tb + ∆te. (1)

Analytical CS budget. The above derivation of Le
i pessimistically assumes that t4 (resp., t7)

is close to t3 (resp., t8). In reality, t4 (resp., t7) could instead be close to t5 (resp., t6),
implying that we must inflate again for timer overheads in determining the analytical CS
budget. With this in mind, we derive La

i , represented by [t3, t8) in Fig. 6, by inflating Le
i to

account for its task execution budget consumption due to CS-budgeting timer overheads. Ji’s
task execution budget is consumed by at most Le

i units during [t4, t7). Before (resp., after)
the CS-budgeting timer actually starts (resp., stops), the timer-handling code may execute
for at most ∆tb (resp., ∆te) time units during [t3, t4) (resp., [t7, t8)). If the CS-budgeting
timer of Ji expires, then the expiration and CS abort take at most ∆tt time units (by
Assumption A2). Since the timer stop and expiration cannot both occur for a CS, we have

La
i = Le

i + ∆tb + max(∆te, ∆tt). (2)

Request blocking time. Under the FMLP, a request R for a resource ℓk by a job Ji can be
blocked by at most m − 1 requests for ℓk by other jobs. A request R′ by a job Jj that blocks
R can do so for the entire duration when R′ is satisfied. This duration includes the time
needed for R′ to (i) start its the CS-budgeting timer, (ii) execute its CS, (ii) stop/expire
its CS-budgeting timer, and then (iv) unlock ℓk. This time interval is analogous to [t3, t9)
for Jj in Fig. 6. La

j upper bounds the total time for (i)–(iii) and ∆unlock upper bounds the
time for (iv). It follows that

Bi =
∑

m−1 largest in Γk

(La
j + ∆unlock). (3)

Z. Tong, S. Ahmed, and J. H. Anderson 9:11

FZ length. Ji’s FZ length, fi, is the maximum task execution budget of Ji that can
be consumed during the time interval when its request R is active. This time interval
corresponds to [t1, t9) in Fig. 6. Ji issues R during [t1, t2), which takes at most ∆lock time
units. It then busy-waits for at most Bi time units during [t2, t3). It subsequently executes
its CS and timer-handling code for at most La

i time units during [t3, t8) and then unlocks ℓk

during [t8, t9), which requires at most ∆unlock time units. Therefore,

fi = Bi + ∆lock + La
i + ∆unlock. (4)

Task execution budget. We derive Ji’s task execution budget by inflating its base
task budget to account for spinning time, locking and unlocking overheads, and task- and
CS-budgeting timer overheads incurred when its request R is active (see Tbl. 2). These
overheads/delays correspond to all of [t1, t9) except [t5, t6) in Fig. 6. Since fi (resp., Lb

i)
corresponds to [t1, t9) (resp., [t5, t6)), Ji’s task execution budget is

Ce
i = Cb

i + fi − Lb
i .

Analytical task budget. Ji’s analytical task budget is obtained by inflating its task
execution budget to account for non-preemptive blocking and a potential task-budgeting
timer expiration. Expiring the task-budgeting timer takes at most ∆tt time units. Because
jobs invoke the OR-FMLP non-preemptively, a newly released job may be blocked by lower-
priority jobs for the duration of m CSs (inflated to include overheads). Reasoning similarly
to (3), we have

NPBi =
∑

m largest
(La

j + ∆unlock).

Therefore, Ji’s analytical task budget is

Ca
i = Ce

i + NPBi + ∆tt.

Fine-grained FZs and why they are problematic. FZs were originally proposed to be
policed upon CS entry [27], but here we have policed them in a more coarse-grained way by
also including spinning time. We made this choice to avoid interactions with the OS, per
Goal G1, to maintain the use of simple user-level synchronization code, and to reduce the
length of code sequences that require ETBs. Here we briefly explore the fine-grained choice
of defining FZ lengths based on CS execution times only.

The main advantage of the fine-grained approach is that FZ lengths are shorter. However,
now a job may exhaust its task execution budget while executing within the locking protocol.
In this case, its request must be extracted from the FIFO spin-queue. Letting ∆abort denote
that time required to do this, it can be shown that (4) can be replaced by

fi = max(La
max + ∆unlock, ∆abort). (5)

▶ Example 5. Fig. 5(b) depicts two jobs that issue requests for resource ℓ1. At time 3, J2
issues a request R for ℓ1. Assume that J2’s task and CS execution budgets are 7.0 and 2.0
units, respectively, and extracting R from the FIFO spin-queue requires 3.0 time units.
Then, J2’s fine-grained FZ length is max{2, 3} = 3. Thus, J2 reaches its FZ at time 4 after
consuming 4.0 units of its task execution budget.

Significant prior research has been directed at abortable spinlocks that allow requests to
be aborted [1,2,29,33,38,44]. Two approaches have been investigated in designing such locks.

ECRTS 2022

9:12 Overrun-Resilient Multiprocessor Real-Time Locking

The first approach aborts requests “lazily” by setting a removal flag [2, 33, 38, 44]. Proper
request removal is performed later by another job whose resource request is pending or
satisfied. This removal requires O(m2) time [33], which can significantly increase FZ lengths.
In the second approach, an aborted request is removed immediately [1, 29]. In existing
algorithms, such a removal requires O(min(m, log n)) time complexity or worse. Moreover,
abortable spinlocks require complicated lock/unlock/abort logic. This would significantly
increase the ETBs associated with that logic. In contrast, a simple ticket lock can be used in
the course-grained variant, thus reducing the length of code sequences requiring ETBs.

5 OR-OMLP

In this section, we introduce the overrun-resilient O(m) locking protocol (OR-OMLP). The
original OMLP executes CSs preemptively and uses priority inheritance [37] as a progress
mechanism to ensure that if a job waiting to access a resource ℓk is among the m highest-
priority jobs, then the currently satisfied request for ℓk is scheduled. The OR-OMLP executes
CSs non-preemptively (for the timing-analysis-related reasons discussed in Sec. 3) but retains
priority inheritance as a progress mechanism. Priority inheritance is still needed to ensure that
when a (non-preemptive) CS ends, the next queued request will be satisfied if it is blocking
a job whose priority is among the top m. Non-preemptive CSs do not alter the OMLP’s
request-blocking bounds, but introduce non-preemptive blocking, which the OMLP avoids.

Similar to the OR-FMLP, the OR-OMLP uses FZs and ETBs of lock- and timer-related
overheads to satisfy P1.1 and P3.1, respectively, but here, FZs are fine-grained (i.e., policed
on CS entry). Having already seen how these basic mechanisms work in the context of the
OR-FMLP, we proceed directly to defining the rules of the OR-OMLP.

OR-OMLP rules. Our description of the OR-OMLP focuses on a single resource ℓk, for
which there are two queues, an m-element FIFO queue FQ and a priority queue PQ, as shown
in Fig. 1. When a job Ji attempts to issue a request R for ℓk, it follows the rules below,
which are specified assuming that B1 and B2 in Sec. 4 hold, and that a job’s task-budgeting
timer starts (resp., stops) when it begins (resp., ceases) to execute.
O1 R is issued only if Ji’s remaining task execution budget is at least fi; otherwise, R is

denied. If not denied, R is enqueued in FQ if fewer than m requests for ℓk are already
active; otherwise, it is added to PQ.

O2 All queued jobs except the job at the head of FQ are suspended. The job at the head of
FQ inherits the priority of the highest-priority job in FQ or PQ.

O3 If R becomes the head of FQ at time t, then it is satisfied and Ji becomes eligible to be
scheduled at time t (this depends on its perhaps-inherited priority). If Jj ’s request was the
head of FQ before time t and Ji is among the m highest-priority jobs at time t but cannot
preempt the lowest-priority scheduled job due to non-preemptivity, then Ji preempts Jj

(even if Jj is one of the top m priority jobs). Once scheduled, Ji’s CS-budgeting timer is
set to expire Le

i time units in the future, and Ji executes its CS non-preemptively.
O4 When Ji’s CS completes, its CS-budgeting timer is stopped, Ji releases ℓk, and Ji

becomes preemptive. If instead its CS-budgeting timer expires prior to its CS completion,
then ℓk is released (i.e., R is aborted, as allowed by Assumption A4). In either case, R is
dequeued from FQ and the highest-priority request from PQ is moved to the tail of FQ.

Lazy preemptions. In addition to the above rules, we enact preemptions (except the
preemption mentioned by Rule O3) lazily by delaying any preemption until the lowest-priority
scheduled job becomes preemptable instead of preempting the first-available lower-priority
job [10, §3.3.3]. Lazy preemptions prevent a job from incurring repeated pi-blocking each time

Z. Tong, S. Ahmed, and J. H. Anderson 9:13

Time
J1

J2

J3

0 5 10

Non-preemptive execution

Execution of processor 1

Execution of processor 2

Figure 7 Example illustrating lazy preemptions and link-based scheduling.

La
i

Ce
i

fi

Time
R

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10t11

Unlock
Lock

Task-budgeting timer start
Task-budgeting timer stop

Figure 8 Timeline of an active request under the OR-OMLP.

a higher-priority job is released when the scheduler implementation is link-based [10, §3.3.3],
which we assume.

▶ Example 6. Lazy preemption is depicted in Fig. 7. Three jobs are scheduled on two
processors under link-based G-EDF. When J3 is released at time 2, the scheduler links J3 to
processor 1, which is executing the lowest-priority job among both processors. Since J1 is
scheduled on processor 1 and is nonpreemptive at time 2, J3 is not scheduled. At time 5, J1
becomes preemptive again, and J3, the job linked to processor 1, is scheduled on processor 1.
Further details concerning lazy preemptions and link-based scheduling are given in an online
appendix [41].

Addressing B1 and B2. We deal with these properties similarly as for the OR-FMLP.
Fig. 8 depicts the execution of a request R of a job Ji, with overheads included. We omit
CS-budgeting timers in Fig. 8 as their accounting is the same as for the OR-FMLP, but we
include task-budgeting timers as they are relevant to suspension-based locks. Ji’s lock request
is issued by enqueueing it in the relevant queue during [t1, t2). If ℓk is held by another job,
then Ji suspends. Before suspending Ji at t4, Ji’s task-budgeting timer is stopped during
[t2, t4). Ji’s task-budgeting timer is started during [t5, t6) after it is scheduled again upon
satisfaction of R at t5. During [t7, t8), Ji’s CS-budgeting timer starts, its CS executes, and
then its CS-budgeting timer stops. Ji unlocks ℓk during [t8, t9). If Ji is preempted due to
Rule O3 after it unlocks ℓk, then its task-budgeting timer is stopped during [t9, t11). Using
this figure as reference, we now derive the various terms mentioned in B1 and B2.

CS execution and analytical budgets. Since CSs execute non-preemptively, the analysis
of CS execution and analytical budgets is the same as under the OR-FMLP. Thus, Ji’s CS
execution budget and analytical CS budgets are determined by (1) and (2), respectively.

Task execution budget. Locking and unlocking overheads during [t1, t2) and [t8, t9),
respectively, occur when Ji’s task-budgeting timer is active and thus consume at most ∆lock

and ∆unlock units, respectively, of Ji’s task execution budget. Ji’s task-budgeting timer
actually starts (resp., stops) at an arbitrary time point t6 (resp., t3 and t10) within the OS’s
timer-handling code. Thus, (t3 − t2) + (t10 − t9) ≤ 2∆te (resp., (t7 − t6) ≤ ∆tb) units are
consumed from Ji’s task execution budget when Ji is suspended/preempted (resp., resumed).
By the FZ check in Rule O1, Ji’s task-budgeting timer cannot expire when R is active. The
CS-budgeting timer overheads are accounted for in La

i , and are at most La
i − Lb

i . Thus, Ji’s

ECRTS 2022

9:14 Overrun-Resilient Multiprocessor Real-Time Locking

task execution budget is

Ce
i = Cb

i + ∆lock + ∆unlock + ∆tb + 2∆te + La
i − Lb

i .

FZ length. fi is given by the maximum task execution budget of Ji that can be consumed
during the time interval when R is active. Ji consumes its task execution budget throughout
all of [t1, t9) except within [t3, t6). Therefore,

fi = ∆lock + ∆unlock + ∆tb + ∆te + La
i .

Request blocking. Under the OMLP, a job Ji can be pi-blocked by the length of at most
2(m − 1) requests for ℓk [12]. This result hinges on a progress mechanism, which ensures
the progress of the job Jj holding ℓk whenever Ji is request-blocked. Under the OR-OMLP,
Rule O3 and priority inheritance ensure the same progress property. When Jj becomes the
head of FQ, Rule O3 ensures that it is scheduled if its (perhaps-inherited) priority is one
of the top m despite any non-preemptive execution of lower-priority jobs. This may cause
non-preemptive blocking for the previous resource holder (if any), which we discuss later.
Priority inheritance ensures that Jj can be scheduled when its priority is raised because of
Ji’s request issuance. (We give a formal proof in an online appendix [41].)

By preserving the same progress property as the OMLP, the OR-OMLP has the same
request-blocking bounds as the OMLP. A request R′ by Jj can pi-block Ji for the duration
in which R′ is satisfied, which is analogous to the time interval [t5, t9) in Fig. 8. This
duration includes the time needed for R′ to (i) start its task-budgeting timer, (ii) start its
CS-budgeting timer, (iii) execute its CS, (iv) stop its CS-budgeting timer, and (v) unlock ℓk.
∆tb upper bounds (i), La

i upper bounds (ii)–(iv), and ∆unlock upper bounds (v). Additionally,
Jj can be preempted before the next job holding ℓk can be scheduled. This causes Jj ’s
task-budgeting timer to stop during [t9, t11), which takes at most ∆te time. Therefore,

Bi = 2 · (m − 1) · (∆tb + ∆unlock + ∆te + max
τj∈Γk

{La
j }). (6)

Non-preemptive blocking. With lazy preemptions, Ji can incur non-preemptive blocking
when it releases ℓk (due to Rule O3). (We give an example of the latter case in an online
appendix [41].) Note that a job can be pi-blocked when a resource is released even under the
OMLP if there is a task with non-preemptive sections [10, §3.3.3]. However, such pi-blocking
can be analytically treated the same as pi-blocking incurred upon job release by considering
the remaining portion of the job as a new job. Each job release can cause pi-blocking for the
length of at most one CS [10, §3.3.3]. Reasoning as above for (6), we have

NPBi = 2 · (∆tb + ∆unlock + ∆te + max{La
j }).

Analytical task budget. We derive Ca
i by inflating Ce

i to account for request blocking
time Bi, non-preemptive blocking time NPBi, task-budgeting timer expiration overhead ∆tt,
and task-budgeting timer starting/stopping overheads during [t3, t4), [t5, t6), and [t10, t11).
Since (t4 − t3) + (t11 − t10) ≤ 2∆te and (t6 − t5) ≤ ∆tb, we have

Ca
i = Ce

i + Bi + NPBi + ∆tb + 2∆te + ∆tt.

Coarse-grained FZs. Is it possible to have a OR-OMLP variant with coarse-grained FZs
like the OR-FMLP? Such a variant would actually be quite tricky to implement due to the
need to track task budget consumption by waiting jobs. A waiting job’s task budget should
be consumed only when it is pi-blocked, and under s-oblivious analysis, not all suspension
time “counts” as pi-blocking time [12]. This nuance greatly complicates budget tracking.

Z. Tong, S. Ahmed, and J. H. Anderson 9:15

6 Abortable Critical Sections

In this section, we introduce abortable CSs, which enable operations on shared data structures
to be aborted without undo code. Abortable CSs are inspired by word-based obstruction-free
STM, which linearizes multiple operations to a single instruction, but can only ensure
progress in the presence of a contention manager. By executing instructions in CSs, the
locking protocol serves as a strong contention manager, allowing us to simplify and address
issues in prior obstruction-free techniques.

Undo code problem. The following example shows the necessity of undo code when an
ordinary CS is aborted.

▶ Example 7. Consider the Modify procedure in Alg. 1, which updates a two-word buffer
M [1..2] by incrementing each M [i] by M [1]’s value. If the procedure is aborted after
completing the first for-loop iteration, then the buffer is left in an inconstent state. In order
to restore M to a valid state, undo code would need to set M [1] to its old value.

While the undo code above is simple, such code can be much more complicated for
operations that make many changes to object state. Undo code also needs to be provisioned
using its ETB to satisfy P3.1, which can be as pessimistic as the ETB of the CS itself.

Prior work on versioning techniques. Prior work on versioning techniques attempt to
obviate undo code through various means, but they all have unfortunate limitations in our
context. Interruptible CSs (ICSs [30]) use the idea of a continuation [42] to eliminate undo
code by appending memory modifications to a log, which will be applied before the next CS
entry. Unfortunately, ICSs can force short CSs to apply the memory modifications of long CSs.
When CSs only modify memory, each CS length may increase by the length of the longest
CS in the system. Object-based obstruction-free STMs [21, 26, 35] do not face this issue, but
may require coarse-grained copies of an entire data structure when only small modifications
are performed. Word-based variants [22–24] eliminate the need for coarse-grained copying,
but require a garbage collector. Other protocols such as TL2 [19] fix both the problems of
word-based STMs and continuations, but can require a lengthy clean-up process on abort.

Our abortable CS concept leverages locks as a strong contention manager. It also addresses
the issue present in ICSs, and word-based STMs’ reliance on garbage collectors without
requiring a lengthy clean-up process like TL2. We now explain this concept by showing how
to convert Modify into an abortable version, AbortableModify, also given in Alg. 1. We
first describe the data structures involved.

Data structures. We represent each M [i] using the structure shown in Fig. 9(a) and
associate a CS, e.g., an invocation of AbortableModify, with a transaction record as
defined in Fig. 9(b). The fields M [i].old and M [i].new contain the valid value of M [i]—i.e.,
the value written by the last unaborted request involving a write to M [i]—before and after
reaching the linearization point, respectively.3 We modify only M [i].new within a CS before
it reaches its linearization point. The txn field of M [i] is a pointer to a transaction record,
which is set when M [i] is updated in AbortableModify.

The rc1 and rc2 fields in a transaction record count the number of M [i] structures that
point to that record, which are used to determine when the record is no longer in use, as
discussed later. The done field indicates whether the CS corresponding to the record has

3 M [i] is a pointer, so technically we should use notation like M [i]→old to indicate that it must be
dereferenced before accessing the old field. We have opted for simpler notation that is more readable.

ECRTS 2022

9:16 Overrun-Resilient Multiprocessor Real-Time Locking

Algorithm 1 Example buffer data structure.

Variables:
M [1..2] : A shared array of words

1: procedure Modify(M)
2: x := M [1]
3: for i ∈ {1, 2} do
4: M [i] := M [i] + x

5: end for
6: end procedure

Variables:
M [1..2] : A shared array of type in Fig. 9(a)
data : Ptr of data structure in Fig. 9(a)
txn : Ptr to txn_record in Fig. 9(b)
new_txn : Ptr to txn_record in Fig. 9(b)
free_stack : Stack of free transaction records
free_stack_top : Ptr to top of free_stack

1: procedure AbortableModify(M)
2: new_txn := NULL
3: if M [1].txn ≠ NULL ∧ M [1].txn.done

then
4: x := M [1].new

5: else
6: x := M [1].old

7: end if
8: for i ∈ {1, 2} do
9: txn := M [i].txn

10: data := &(M [i])
11: if txn ̸= NULL then
12: if txn.done then

13: data.old := data.new
14: end if
15: txn.rc1 := txn.rc1 − 1
16: if txn.rc1 = 0 then
17: txn.done := false
18: txn.next := free_stack_top
19: free_stack_top := txn
20: end if
21: data.txn := NULL
22: txn.rc2 := txn.rc2 − 1
23: end if
24: txn := new_txn
25: if new_txn = NULL then
26: txn := free_stack_top
27: txn.rc2 := txn.rc2 + 1
28: data.txn := txn
29: free_stack_top := free_stack_top.next
30: txn.rc1 := txn.rc1 + 1
31: else
32: txn.rc2 := txn.rc2 + 1
33: data.txn := txn
34: txn.rc1 := txn.rc1 + 1
35: end if
36: new_txn := txn
37: data.new := data.old + x
38: end for
39: new_txn.done := true
40: end procedure

successfully been completed or not. The computation of a CS linearizes to a single write that
sets its transaction record’s done field to true. Thus, we maintain the following invariant.
I M [i].old contains M [i]’s valid value if M [i].txn.done is false or M [i].txn is NULL. M [i].new

contains M [i]’s valid value if M [i].txn.done is true.

The next field in a transaction record is used to maintain a stack free_stack of free
transaction records that are not pointed to by any M [i]. This free_stack is used to reuse a
transaction record for future CSs. We now describe the code in AbortableModify.

Reads of shared variables. Lines 3–6 in AbortableModify replace line 2 of Modify.
These lines read M [1]’s valid value from either the new or old field of M [1] based on Invariant I.

Writes of shared variables. Lines 9–39 in AbortableModify replace the write to M [i]
in line 4 of Modify. We note that, while these lines reflect our general transformation

struct {
old: word
new: word
txn: Ptr to txn_record

} data

(a) Data element structure

struct {
rc1: int
rc2: int
done: boolean
next: Ptr to txn_record

} txn_record

(b) Transaction record structure
Figure 9 Data structures for abortable CS.

Z. Tong, S. Ahmed, and J. H. Anderson 9:17

txn

new = 4

old = 2

rc1 = 1

done = T

rc2 = 1

M [i] txn

(a)

txn

new = 4

old = 4

rc1 = 1

done = T

rc2 = 1

M [i] txn

(b)

txn

new = 4

old = 4

rc1 = 0

done = T

rc2 = 1

M [i] txn

(c)

txn

new = 4

old = 4

rc1 = 0

done = F

rc2 = 1

M [i] txn

(d)

txn

new = 4

old = 4

rc1 = 0

done = F

rc2 = 1

M [i] txn

(e)

txn

new = 4

old = 4

rc1 = 0

done = F

rc2 = 0

M [i] txn

(f)

free stack top free stack top free stack top
NULL NULL

free stack top txn ′free stack top txn ′free stack top txn ′

Figure 10 Unlinking process. The field txn.next is not shown.

process for making a CS abortable, it is possible to shorten this code for this simple example.
A write to M [i] in AbortableModify occurs in three steps: (i) unlink M [i] from its old
transaction record to enable future reuse of that record; (ii) link M [i] with the transaction
record corresponding to this CS invocation; and (iii) commit that invocation, i.e., make it
take effect atomically. We now explain these steps.

Step (i): Unlinking. Lines 12–22 in AbortableModify unlink M [i] from its old transac-
tion record stored in txn by line 9. We depict the steps of unlinking in Fig. 10, where inset (a)
shows an initial state prior to executing lines 12–22. To maintain Invariant I, lines 12 and 13
copy M [i].new to M [i].old if txn.done is true, as shown in Fig. 10(b). Lines 15, 21, and 22
decrement rc1 and rc2 of txn before and after setting M [i].txn to NULL, respectively, as
shown in insets (c)–(f) of Fig. 10. If rc1 becomes 0 after line 15, as shown in Fig. 10(c), then
lines 17–19 push txn onto free_stack and unset its done field, as shown in Fig. 10(d).

Step (ii): Linking. Lines 24–35 link M [i] to a transaction record. Line 24 assigns
new_txn to txn, which is the transaction record corresponding to this invocation of Aborta-
bleModify. We illustrate the linking process when new_txn is NULL by considering insets
(b)–(f) of Fig. 10 in reverse order. Fig. 10(f) shows an initial state after executing line 26 of
the linking process when new_txn is NULL. Insets (e), (d), (c), and (b) of Fig. 10 illustrate
incrementing rc2 (line 27), linking txn to M [i] (line 28), removing txn from free_stack
(line 29), and incrementing rc1 (line 30), respectively. After this linking process, line 36 sets
new_txn to txn to ensure that future loop iterations use this same transaction record. Also,
line 37 performs the write operation (from line 4 of Modify) by updating M [i].new.

Step (iii): Committing. The CS is committed by simply setting new_txn.done to true
in line 39. It is this one-line commit at the end that obviates the need for any undo code.

Why two reference counters? To see why using only one counter is problematic, consider
again the unlinking process shown in Fig. 10. If only rc1 is used and the CS is aborted
after executing the step in Fig. 10(c), then txn is left in an inconsistent state, i.e., its rc1
field indicates no structure points to txn yet one does. Using both rc1 and rc2 enables this
“inopportune” CS abort to be detected by simply checking whether rc1 is smaller than rc2 .
To fix the inconsistent transaction record in this case, we add a small code sequence to the
OS timer-handling code that deals with CS-budgeting timer expirations. This code completes
the remaining steps of unlinking by executing lines 15–21 of AbortableModify if txn.rc1 is
smaller than txn.rc2 (with an additional check of txn = free_stack_top in line 15 to prevent
inserting txn to free_stack twice). The timer-handling code can access the CS-specific
variables involved in these actions via a control page shared with the CS’s task. Note that
the added timer-handling code is the same for all abortable CSs and deriving the EBT of

ECRTS 2022

9:18 Overrun-Resilient Multiprocessor Real-Time Locking

expiring the CS-budgeting timer after adding this code supports Assumption A2. Similar
inopportune CS aborts can affect the linking process, and they are dealt with similarly.

Generalizing to arbitrary shared data structures. For clarity, we presented the idea
of an abortable CS via a simple example. However, in an online appendix [41], we present a
set of routines for performing necessary actions (reading, writing, linking, unlinking), a set of
rules to transform any ordinary CS into an abortable one, and an invariant-based proof that
shows that these rules are correct. In our simple example, reading and writing occurred at
the granularity of words. However, in the general scheme, any granularity can be assumed.

Have we really eliminated undo code? One could argue that abortable CSs merely
intertwine undo-related actions with ordinary CS code. If this is so, do they offer any real
advantages over simply following ordinary CS code with potential undo code? The answer is
yes. With separate undo code, the “chicken and egg” problem mentioned in Sec. 1 arises:
the undo code would have to be budgeted, and to avoid exhausting that budget, an ETB
would have to be assumed for it, which could be very costly. Perhaps one could take the
same “intertwined view” and inflate the cost of any CS by its undo cost, but then how is the
(separate) undo code ever triggered? Presumably, the combined budget would have to be
factored into two parts, one for the ordinary CS code and one for the undo code, bringing us
back to the chicken-and-egg problem. While abortable CSs are immune from these problems,
further research into supporting real-time undo code would certainly be valuable.

7 Experimental Evaluation

To assess the costs and benefits of overrun-resilient locking, we conducted two sets of
experiments under LITMUSRT [10, 15] on an eight-core 2.1GHz Intel Xeon Silver processor.
To increase timing predictability, we disabled hyperthreading, low CPU power states, and
CPU frequency scaling.

Experiment 1. We first assessed the costs of using abortable CSs that satisfy P2.1 vs.
using CS ETBs to provision CS execution budgets. As a baseline, we measured the execution
times of ordinary (non-abortable) operations on buffers, queues, and binary heaps. To assess
the cost of abortable CSs, we compared the baseline to the execution times of corresponding
abortable CS implementations. To assess CS ETB budget provisioning (which assumes
unrealistically pessimistic conditions), we compared the baseline to the execution times of
cacheless runs of the ordinary operations. Two metrics were considered: the worst-case (resp.,
average-case) inflation factor of an operation is the ratio between the observed maximum
(resp., average) execution times of abortable/cacheless CS vs. that of the baseline. As this is
not a paper on timing analysis, we note that the ETBs assumed here are provided to give a
plausible sense of the pessimism they may entail; we make no claim that they are in fact
upper bounds, or if they are, that they cannot be safely tightened.

For each implementation, we determined the maximum and average duration of each
operation (measured using the timestamp counter) through 10,000 trials, running alongside
contention-generating tasks that contend for the memory bus. We separately measured the
duration of our timing code and subtracted it from our results. For the read/write buffer, we
used a one-word buffer with single-word reads and writes. We initialized the queue and heap
to contain 1,000 items. Our results, shown in Tbl. 4, support the following observations.

▶ Observation 1. The worst-case inflation factor of abortable CSs was around two to five.

▶ Observation 2. The inflation factors for running cacheless was in the hundreds.

Z. Tong, S. Ahmed, and J. H. Anderson 9:19

Table 4 Comparison between abortable and ordinary CSs.

Data structure Buffer
Write

Buffer
Read

Queue
Enqueue

Queue
Dequeue

Heap
Insert

Heap
Extract

WC Baseline 39.0 ns 33.3 ns 46.7 ns 48.6 ns 89.5 ns 203.8 ns
WC Abortable 161.9 ns 76.2 ns 97.1 ns 252.4 ns 300.9 ns 981.9 ns
WC Cacheless 13.0 µs 11.0 µs 22.7 µs 20.6 µs 32.3 µs 15.9 µs

WC Abortable Inflation 4.14× 2.28× 2.08× 5.19× 2.95× 4.08×
AC Abortable Inflation 6.91× 2.55× 2.47× 5.53× 5.88× 3.36×
WC Cacheless Inflation 332.7× 329.8× 486.9× 424.4× 360.7× 784.2×
AC Cacheless Inflation 93.5× 113.5× 304.8× 200.8× 245.6× 882.4×

The extremely high inflation factors for running cacheless were due to both instructions
and data being accessed from main memory instead of mainly the L1 cache. While the effects
of disabling caches on other processor mechanisms such as branch prediction, pipelining, and
prefetching are not well documented, we suspect that these factors also contributed to the
slowdown, especially in the case of heaps where branching code is common.

Experiment 2. We assessed the impacts of CS execution budget overruns under the OR-
FMLP, OR-OMLP, FMLP, and OMLP by executing a task system consisting of an equal
number of synthetic non-overrunning correct tasks and overrunning faulty tasks. (We did
not examine task execution budget overruns because they require application-dependent
mitigation; note, however, that common mitigations such as aborting the overrunning job
can break the FMLP and OMLP.) Each task τi had (Ce

i , Ti) = (1ms, 40ms). We generated
enough tasks so that the sum of all analytical task utilizations (Ca

i /Ti) was 0.8m.
The task system had a single shared resource for which each job issued a single request.

For each synthetic task τi, we generated its CS execution budget Le
i and an actual CS

execution time, denoted Li, via three steps. When jobs of these synthetic tasks execute CSs,
they acquire a lock and spin for the duration of the actual CS execution time. First, for each
correct task τi, we set Le

i to 0.2ms and Li to 0.19ms (which was sufficient to preclude budget
overruns due to overheads). Second, for each faulty task τi, we set Le

i to 0.2ms under the
FMLP and OMLP. Since abortable CSs require more execution budget, we inflated Le

i for
each faulty task τi under the OR-FMLP and OR-OMLP by considering three different inflation
scenarios based on the data given for buffers, queues, and heaps in Tbl. 4. For each scenario,
we inflated each such Le

i by the worst-case abortable-CS inflation factor of that scenario’s
data structure in Tbl. 4. Third, for each faulty task τi, we determined Li by a type-1 Gumbel
distribution.4 Under the FMLP and OMLP, the mean of this Gumbel distribution was set
at 0.05ms. Under the OR-FMLP and OR-OMLP, this mean was inflated according to the
average-case abortable-CS inflation factor given in Tbl. 4 for the corresponding scenario. We
varied the probability of a job of a faulty task ovrerrunning its CS execution budget from 0.0
to 0.3 with a step size of 0.05. The variance of the Gumbel distribution was determined by
this probability value.

For each inflation scenario and CS execution budget overrun probability, we executed the
task system for 10 minutes and measured the maximum response time among all correct
tasks. Figs. 11 and 12 plot the recorded response times that supports following observations.

▶ Observation 3. The worst-case response times of correct tasks under the OR-FMLP (resp.,
OR-OMLP) stayed relatively constant as the overrun probability increased.

4 The Gumbel distribution is often used to represent measurement-based probabilistic WCETs [18].

ECRTS 2022

9:20 Overrun-Resilient Multiprocessor Real-Time Locking

0.00 0.05 0.10 0.15 0.20 0.25 0.30
probability of faulty jobs overrunning CS budget

10

15

20

25

co
rre

ct
 ta

sk
s m

ax
 re

sp
on

se
 ti

m
e

(u
s)

FMLP
OR-FMLP, Buffer Inflation
OR-FMLP, Queue Inflation
OR-FMLP, Heap Inflation

Figure 11 FMLP vs. OR-FMLP results.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
probability of faulty jobs overrunning CS budget

3

4

5

6

7

8

9

10

co
rre

ct
 ta

sk
s m

ax
 re

sp
on

se
 ti

m
e

(u
s)

OMLP
OR-OMLP, Buffer Inflation
OR-OMLP, Queue Inflation
OR-OMLP, Heap Inflation

Figure 12 OMLP vs. OR-OMLP results.

▶ Observation 4. Cost/benefit tradeoffs are evident in these curves. For example, for buffers
in Fig. 12, overrun-resilient protocols increased response times for overrun probabilities less
than 0.10 and decreased them for greater probabilities.

8 Revisiting Assumptions A1 and A3

We now return to Assumptions A1 and A3.

Assumption A1. As we have seen, user-level budgets have a fundamental dependency on
the execution times of certain OS code paths. If one defines budgets for those code paths,
then what entity would enforce them? The only alternative to budgeting is to require ETBs
for these code paths, but this has major implications for real-time OS (RTOS) designs. For
example, modern OSs tend to be highly preemptive, but preemptions greatly complicate
measurement-based timing analysis. To avoid “chicken and egg” problems, RTOS designs
need to be rethought, with enabling reliable timing analysis for critical code paths being a
first-class concern. These code paths should be simple and non-preemptive and should have
reasonable ETBs. Techniques like cache locking may help in this regard.

Assumption A3. Standard techniques [10] can account for the overheads/delays considered
negligible by A3. From a timing-analysis point of view, the overhead of most concern is
CPMD, as it is incurred on preemptions, which as noted already, are hard to deal with in
timing analysis due to difficulties in predicting cache state. These difficulties have important
implications for synchronization and scheduling: CSs that execute on a CPU (as opposed to,
e.g., an I/O device) should be non-preemptive, and tasks should either be non-preemptive or
only preemptive at certain “preemption points” [13]. While both task-scheduling options
have been studied for simple task models [7, 14,36], they warrant further attention in more
complex models relevant today, such those based on processing graphs [4, 40,45].

9 Related Work

Locking protocols that consider budget overruns (shown in Tbl. 1) have been explored in the
past. However, none satisfy properties P1–P3, which define our notion of overrun resiliency.

Satisfying P1. To satisfy P1, a protocol must deal with jobs overrunning their budgets
while in a CS. Prior work such as M-BWI and vMPCP satisfy P1 by allowing task budget
overruns to occur inside of CSs and account for them analytically. In contrast, SIRAP and
M-BROE satisfy P1 using FZs, introduced in [27], to avoid task budget overruns inside of
CSs. Tradeoffs between satisfying P1 using FZs and overrun accounting are detailed in [5].

Satisfying P2. M-BWI and vMPCP both require accurate CS WCETs to produce correct
overrun accounting. SIRAP and M-BROE also require accurate CS WCETs to correctly
provision FZs. Since CS WCETs may exceed CS PETs, protocols that rely on forbidden

Z. Tong, S. Ahmed, and J. H. Anderson 9:21

zones and overrun accounting do not satisfy P2. In the absence of correct CS WCETs, ICSs
and protocols such as RRP and RACPwP satisfy both P1 and P2 by aborting CSs when
their budgets overrun. To maintain consistent state for shared data structures, ICSs, RRP,
and RACPwP use versioning techniques.

Satisfying P3. No prior work considers P3. However, all protocols that satisfy P1 can
satisfy P3 when ETBs are used to account for corresponding budget-enforcement mechanisms.
Unfortunately, all protocols that satisfy P2 use versioning techniques that make copies of
modified data. Thus, when CSs only modify data, the ETBs of versioning techniques can
be as large as the CS ETBs, nullifying the benefits of ensuring P2. Only ICSs avoid the
problem by allowing shared-resource state to remain consistent even when a job is aborted
while executing the versioning technique, satisfying P3. However, ICSs are intended for
uniprocessors, thus the ICS versioning technique cannot handle concurrent resource accesses.

In this work, we proposed the OR-FMLP and OR-OMLP, which in conjunction with
abortable CSs, yield overrun-resilient locking protocols. In fact, prior work on versioning
techniques can also be used with the OR-FMLP and OR-OMLP to yield overrun-resilient
protocols. However, those prior works have unfortunate tradeoffs as discussed in Sec. 6.

10 Conclusion

We have presented the OR-FMLP and the OR-OMLP, which are overrun-resilient variants of
the FMLP and the OMLP, respectively. Both the OR-FMLP and the OR-OMLP utilize FZs
and the ability to abort CSs to circumvent problems associated with overrunning task and
CS budgets. As our designs of these two protocols suggest, it is better to apply FZs in a
coarse-grained way in a spinlock but in a fine-grained way in a suspension-based lock. For
both protocols, we have carefully worked out how execution budgets should be defined. To
easily apply these protocols to support operations on shared data structures, we have also
presented abortable CSs, which enable such operations to be aborted with no undo code.

In future work, we plan to consider aborting CSs in other contexts, such as when using
locks to access shared hardware resources. We also intend to investigate other types of locks,
such as k-exclusion locks and reader/writer locks, as well as mechansims for allocating “slack”
generated by underrunning CSs to overrunning CSs. Additionally, full budgeting support
enables the possibility of freeing system capacity by intentionally under-budgeting certain
computations at the expense of aborting work more often; we plan to explore this possibility
as well. This paper also establishes a need for timing-analysis techniques that can guarantee
safe ETBs without exorbitant pessimism. The various “chicken and egg” problems we have
pointed out warrant scrutiny as well.

References

1 A. Alon and A. Morrison. Deterministic abortable mutual exclusion with sublogarithmic
adaptive rmr complexity. In Proceedings of the 40th ACM Symposium on Principles of
Distributed Computing, pages 27–36, 2018.

2 J. Anderson, R. Jain, and K. Jeffay. Efficient object sharing in quantum-based real-time
systems. In Proceedings of the 19th IEEE Real-Time Systems Symposium, pages 346–355,
1998.

3 M. Asberg, T. Nolte, and M. Behnam. Resource sharing using the rollback mechanism in
hierarchically scheduled real-time open systems. In Proceedings of the 19th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 129–140, 2013.

ECRTS 2022

9:22 Overrun-Resilient Multiprocessor Real-Time Locking

4 S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela. The global EDF scheduling of systems
of conditional sporadic DAG tasks. In Proceedings of the 27th Euromicro Conference on
Real-Time Systems, pages 222–231, 2015.

5 M. Behnam, T. Nolte, M. Asberg, and R. Bril. Overrun and skipping in hierarchically scheduled
real-time systems. In Proceedings of the 15th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 519–526, 2009.

6 M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchronization protocol for hierarchical
resource sharingin real-time open systems. In Proceedings of the International Conference on
Embedded Software, page 279–288, 2007.

7 M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and M. Caccamo. Preemption
points placement for sporadic task sets. In Proceedings of the 22nd Euromicro Conference on
Real-Time Systems, pages 251–260, 2010.

8 A. Biondi, G. Buttazzo, and M. Bertogna. Supporting component-based development in
partitioned multiprocessor real-time systems. In Proceedings of the 27th Euromicro Conference
on Real-Time Systems, pages 269–280, 2015.

9 A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol
for multiprocessors. In Proceedings of the 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 47–56, 2007.

10 B. Brandenburg. Scheduling and Locking in Multiprocessor Real-time Operating Systems. PhD
thesis, University of North Carolina at Chapel Hill, 2011.

11 B. Brandenburg. Multiprocessor Real-Time Locking Protocols, pages 1–99. Springer, 2020.
12 B. Brandenburg and J. Anderson. Optimality results for multiprocessor real-time locking. In

Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 49–60, 2010.
13 A. Burns. Preemptive priority based scheduling: An appropriate engineering approach.

Advances in Real-Time Systems, pages 225–248, 1994.
14 G. Buttazzo, M. Bertogna, and G. Yao. Limited preemptive scheduling for real-time systems.

A survey. IEEE Transactions on Industrial Informatics, 9(1):3–15, 2013.
15 J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. LITMUSRT: A testbed for

empirically comparing real-time multiprocessor schedulers. In Proceedings of the 27th IEEE
Real-Time Systems Symposium, pages 111–126, 2006.

16 F. Cazorla, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and T. Vardanega. Probabilistic
worst-case timing analysis: Taxonomy and comprehensive survey. ACM Computing Surveys,
52(1):14:1–14:35, 2019.

17 R. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Computing Surveys, 43(4):35:1–35:44, 2011.

18 R. Davis and L. Cucu-Grosjean. A survey of probabilistic timing analysis techniques for
real-time systems. Leibniz Transactions on Embedded Systems, 6(1):03:1–03:60, 2019.

19 D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proceedings of the 20th
International Symposium on Distributed Computing, volume 4167, pages 194–208, 2006.

20 D. Faggioli, G. Lipari, and T. Cucinotta. Analysis and implementation of the multiprocessor
bandwidth inheritance protocol. Real Time Systems, 48(6):789–825, 2012.

21 K. Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, UK, 2003.
22 T. Harris and K. Fraser. Language support for lightweight transactions. In Proceedings of the

18th Annual ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
and Applications, page 388–402, 2003.

23 T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions.
Commununications of the ACM, 51(8):91–100, 2008.

24 T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory transactions. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, page 14–25, 2006.

Z. Tong, S. Ahmed, and J. H. Anderson 9:23

25 M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the 23rd International Conference on Distributed
Computing Systems, pages 522–529, 2003.

26 M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software transactional memory for
dynamic-sized data structures. In Proceedings of the 22nd Annual Symposium on Principles
of Distributed Computing, page 92–101, 2003.

27 P. Holman and J. Anderson. Locking in Pfair-scheduled multiprocessor systems. In Proceedings
of the 23rd IEEE Real-Time Systems Symposium, pages 149–158, 2002.

28 P. Holman and J. Anderson. Locking under Pfair scheduling. ACM Transactions on Computer
Systems, 24(2):140–174, 2006.

29 P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Proceedings of the 22nd
Annual Symposium on Principles of Distributed Computing, page 295–304, 2003.

30 T. Johnson and K. Harathi. Interruptible critical sections. Technical Report TR94-007,
University of Florida, 1994.

31 H. Kim, S. Wang, and R. Rajkumar. vMPCP: A synchronization framework for multi-core
virtual machines. In Proceedings of the 35th IEEE Real-Time Systems Symposium, pages
86–95, 2014.

32 N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F.D. Smith. Attacking the one-out-
of-m multicore problem by combining hardware management with mixed-criticality provisioning.
In Proceedings of the 22nd IEEE Real-Time Embedded Technology and Applications Symposium,
pages 49–160, April 2016.

33 H. Lee. Fast local-spin abortable mutual exclusion with bounded space. In Proceedings of the
14th International Conference on Principles of Distributed Systems, pages 364–379, 2010.

34 C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer, and R. Davis. A survey of timing
verification techniques for multi-core real-time systems. ACM Computing Surveys, 52(3):56:1–
56:38, 2019.

35 V. Marathe, M. Spear, A. Acharya C. Heriot, D. Eisenstat, W. Scherer, and M. Scott. Lowering
the overhead of nonblocking software transactional memory. Technical report, University of
Rochester, 11 2006.

36 M. Nasri, G. Nelissen, and B. Brandenburg. A response-time analysis for non-preemptive job
sets under global scheduling. In Proceedings of the 30th Euromicro Conference on Real-Time
Systems, volume 106, pages 9:1–9:23, 2018.

37 R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors. In
Proceedings of the 10th International Conference on Distributed Computing Systems, pages
116–123, 1990.

38 M. Scott. Non-blocking timeout in scalable queue-based spin locks. In Proceedings of the 21st
Annual Symposium on Principles of Distributed Computing, page 31–40, 2002.

39 T. Springer, S. Peter, and T. Givargis. Resource synchronization in hierarchically scheduled real-
time systems using preemptive critical sections. In Proceedings of the 17th IEEE International
Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, pages
293–300, 2014.

40 M. Stigge, P. Ekberg, N. Guan, and W. Yi. The digraph real-time task model. In Proceedings
of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages
71–80, 2011.

41 Z. Tong, S. Ahmed, and J. Anderson. Overrun-resilient multiprocessor real-time locking
(longer version), 2022. URL: http://jamesanderson.web.unc.edu/papers/.

42 J. Turek, D. Shasha, and S. Prakash. Locking without blocking: Making lock based concurrent
data structure algorithms nonblocking. In Proceedings of the 11th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, page 212–222, 1992.

43 R. Wilhelm. Real time spent on real time (invited talk). In Proceedings of the 41st IEEE
Real-Time Systems Symposium, pages 1–2, 2020.

ECRTS 2022

http://jamesanderson.web.unc.edu/papers/

9:24 Overrun-Resilient Multiprocessor Real-Time Locking

Time
Ji

Jj

Ju

tr t

(a) Case 1

Time
Ji

Jj

Ju

Jv

tr = t tfte

non-preemptive

(b) Subcase 2a

Time
Ji

Jj

Jw

tr t

(c) Subcase 2a

Figure 13 Illustration of the proof of Thm. 8.

44 R. Wisniewski, L. Kontothanassis, and M. Scott. High performance synchronization algorithms
for multiprogrammed multiprocessors. In Proceedings of the 5th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 199–206, 1995.

45 K. Yang, G. Elliott, and J. Anderson. Analysis for supporting real-time computer vision
workloads using OpenVX on multicore+GPU platforms. In Proceedings of the 23th International
Conference on Real-Time Networks and Systems, pages 77–86, 2015.

A Proofs and Examples Regarding the OR-OMLP

This appendix contains proofs and examples regarding request and non-preemptive blocking
under the OR-OMLP.

Request blocking. We now prove the progress property of the OR-OMLP. We consider a
job Ji that issues a request R for resource ℓk at time tr, where R completes at time ts. We
refer to the priority of a job as assigned by the scheduling policy, i.e., G-EDF, as its base
priority; a job’s effective priority can exceed its base priority due to priority inheritance.
Note that whether or not Ji is pi-blocked depends on its base priority. The following theorem
ensures progress whenever Ji is pi-blocked during [tr, ts).

▶ Theorem 8. If Ji is pi-blocked at time t ∈ [tr, ts), then the job holding ℓk is scheduled at
time t.

Proof. We give a proof by contradiction. Let t be the first time instant such that Ji is
pi-blocked at time t (and hence is not scheduled at t), but the job Jj holding ℓk is not
scheduled at time t. We consider two cases.

Case 1. There exists ε > 0 such that Ji is pi-blocked during [t − ε, t). Fig. 13(a)
illustrates this case. Assuming ε is small enough, by the definition of t, the job Ju at the
head of FQ prior to t executes its CS during [t − ε, t). Since CS execution is non-preemptive,
Ju must release ℓk at time t, allowing Jj to become the job at the head of FQ at time t.
Because of priority inheritance, Jj is one of the m highest-priority jobs at time t. By Rule O3,
Jj is scheduled at time t, a contradiction.

Case 2. Otherwise. In this case, Ji is not pi-blocked immediately before t and becomes
pi-blocked at time t. We first prove the following claim.

▶ Claim 1. If a processor becomes available at time t, then Jj is scheduled at time t.
Proof. Assume that a processor πq becomes available at time t. We use Fig. 13(b) for
illustration. The base priority of Ji (which is pi-blocked) is among the top m at time t.

Z. Tong, S. Ahmed, and J. H. Anderson 9:25

Time
J1

J2

J3

J4

0 5 10

Critical Section for ℓ1

Critical Section for ℓ2

Critical Section for ℓ3

Normal Execution
Suspension

Figure 14 Example of non-preemptive blocking.

By Rule O2, the effective priority of Jj is among the top m at time t. At time t, any ready
job with higher effective priority than Jj is either scheduled or unscheduled. Therefore,
one of the following two cases holds: (i) at time t, each ready job with higher effective
priority than Jj is scheduled; (ii) at time t, there is a ready but unscheduled job with
higher effective priority than Jj .

For (i), since no job with higher effective priority than Jj is ready but not scheduled
at time t, Jj is scheduled on πq or some other available processor.

For (ii), let Ju be a job that at time t has higher effective priority than Ji, is ready,
but is not scheduled (see Fig. 13(b)). We show that Ju cannot be scheduled on πq under
the lazy preemption policy. In order for Ju to be ready but unscheduled at time t, a job
Jv must exist with effective priority not in the top m that executes non-preemptively at
time t and cannot be preempted by Ju at time te ≤ t when Ju becomes ready and one
of the top-m-priority jobs (see Fig. 13(b)). With lazy preemptions, Ju is not scheduled
until Jv completes its non-preemptive execution at time tf or its priority is raised during
[t, tf) [10, §3.3.3]. Thus, Ju cannot be scheduled on πq. Thus, Jj is scheduled on πq or
some other available processor. ◁

We now address Case 2 by showing that a processor becomes available at time t. Since
t ≥ tr holds, we have the following two subcases.

Subcase 2a. t = tr holds, i.e., Ji issues R at time t. Fig. 13(b) illustrates this subcase.
In this subcase, Ji must be executing on a processor πq during time interval [t − ε, t) for
some ε > 0. Since Jj holds resource ℓk at time t, by Rule O2, Ji suspends at time t and πq

becomes available. By Claim 1, Jj is scheduled at time t.
Subcase 2b. t > tr holds, i.e., Ji issues R before time t. Fig. 13(c) illustrates this

subcase. In this subcase, Ji does not execute during time interval [t − ε, t) for some ε > 0,
otherwise Jj = Ji holds and Ji executes non-preemptively (holding ℓk) at time t (and thus is
not pi-blocked at time t). Therefore, because Ji is not pi-blocked immediately before t but is
pi-blocked at time t, its base priority must become one of the top m at time t. Since a job’s
base priority does not change under G-EDF, Ji’s base priority can become one of the top m

only if a job Jw with higher base priority (which is among the top m base priorities) than Ji

completes at time t. Since Jw completes execution at time t, a processor becomes available
at time t. By Claim 1, Jj is scheduled at time t. ◀

Non-preemptive blocking. As discussed in Sec. 5, a job can incur non-preemptive blocking
when a resource is released due to Rule O3. The following example illustrates this.

▶ Example 9. Fig. 14 depicts four jobs that are scheduled on three processors using G-EDF.
J2 suspends at time 2 as J1 holds resource ℓ1 at time 2. At times 3 and 4, J3 and J4 request
resources ℓ2 and ℓ3, respectively, and acquire those resources. When J1 completes its CS
at time 6, J2’s request is satisfied. Although J2’s base priority is among the top three base

ECRTS 2022

9:26 Overrun-Resilient Multiprocessor Real-Time Locking

Algorithm 2 Procedures for an abortable CS.

Variables for transactions for resource ℓk:
txn : Ptr to the transaction record being currently
modified
new_txn : Ptr to the transaction record used in
the current transaction
free_stack_top : Ptr to the top transaction re-
cord in the free_stack
data : Ptr of data structure in Fig. 9a

1: procedure Read(data)
2: if data.txn ̸= NULL ∧ data.txn.done

then
3: return data.new
4: else
5: return data.old
6: end if
7: end procedure
8: procedure UnassignData(data)
9: if txn ̸= NULL then

10: if txn.done then
11: data.old := data.new
12: else
13: data.new := data.old
14: end if
15: txn.rc1 := txn.rc1 − 1
16: if txn.rc2 = 1 then
17: txn.done := false
18: txn.next := free_stack_top
19: free_stack_top := txn
20: end if
21: data.txn := NULL

22: txn.rc2 := txn.rc2 − 1
23: end if
24: end procedure
25: procedure AssignData(data)
26: if txn = NULL then
27: txn := free_stack_top
28: txn.rc2 := txn.rc2 + 1
29: data.txn := txn
30: free_stack_top := free_stack_top.next

31: txn.rc1 := txn.rc1 + 1
32: else
33: txn.rc2 := txn.rc2 + 1
34: data.txn := txn
35: txn.rc1 := txn.rc1 + 1
36: end if
37: end procedure
38: procedure FixState(data)
39: if txn.rc1 < txn.rc2 then
40: if txn.rc2 = 1 ∧ txn ̸=

free_stack_top then
41: txn.done := false
42: txn.next := free_stack_top
43: free_stack_top := txn
44: end if
45: data.txn := NULL
46: txn.rc2 := txn.rc2 − 1
47: end if
48: end procedure

priorities at time 6, it cannot preempt job J4 with the lowest effective priority due to its
non-preemptive execution. By Rule O3, J2 preempts J1. Thus, J1 becomes pi-blocked at
time 6. J1 preempts J4 lazily when it becomes preemptive at time 8.

B Details of Abortable Critical Sections

This appendix contains further details concerning abortable CSs.
The Read, UnassignData, and AssignData routines in Algorithm 2 correspond to

lines 3–6, 11-22, and 24–37 of AbortableModify. The FixState routine corresponds to
the code we add in the OS timer-handling code for fixing inconsistent transaction records.

Transformation rules. We begin by giving a set of rules for transforming ordinary CS
code for a shared data structure ℓk into abortable CS code. We assume that ℓk consists of nk

elements in memory denoted by M [1..nk]. We denote an arbitrary transaction record by tr .
R1 Each M [i] is represented by the structure shown in Fig. 9(a). For each M [i], M [i].txn is

set to NULL and M [i].old contains the initial value of M [i] before any CS invocation.
Initially, for each tr , tr .rc1, tr .rc2, and tr .done are 0, 0, and false, respectively. Each
such tr is also in free_stack initially. The variable new_txn is declared in the CS code
and is initially NULL (line 2 of AbortableModify).

Z. Tong, S. Ahmed, and J. H. Anderson 9:27

R2 M [i] is read by the Read procedure if it is never modified in the CS.
R3 If M [i] is modified anywhere in the CS, then UnassignData and AssignData are called

in sequence when M [i] is first accessed. We refer to this as initializing M [i].
R4 Before calling UnassignData for M [i], txn and data are set to M [i].txn and M [i],

respectively (lines 9 and 10 of AbortableModify).
R5 Before calling AssignData for M [i], txn is set to new_txn (line 24 of AbortableModify).
R6 After AssignData returns, new_txn is set to txn (line 36 of AbortableModify).
R7 After M [i] is initialized, it is accessed by M [i].new (line 37 of AbortableModify).
R8 In the end of the CS, new_txn.done is set to true (line 39 of AbortableModify).
R9 txn, data, new_txn, and fields of any M [i] and tr are not updated anywhere except the

procedures in Alg. 2 and the places mentioned in Rules R1–R8.

B.1 Proof
We denote M [i]’s valid value by M [i].valid. tr .nr denotes the number of elements referenced
by tr , i.e., tr .nr = |i : M [i].txn = tr |. We consider a task that executes a CS and pc denotes
its program counter. We prove Invariant I and the following theorem.

▶ Theorem 10. The memory requirement of resource ℓk’s transaction records is O(nk).

We prove Invariant I and Thm. 10 below by proving that each of (I1)–(I13) is an invariant.
We first define the following predicates.

P1 ≡ ∀tr : tr .rc1 = tr .rc2 = tr .nr .

P2 ≡ txn.rc2 = txn.rc1 + 1.

P3 ≡ txn.rc1 = txn.nr .

P4 ≡ txn.rc2 = txn.nr .

P5 ≡ ∀tr ̸= txn : tr .rc1 = tr .rc2 .

P6 ≡ (data.txn = NULL ∧ P3) ∨ (data.txn ̸= NULL ∧ P4).

Invariant (I1) shows that the value stored in tr .rc1 and tr .rc2 is correct after CS is aborted/-
completed. Invariants (I7) and (I8) show that tr is available for future use if tr .nr is 0 and it
is not overwritten, otherwise. Finally, Invariants (I11)–(I13) show that Invariant I is correct.

invariant pc /∈ {16..22, 29..31, 34, 35, 38..46} =⇒ P1. (I1)

invariant pc ∈ {16..21, 30, 31, 35} =⇒ P2 ∧ P4 ∧ P5. (I2)

invariant pc ∈ {22, 29, 34, 46} =⇒ P2 ∧ P3 ∧ P5. (I3)

invariant pc ∈ {38..39} =⇒ P1 ∨ (P2 ∧ P6 ∧ P5). (I4)

invariant pc ∈ {40..45} =⇒ P2 ∧ P6 ∧ P5. (I5)

invariant pc ∈ {22..24, 25..29, 32..34} =⇒ data.txn = NULL. (I6)

invariant ∀tr : tr .nr = 0 =⇒ tr ∈ free_stack. (I7)

invariant ∀tr : tr ∈ free_stack ∧ pc /∈ {21, 30, 39..45} =⇒ tr .nr = 0. (I8)

ECRTS 2022

9:28 Overrun-Resilient Multiprocessor Real-Time Locking

invariant pc ∈ {15..37} =⇒ data.old = data.valid. (I9)

invariant pc ∈ {40..46} =⇒ data.old = data.valid. (I10)

invariant ∀i : M [i].txn.done =⇒ M [i].new = M [i].valid. (I11)

invariant ∀i : ¬M [i].txn.done =⇒ M [i].old = M [i].valid. (I12)

invariant ∀i : M [i].txn = NULL =⇒ M [i].old = M [i].valid. (I13)

We now prove that each of (I1)–(I13) is an invariant. (I1)-(I13) hold initially by Rule R1.
For each invariant I ′ and any pair of consecutive states u and v, we show that if all

the invariants hold at state u, then I ′ holds at state v. For invariants in the form of an
implication, it suffices to only check those statements that may either establish the antecedent
or falsify the consequent if executed while the antecedent holds.

Proof of (I1). Statements 22, 31, 35, and 46 establish the antecedent by incrementing pc.
By (I3), pc ∈ {22, 46} implies P2 ∧ P3 ∧ P5. Statements 22 and 46 decrement txn.rc2 and
establish P1. By (I2), pc ∈ {31, 35} implies P2 ∧ P4 ∧ P5. Statements 31 and 35 establish P1
by incrementing txn.rc1 . By (I4), statement 39 establishes the antecedent only if txn.rc1 =
txn.rc2 holds (thus, ¬P2 holds). By (I4), P1 also holds before executing statement 39.

Statements 15, 28, and 33 can falsify the consequent, but also falsify the antecedent. ◀

Proof of (I2). The statements that may establish the antecedent are 15, 29, and 34. By (I1),
pc = 15 implies P1. Since statement 15 decrements txn.rc1 , it establishes the consequent.
By (I6), pc ∈ {29, 34} implies data.txn = NULL. Thus, each of statements 29 and 34
increments txn.nr . Therefore, by (I3), the consequent is established.

Statements 21, 31, and 35 can falsify the consequent, but also falsify the antecedent. ◀

Proof of (I3). Statements 21, 28, 33, and 45 establish the antecedent. By (I2), Rule R4, and
statement 9, pc = 21 implies P2 ∧P4 ∧P5 ∧data.txn ≠ NULL. Thus, statement 21 decrements
txn.nr and establishes the consequent. pc ∈ {28, 33} implies P1. Statements 28 and 33
increment txn.rc2 and establish the consequent. We consider two cases for statement 45.

Case 1. pc = 45∧data.txn = NULL holds. By (I5), P2∧P6∧P5 holds. Since data.txn = NULL,
by the definition of P6, P3 holds. Thus, the consequent holds before executing statement 45.
Since data.txn = NULL holds before executing statement 45, it does not alter txn.nr .

Case 2. pc = 45 ∧ data.txn ̸= NULL holds. By (I5) and the definition of P6, P2 ∧ P4 ∧ P5
holds. In this case, statement 45 establishes the consequent by decrementing txn.nr .

Statements that can falsify the consequent also falsify the antecedent. ◀

Procedure FixState is invoked after a CS is aborted. We let last to denote the value of pc

when the CS is aborted. Thus, last can be any statement in the CS.

Proof of (I4). Any statement in the CS can establish the antecedent. If last /∈ {16..22, 29..31,

34, 35}, then by (I1), the consequent holds. Otherwise, by (I2) and (I3), P2 ∧ P5 holds. We
now prove that P6 also holds in this case. If last ∈ {22, 29, 34}, then data.txn = NULL ∧ P3,
thus P6, holds by (I3) and (I6). By Rules R4 and R5 and statements 9, 27, 26, 29 and 32,
data.txn = txn ̸= NULL holds if last ∈ {16..21, 30, 31, 35}. By (I2), P4 holds if last ∈
{16..21, 30, 31, 35}. Therefore, last ∈ {16..21, 30, 31, 35} implies data.txn ̸= NULL ∧ P4.
Thus, last ∈ {16..22, 29..31, 34, 35} =⇒ P6.

No statement for which the antecedent holds falsifies the consequent. ◀

Z. Tong, S. Ahmed, and J. H. Anderson 9:29

Proof of (I5). Statement 39 may establish the antecedent. By (I4) and statement 39, the
consequent holds. No statement for which the antecedent holds falsifies the consequent. ◀

Proof of (I6). Statement 21 establishes the antecedent, which also establishes the consequent.
By Rules R3 and R9, the consequent also holds when pc = 25 is established, i.e., AssignData
is invoked. Statements 29 and 34 falsify both antecedent and consequent. ◀

Proof of (I7). By Rule R9, only statement 21 and 45 can establish the antecedent only if
executed when txn.nr = 1 ∧ data.txn = txn. If pc ∈ {21, 45} ∧ txn.nr = 1, then by (I2),
pc ∈ {21, 45} ∧ txn.rc2 = 1 holds. Since statements in {16..20} do not alter txn.rc2 ,
statements in {17..19} must execute before pc = 21 ∧ txn.rc2 = 1 holds. Similarly, either
statements {41..43} must execute or txn = free_stack_top holds before pc = 45∧txn.rc2 = 1
holds. These statements insert txn into the free_stack and statements 21 and 45 do not
alter it. Therefore, the consequent is true after executing statements 21 and 45.

Statement 30 may falsify the consequent. By statement 29 and the definition of txn.nr ,
pc = 30 implies txn.nr ≥ 1. Therefore, the antecedent is false for txn. ◀

Proof of (I8). Statements 21, 30, and 45 can establish the antecedent only if txn ∈
free_stack. Assume that txn ∈ free_stack ∧ txn.nr > 0 holds at pc ∈ {22, 46} after execut-
ing statements 21 and 45. By (I7), txn /∈ free_stack holds, a contradiction. Statement 30
removes txn from the free_stack and falsifies the antecedent.

By (I7), statements that falsify the consequent also falsify the antecedent. ◀

Proof of (I9). Statement 11 or 13 establishes the antecedent. By (I11) (resp., (I12)), state-
ment 11 (resp. 13), establishes the consequent. By Rules R3 and R9, the consequent also holds
when pc = 25 is established. None of the statements in {9..37} falsifies the consequent. ◀

Proof of (I10). Statement 39 can establish the antecedent only when txn.rc1 < txn.rc2 .
By (I1), txn.rc1 ̸= txn.rc2 implies last ∈ {16..22, 29..31, 34, 35, 38..46}, which by (I9), implies
data.old = data.valid. None of the statements in {40..46} falsifies the consequent. ◀

Proof of (I11). Rule R8 establishes the antecedent for each M [i] associated with new_txn.
By Rules R3, R5, and R6, and statements 29 and 30, M [i].txn = new_txn holds for each
M [i] corresponding to that CS before applying Rule R8. By Rule R7, each such M [i]’s new

field is updated before applying Rule R8. Thus, the consequent holds after applying Rule R8.
Statement 13 may falsify the consequent. By statement 10 and Rule R4, the antecedent is
false when pc = 13 holds. ◀

Proof of (I12). Statements 17 and 41 establish the antecedent for each M [i] associated
with txn. By (I2) and statements 16 and 40, pc ∈ {17, 41} implies txn.nr = 1. Since
txn = data.txn holds at pc = 8 (by Rule R4) and statements in {9..15} do not alter txn,
txn = data.txn holds before executing statement 17. Since pc = 17 implies txn.nr = 1,
pc = 17 =⇒ ∀M [i] ̸= data : M [i].txn ̸= txn holds. By (I9), data.old = data.valid holds
before and after executing statement 17. Thus, the consequent holds for txn.

data and txn in FixState are the same as when the transaction aborts. If pc =
41 ∧ data.txn = NULL holds, then by (I5) and the definition of P6, txn.nr = 0 holds. Thus,
the consequent holds. If pc = 41 ∧ data.txn ̸= NULL holds, then by an argument similar to
the above using (I5) and (I10), the consequent holds.

Statement 11 may falsify the consequent. By statement 10, the antecedent is also false. ◀

ECRTS 2022

9:30 Overrun-Resilient Multiprocessor Real-Time Locking

Proof of (I13). Statements 21 and 45 establish the antecedent for data. By (I9) and (I10),
pc ∈ {21, 45} implies data.old = data.valid. Therefore, the consequent holds.

By statement 9 and Rule R4, Statement 11 cannot falsify the consequent. ◀

Proof of Invariant I. Follows from invariants (I11)–(I13). ◀

▶ Lemma 11. If free_stack initially contains nk+1 transaction records, then it is never empty.

Proof. Each element M [i] can be associated with at most one transaction record. Thus, at
most nk transaction records are reference by some elements. Hence, at any point in time,
there exists a transaction record tr with tr .nr = 0. By (I7), we have tr ∈ free_stack. ◀

Proof of Thm. 10. Follows from (I7), Lemma 11, and tr ’s constant memory requirement. ◀

	1 Introduction
	2 System Model and Background
	3 Budget Management
	4 OR-FMLP
	5 OR-OMLP
	6 Abortable Critical Sections
	7 Experimental Evaluation
	8 Revisiting Assumptions A1 and A3
	9 Related Work
	10 Conclusion
	A Proofs and Examples Regarding the OR-OMLP
	B Details of Abortable Critical Sections
	B.1 Proof

