
Scheduling Processing Graphs of Gang Tasks on
Heterogeneous Platforms
Shareef Ahmed, Denver Massey, and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill
{shareef, denmas22, anderson}@cs.unc.edu

Abstract—Artificial-intelligence-powered real-time systems
typically consist of numerous gang tasks, such as computations
on graphics processing units (GPUs), that are interconnected
by data-flow dependencies. Despite their relevance in many
applications, scheduling processing graphs of gang tasks has
received limited attention. This paper presents scheduling
techniques and response-time analysis for such systems on
heterogeneous computing platforms. Response-time bounds of
a graph of gang tasks are presented when scheduled under a
work-conserving or semi-work-conserving scheduler. Techniques
to support multiple graphs using federated scheduling techniques
are also presented. Experimental evaluations and a case study
on a computer vision application are presented to demonstrate
the effectiveness of the proposed approach.

I. INTRODUCTION

The last few decades have witnessed the development of
high-performance computing platforms, which have fueled
the innovation of safety-critical real-time systems with au-
tonomous features. These systems usually consist of numerous
computation-heavy parallel tasks that require heterogeneous
computing resources, such as multicore platforms augmented
with hardware accelerators. Such parallel tasks often execute
efficiently when multiple application threads are grouped into
gangs. Moreover, tasks of autonomous systems frequently
form processing graphs due to data-flow dependencies. Due
to their significance, scheduling both gang-based systems and
graph-based systems has garnered much attention in recent
years [1], [20], [22], [28], [35], [38], [52].

Despite their significance, processing graphs consisting of
gang tasks have received little attention. To the best of our
knowledge, work on scheduling processing graphs of gang
tasks has been limited to NVIDIA-specific graphics processing
unit (GPU) scheduling [56], for which many intricate details
are still being revealed [10]. Other work either considers
chains (a special case of graphs) of gang tasks, called bun-
dled gang tasks [47], [54], or avoids gang-specific analysis
complexities by adopting a lock-based approach. The latter
approach allows gang tasks’ execution on non-CPU computing
resources, such as GPUs, by a real-time locking protocol [7],
[23], which may cause significant delays in GPU accesses [3].

In this paper, we consider scheduling processing graphs of
gang tasks on heterogeneous platforms consisting of different
types of compute elements (CEs) such as CPUs, GPUs, field
programmable gate arrays (FPGAs), etc. We give a federated-
scheduling approach to schedule multiple processing graphs by

Work was supported by NSF grants CPS 2038960, CPS 2038855, CNS
2151829, and CPS 2333120.

allocating each processing graph a set of processors on each
CE. Today, such an approach can be realized on many hard-
ware accelerators through the use of their compute-partitioning
abilities [11], [13]. We give response-time bounds for each
graph on its allocated processors under any work-conserving
or semi-work-conserving scheduler (defined in Sec. III). The
task model and scheduling approaches we consider generalize
various systems. We describe two such examples below.
Scheduling on multicore+GPU. Processing graphs that are
scheduled on multicore platforms augmented with GPUs
present a special case of our task model. For such systems,
graph nodes that execute on GPUs are gang tasks, while nodes
that execute on CPUs are sequential tasks (a special case of
gang tasks). Moreover, common CPU scheduling approaches
are work-conserving, whereas NVIDIA GPU scheduling is
semi-work-conserving under certain assumptions [10].
Time partitioning in component-based systems. Hierarchi-
cal scheduling techniques can enable time partitioning among
different software components of a component-based system.
Under these techniques, the top-level scheduler allocates a
gang-like set of processors to each component for certain time
intervals. Since data-flow dependencies may be present be-
tween components, designing the top-level scheduler reduces
to the problem of scheduling processing graphs of gang tasks.
Contributions. Our contributions are threefold:

First, we give response-time bounds for a directed-acyclic-
graph-(DAG)-based task formed by precedence constraints
among gang tasks on multiple CEs. Our response-time bound
is valid for schedulers that are either work-conserving or semi-
work-conserving.

Second, we show how to schedule multiple DAGs under
federated scheduling by giving an integer linear program (ILP)
to allocate processors of different CEs to each DAG.

Finally, we demonstrate the effectiveness of our approach
through experimental studies. For DAG scheduling on multi-
core+GPU platforms, our approach outperforms locking-based
methods by reducing response-time bounds by 63%. We also
present a case study on multicore + GPU platforms to illustrate
our approach in practice.
Organization. After covering needed background (Sec. II), we
discuss considered scheduling algorithms in detail (Sec. III),
provide techniques to account for parallelism-induced idleness
for gang tasks that form DAGs (Sec. IV), give our response-
time bound for a DAG (Sec. V), present techniques to support
multiple DAGs (Sec. VI), present our experiments (Sec. VII),

τ1(1, 4)

τ2(3, 5)

τ3

(2, 4)

τ7

(3, 4)

τ9

(2, 2)

τ4(4, 3)

τ5(2, 3)

τ6 (2, 3)

τ8 (1, 3)

τ10 (1, 2)

Fig. 1: A DAG G. Solid and hatched circles represent tasks al-
located to two different CEs. Tuples circles represent (mi, Ci).

review prior work (Sec. VIII), and conclude (Sec. IX).

II. PRELIMINARIES

We consider a task set Γ consisting of N DAG tasks
{G1, G2, . . . , GN}. For ease of notation, DAG indices are used
only when relevant. Each DAG task G releases a potentially
infinite sequence of DAG jobs J1, J2, The release and
completion time of Jj are denoted by r(Jj) and f(Jj),
respectively. DAG jobs of G are released sporadically with
period T. DAG G has a constrained relative deadline D ≤ T,
i.e., DAG job Jj must finish execution by time r(Jj) +D.

Each DAG G is represented as a tuple (V,E), where V and
E are sets of nodes and directed edges, respectively. V consists
of gang tasks {τ1, τ2, . . . , τ|V |}. We assume tasks are indexed
according to a topological ordering of G. Each gang task τi
has a worst-case execution time (WCET) Ci and a degree
of parallelism mi that denotes the number of simultaneously
available processors required to execute any job (instance) of
τi. Thus, the worst-case execution requirement (WCER) of
each job of τi can be represented by a rectangle of area mi×Ci

in a schedule. A directed edge from τi to τk represents a
precedence constraint between the predecessor task τi and the
successor task τk. The set of predecessors (resp., successors)
of τi is denoted by pred(τi) (resp., succ(τi)). We assume that
each DAG G has a unique source task τ1 with no incoming
edge and a unique sink task τ|V | with no outgoing edge.1 The
utilization of τi is ui = (Ci×mi)/T. Note that ui can exceed
1.0. The utilization of DAG task G is U(G) =

∑|V |
i=1 ui. The

total utilization of Γ is U(Γ) =
∑

G∈Γ U(G).
DAGs in Γ are scheduled on µ computational elements

(CEs). A CE might be a CPU or some specialized hardware
accelerator. The kth CE consists of a pool of Mk identical
processors. Each task τi of a DAG G has a parameter
γi ∈ {1, 2, . . . , µ} that represents the CE on which τi executes.
Ex. 1. Fig. 1 shows a DAG of ten tasks on two CEs. Tasks
τ2, τ3, τ4, and τ9 are assigned to one CE, while the remaining
tasks execute on the other CE. τ7’s degree of parallelism is
m7 = 3 and its WCET is C7 = 4. ♢

Each DAG job Jj is composed of the jth job τi,j of
each task τi. The release time and finish time of job τi,j are

1A DAG with multiple sources/sinks can be supported by adding a “virtual”
source or sink with a WCET of zero.

TABLE I: Notation summary.
Symbol Meaning Symbol Meaning
N No. of DAGs r(·) Release time
G A DAG task f(·) Finish time
V Nodes of G pred(·) Set of predecessors
E Edges of G succ(·) Set of successors
T Period of G anc(·) Set of ancestors
D Rel. deadline of G desc(·) Set of descendants
τi ith task of G R(·) Response time
Ci WCET of τi mi τi’s degree of parallelism
γi Assigned CE of τi Mp Processor count on pth CE
Jj jth DAG job of G len(λ)

∑
τi∈λ Ci

τi,j jth job of τi vol(V ′)
∑

τi∈V ′ miCi

λ path of G V ′
p Tasks of V ′ on the pth CE

∆i Def. 1 λe Envelope path
I(·) Def. 5 dep(τi) anc(τi) ∪ desc(τi)
τi(V

′) Def. 6 ∆i(V
′) Def. 6

vik(V
′) Def. 9 h(·), g(·) Def. 11

F (·, ·) Def. 8 Idiff(·) Def. 7

denoted by r(τi,j) and f(τi,j), respectively. The jth job τ1,j
of the source task τ1 is released when Jj is released, i.e.,
r(Jj) = r(τ1,j). The jth job of each non-source task is re-
leased once the jth job of each of its predecessors finishes, i.e.,
r(τi,j) = maxτk∈pred(τi){fk,j}. Job τi,j is ready to execute
during [r(τi,j), f(τi,j)). DAG job Jj completes when τ|V |,j
completes. The response time of Jj is R(Jj) = f(τ|V |,j) −
r(τ1,j). G’s response time is R(G) = supj{R(Jj)}.

A path λ = {v1, v2, . . . , vk} is an ordered set of tasks of G
(i.e., vi ∈ V for each 1 ≤ i ≤ k) such that vi ∈ pred(vi+1)
holds. (We use the symbol v to simplify indexing nodes of λ.)
When job indices are irrelevant, we also use λ to denote the
ordered set of the jth jobs of tasks in {v1, v2, . . . , vk}. A path
is a complete path if it contains the source and sink nodes.
We define the length of a path as follows:

len(λ) =
∑
τi∈λ

Ci. (1)

If a path exists from τi to τk, then τi (resp., τk) is called
an ancestor (resp., descendant) of τk (resp., τi). The jth job
of an ancestor (resp., descendant) task of τi is an ancestor
(resp., descendant) job of τi,j . The set of ancestors (resp.,
descendants) of τi is denoted as anc(τi) (resp., desc(τi)).
The set of ancestors (resp., descendants) of τi,j is denoted as
anc(τi,j) (resp., desc(τi,j)). We use dep(τi) (resp., dep(τi,j))
to denote anc(τi)∪desc(τi) (resp., anc(τi,j)∪desc(τi,j)). For
any subset V ′ ⊆ V of tasks, we define its volume as follows:

vol(V ′) =
∑
τi∈V ′

miCi. (2)

Ex. 1 (Cont’d). In Fig. 1, task τ6 has two predecessors
τ2 and τ3. Tasks {τ1, τ3, τ7, τ9, τ10} form a complete path
with length 16. Task τ6’s ancestors (resp., descendants) are
anc(τ6) = {τ1, τ2, τ3} (resp., desc(τ6) = {τ9, τ10}). Finally,
vol(anc(τ6)) = 1 · 4 + 3 · 5 + 2 · 4 = 27. ♢

We summarize all introduced notation in Tbl. I.
Parallelism-induced idleness. When scheduling gang tasks,
parallelism-induced idleness may occur [22]. A time instant t
is parallelism-induced idle if there is an idle processor at time t
and a job τi,j is pending but unscheduled at time t due to
an insufficient number of available processors. For example,

2

Four
processors

Time0 4 80 4 8

τ1 τ2

Fig. 2: Two independent gang tasks on four processors. Both
tasks release a job at time 0.

Time

A set of
processors

Execution on other CEs

τ1
τ3 τ6

Fig. 3: Scheduling DAG nodes sequentially on a CE.

Fig. 2 shows two independent gang tasks τ1 and τ2 with
m1 = 3 and m2 = 2 scheduled on four processors. During
the time interval [0, 2), there is an idle processor. Although
τ2 has a pending job during this interval, it cannot execute,
as the number of available processors is less than m2. Thus,
there is parallelism-induced idleness during [0, 2).

III. SCHEDULING

In this section, we describe the scheduling policies under
which we give the response-time bounds in Sec. IV.

A. Federated Scheduling

We assume federated scheduling of DAGs in Γ, where each
DAG G is allocated an exclusive set of processors from each
CE. Let Mp denote the number of processors of the pth CE
assigned to G. Thus, all jobs of task τi with γi = p are
scheduled on the Mp processors of the pth CE assigned to
G. We require Mp ≥ maxτi:γi=p{mi}. Mp can be zero if no
task of G requires the pth CE.
Heavy vs. light DAGs. For scheduling DAGs of sequential
tasks (i.e., tasks with mi = 1) on a single CE, federated
scheduling approaches differentiate between heavy (DAGs
with

∑
τi∈V Ci

min{D,T} > 1) and light (DAGs with
∑

τi∈V Ci

min{D,T} ≤ 1)
DAG tasks. Each heavy DAG requires parallel execution of its
nodes, so it is allocated enough processors to meet its deadline.
In contrast, all light DAGs share a set of processors, where
they are scheduled as sequential tasks.

When DAG nodes are gang tasks, classifying the DAG
as heavy or light is more nuanced, even on a single CE.
The density of a gang task of G, miCi/min{D,T}, may
exceed one. However, if

∑
τi∈G Ci ≤ D, then G can still be

sequentially scheduled on a sufficient number of processors.
Additionally, since the mi values can vary across nodes in G,
the processor requirements may differ within a single instance
of G. Furthermore, if G requires multiple CEs, G’s jobs may
exhibit self-suspending behavior with respect to a CE.
Ex. 2. Assume that three nodes, τ1, τ3, and τ6, are assigned
to a CE. Fig. 3 shows a schedule of these nodes when they
execute sequentially. All three nodes have different mi values.
The duration between the execution of τ1 and τ3, when other

Algorithm 1 Work-conserving scheduling.
Variables:

Ready(t) : Set of ready jobs at time t
Sched(t) : Set of jobs to be scheduled at time t

1: procedure AN EXAMPLE WORK-CONSERVING SCHEDULING
2: M ′ ←M
3: Order jobs in Ready(t) according to the scheduling policy
4: for each τi,j ∈ Ready(t) do
5: if mi > M ′ then
6: continue /* Use break for semi work-conserving */
7: Sched(t)← Sched(t) ∪ {τi,j}
8: M ′ ←M ′ −mi

nodes execute on different CEs, can be regarded as self-
suspension times on τ1’s CE. ♢

Thus, if some DAGs are scheduled sequentially on a shared
set of processors, deriving their response-time bounds requires
analyzing self-suspending bundled gang tasks. A bundled gang
task consists of a chain of multiple rigid gang subtasks (a
special case of our task model), where the mi values of two
subtasks may differ. Thus, execution in Fig. 3 can be viewed as
bundled tasks with a self-suspension between two consecutive
subtasks. Providing an analysis for such a task model is beyond
the scope of this paper and is deferred to future work.

B. Scheduling DAGs on Allocated Processors

We consider work-conserving and semi-work-conserving ap-
proaches for scheduling each DAG on its allocated processors.
Work-conserving scheduling. For gang tasks, work-
conserving schedulers do not allow a set of processors on a CE
to remain idle if a ready gang job can use them. Specifically,
under work-conserving schedulers, a job τi,j is ready but
unscheduled at any time if and only if the number of idle
processors of the γth

i CE is insufficient to schedule τi,j . Thus,
any work-conserving scheduler satisfies the following:

(WC) Under a work-conserving scheduler, among the pro-
cessors of the pth CE that are allocated to G, there
are M ′

p idle processors at time t if and only if, for
each ready but unscheduled job τi,j with γi = p at
time t, mi > M ′

p holds.
Algorithm 1 shows pseudocode for an example preemptive

work-conserving scheduler. Note that non-preemptive sched-
ulers can also be work-conserving. At any scheduling-decision
point, Algorithm 1 iterates through all ready jobs to schedule
as many jobs as possible in an order. If a job cannot fit on the
available processors, the scheduler attempts to schedule the
next job in the order (line 6).
Ex. 3. Fig. 4 shows a work-conserving schedule of a DAG
job of G in Fig. 1 on two CEs consisting of four and six
processors, respectively. At time 4, τ1’s job completes, causing
the release of the jobs of τ2, τ3, and τ4. At time 4, jobs of
τ2 and τ3 are scheduled on the 2nd CE, but τ4’s job cannot
be scheduled on the remaining one available processor. τ3’s
job executes less than τ3’s WCET and completes at time 7.
This causes τ7 to release its job at time 7 on the 1st CE. At

3

1st

CE

2nd

CE

Time0 5 10 15 200 5 10 15 20

τ1

τ2

τ7 τ5

τ6

τ3

τ4
τ9

τ8 τ10

Fig. 4: A work-conserving schedule of G in Fig. 1.

time 7, τ4’s job still cannot be scheduled on the three available
processors of the 2nd CE. ♢

Semi-work-conserving scheduling. A semi-work-conserving
scheduler may allow some processors to remain idle even if
an unscheduled ready job could fit there. However, in such a
case, there must be another ready but unscheduled job that
cannot fit on those processors. Specifically, under a semi-
work-conserving scheduler, at any time, a job τi,j is ready
but unscheduled if and only if the number of idle processors
is insufficient to schedule a ready but unscheduled job τk,ℓ.
Thus, the following holds.

(SC) Under a semi-work-conserving scheduler, among the
processors of the pth CE that are allocated to G,
there are M ′

p idle processors at time t if and only
if there exists a ready but unscheduled job τk,ℓ with
γk = p at time t for which mk > M ′

p holds.
Thus, under semi-work-conserving schedulers, when a job

τi,j with γi = p is ready but unscheduled, the number of idle
processors M ′

p allocated to G on the pth CE can be larger than
mi. However, there must be another job τk,ℓ with γk = p such
that mk is larger than M ′

p. Algorithm 1 can be converted into
a semi-work-conserving scheduling algorithm by replacing the
statement continue at line 6 by break.
Ex. 4. Fig. 5 depicts a semi-work-conserving schedule of a
DAG job of G in Fig. 1 on two CEs consisting of four and six
processors, respectively. At time 4, τ1’s job completes, causing
the release of the jobs of τ2, τ3, and τ4. At time 4, τ2’s job is
scheduled on the 2nd CE. Assume that the scheduler attempts
to schedule τ4’s job on the three available processors first.
Since it cannot fit there, jobs for τ3 and τ4 are not scheduled.
After τ2’s job is completed, τ4’s job is scheduled, and the only
remaining ready job on the 2nd CE is also scheduled. ♢

Semi-work-conserving scheduling in GPUs. When GPU-
accessing tasks share the same address space, NVIDIA GPUs
schedule tasks in a semi-work-conserving manner. Processors
in NVIDIA GPUs are clustered into streaming multiprocessors
(SMs). A CUDA-using2 program launches a kernel to be
executed on GPU. Each kernel consists of blocks of multiple

2Although other GPU-programming APIs exist, CUDA is commonly used
in real-time systems.

1st

CE

2nd

CE

Time0 5 10 15 200 5 10 15 20 25

τ1

τ2

τ7τ5 τ6

τ3

τ4
τ9

τ8

τ10

Fig. 5: A semi-work-conserving schedule of G in Fig. 1.

threads that are co-scheduled on an SM. Blocks are schedu-
lable entities on GPUs and can be abstracted as gang tasks.
Note that all threads of a block must be scheduled on an SM,
i.e., its threads cannot be distributed to multiple SMs.

When a kernel is launched, it moves through a pipeline to
enter into a first-in-first-out execution engine (EE) queue.3 The
blocks of the kernel at the head of the queue are scheduled on
SMs. When all blocks at the head of the queue are scheduled,
the kernel is removed from the queue, and the new head’s
blocks are scheduled until no more blocks can fit any SMs.
Thus, if a block of the kernel at the head of the queue
cannot fit on any SMs, no blocks of the non-head kernels
are scheduled even if they can fit on remaining processors on
an SM, satisfying (SC). Readers interested in the details of
scheduling on NVIDIA GPUs are referred to [8], [10].

Note that we do not require modifying NVIDIA GPU
scheduling. Rather, we require the construction of fine-grained
processing graphs for analytical purposes. Such graphs require
each node to be either a CPU- or GPU-only node. Furthermore,
each GPU node represents a CUDA block. Thus, to construct
such a graph, each kernel should be split into multiple nodes,
each representing a block of the kernel. The number of
such block nodes and their degrees of parallelism can be
determined by NVIDIA’s profiling tool nvprof. Furthermore,
block WCET estimates can be obtained via measurements
using the globaltimer performance-counter register [56].

IV. PARALLELISM-INDUCED IDLENESS

Before giving response-time bounds, we first give tech-
niques to account for parallelism-induced idleness under both
work-conserving and semi-work-conserving schedulers. We do
so by determining, for each task τi of a DAG G, the maximum
possible number of processors that may be idle on τi’s CE
when τi has a ready but unscheduled job. The number of
such idle processors depends on other tasks of G on that
CE, the number of processors allocated to G on that CE,
and the scheduling algorithm. We begin by introducing the
following notation to denote the maximum number of idle
processors when a ready job cannot be scheduled. This was
first introduced in [20] for scheduling independent gang tasks.

3CUDA also provides CUDA streams that adds an additional queueing prior
to EE queues. Using per-job streams, such queueing can be obviated [56].

4

Def. 1. For each task τi of G, let ∆W
i (resp., ∆S

i) denote the
maximum possible number of idle processors, among the Mγi

processors allocated to G on the γth
i CE, when a job of τi is

ready but unscheduled under any work-conserving (resp., semi-
work-conserving) scheduler.

Since ∆W
i and ∆S

i values depend only on G’s tasks that
execute on the γth

i CE, we introduce the following notation.

Def. 2. For any set V ′ ⊆ V of tasks, V ′
p denotes the tasks in

V ′ that execute on the pth CE, i.e., V ′
p = {τi ∈ V ′ : γi = p}.

Thus, Vp denotes all tasks of G that execute on the pth CE.
In the following two subsections, we show how to determine

∆W
i and ∆S

i values, respectively.

A. Work-Conserving Schedulers

By (WC), when τi has a ready but unscheduled job, the
number of idle processors on τi’s CE is at most mi − 1.
Thus, by Def. 1, mi − 1 is a safe value for ∆W

i . However,
it is possible to further optimize the value of ∆W

i . For
independent sporadic tasks, Dong and Liu gave a dynamic
programming algorithm to determine ∆W

i by calculating the
smallest number of occupied processors on the γth

i CE by
jobs of a subset of other tasks, but leaving less than mi

available processors (thus, maximizing the number of idle
processors) [20]. However, considering subsets of all tasks
other than τi can be pessimistic for DAG tasks, as not all
tasks can have ready jobs simultaneously with τi.

To accurately determine ∆W
i values, we give an algorithm

that considers only those sets of tasks that can have ready
jobs simultaneously with τi. A set of tasks can simultaneously
have ready jobs if no pairs of tasks in that set have ancestor-
descendant relationships. To formally define such tasks, we
introduce the notation par(V ′) for any set V ′ ⊆ V , which is
true if jobs of all tasks in V ′ can be ready simultaneously, and
false otherwise:

par(V ′) =
∧

τi∈V ′

τi /∈
⋃

τk∈V ′\{τi}

dep(τk)

 .

Using par(V ′), we determine ∆W
i as follows:

∆W
i =



0 if ∀ V ′ ⊆ Vγi
:

par(V ′ ∪ {τi}) ::∑
τk∈V ′ mk

≤ Mγi
−mi

max{m′ ∈ {0, · · · ,mi − 1}
: (∃ V ′ ⊆ Vγi \ {τi} : otherwise
par(V ′ ∪ {τi}) ∧∑

τj∈V ′ mj = Mγi
−m′)}

(3)
The first case in (3) sets ∆W

i to zero, as no set V ′ of tasks
satisfying par(V ′) can occupy at least Mγi

−mi processors.
The second case sets ∆W

i value by determining a subset of
tasks V ′ satisfying par(V ′∪{τi}), which occupy the smallest
number of processors on τi’s CE and leave less than mi

processors for a job τi.

Ex. 5. Consider the DAG G in Fig. 6 that is scheduled on a
CE of ten processors. Only jobs of τ2, τ3, τ5, and τ6 can be
ready when τ4 has a ready job, as they are neither ancestors
nor descendants of τ4. However, since τ3 is a predecessor of
τ6, jobs of τ3 and τ6 cannot be simultaneously ready. Thus,
par({τ3, τ4, τ6}) is false. In contrast, par({τ2, τ4, τ5}) is true,
as they can have ready jobs at the same time. Among all
sets V ′ ⊂ V \ {τ4} such that par(V ′ ∪ {τ4}) = true, tasks
{τ2, τ3} require the least number of processors, leaving less
than m4 = 6 processors for τ4. Thus, by (3), ∆W

4 = 10 −
m2 −m3 = 10− 7 = 3. ♢

τ1

5

τ24

τ3

3

τ5

4

τ7

3
τ4 6

τ6 3

Fig. 6: A DAG. Numbers out-
side circles denote mi values.

Computing ∆W
i by (3).

We now give a dynamic
programming algorithm to
compute ∆W

i values ac-
cording to the second case
of (3). Note that the first
case is applicable when
there is no m′ satisfying
the second case. Thus, we
only focus on the second case of (3). To compute ∆W

i ,
we consider the set of tasks Vγi \ (dep(τi) ∪ {τi}). We fill
a two-dimensional dynamic-programming table with entries
∆W

i (τj ,m) where τj ∈ Vγi
\ (dep(τi) ∪ {τi}) and m ∈

{0, 1, . . . ,Mγi
}. The entry ∆W

i (τj ,m) stores a boolean value,
which is true if τj and a subset of tasks in Vγi

\(dep(τi)∪{τi})
with task indices at most j − 1 can execute in parallel and
occupy exactly m processors in τi’s CE, and false otherwise.

Ex. 5 (Cont’d). Consider the DAG in Fig. 6. For any m,
∆4(τ3,m) depends on tasks in V \ (dep(τ4) ∪ {τ4}) with
task indices at most 3. Such tasks are {τ2, τ3}. ∆4(τ3,m) is
true for m values that can be occupied by only τ3 or both τ2
and τ3. Thus, ∆4(τ3, 5) and ∆4(τ3, 9) are true, as five (resp.,
nine) processors can be occupied by τ3 (resp., τ2 and τ3). ♢

The recurrence relation in (4) determines the ∆W
i (τj ,m)

values. The first case in (4) represents a base case;
∆W

i (τj ,mj) is true as τj can occupy mj processors. The
second case considers all tasks τj ∈ Vγi

that cannot execute
in parallel with any task τk ∈ Vγi

with k < j and sets the
entries corresponding to m ̸= mj as false. The final case
considers all tasks with task indices smaller than j that are
not τj’s ancestors to determine the existence of a set of tasks
occupying exactly m − mj processors. Note that case three
precludes checking whether τk is a descendant of τj , as task
indexing follows a topological ordering.

∆W
i (τj ,m) =



true if m = mj

false if m ̸= mj ∧ (∀k < j :

τk /∈ Vγi
\ (dep(τi)∪

{τi})
∨k<j∧τk∈Vγi

\(dep(τi)
∪{τi} ∪ anc(τj))

∆W
i (τk,m−mj) otherwise

(4)
Finally, to compute ∆W

i , we determine the smallest m value,

5

say m′, larger than Mγi
− mi for which a τj exists with

∆W
i (τj ,m) = true. We then set ∆W

i = Mγi −m′.
Running time. We can compute dep(τi) for all τi in O(|V |2)
time [45]. Computing each entry of the dynamic programming
table corresponding to the first case requires O(1) time. Using
pre-computed dep(τi), computing an entry corresponding to
the second and third cases takes O(|V |) time. Thus, the total
running time to compute the dynamic programming table takes
O(|V |2Mγi

) time. Computing the ∆W
i value from the table

requires an additional O(|V |Mγi) time for scanning all entries
in the table. Thus, the time complexity for computing ∆W

i

is O(|V |2Mγi
). Finally, computing ∆W

i values for all tasks
requires O(|V |3 max{Mγi

}) time.

B. Semi-Work-Conserving Schedulers

When a job of τi is ready but unscheduled under semi-work-
conserving schedulers, the number of idle processors on τi’s
CE can exceed mi − 1. This is because, by (SC), if a task τk
with mk > mi cannot be scheduled due to the unavailability of
mk processors, it may cause τi to be unscheduled too. Thus, in
such a case, the number of idle processors is at most ∆W

k , i.e.,
the maximum possible number of idle processors when a job
of τk cannot be scheduled under work-conserving schedulers.
Therefore, ∆S

i depends on ∆W
k values of all tasks τk that can

have ready jobs simultaneously with τi. Thus, we define ∆S
i

as follows:
∆S

i = max
τk∈Vγi

\dep(τi)
{∆W

k }. (5)

Proof of (5). Assume that the number of idle processors is
M ′ at time t when a job of τi is ready but unscheduled. By
(SC), there exists a task τk in Vγi

\ dep(τi) with a ready but
unscheduled job such that mk > M ′ holds. Since τk has a
ready but unscheduled job, only jobs of tasks in Vγi

\dep(τk)
can occupy processors on the γth

i CE. By (3), the maximum
number of idle processors when tasks in Vγi \dep(τk) occupy
more than Mγi − mk processors of the γth

i CE is at most
∆W

k . Thus, since τk ∈ Vγi
\ dep(τi), we have M ′ ≤ ∆W

k ≤
maxτℓ∈Vγi

\dep(τi){∆W
ℓ }, which satisfies (5).

From computed ∆W
k values, it requires an additional

O(|Vγi
|) time to compute a ∆S

i value, thus total O(|Vγi
|2)

time to compute such values for all nodes. Including compu-
tation times for ∆W

k values, running time to compute all ∆S
i

is O(|V |3 maxk{Mk}+ |V |2) = O(|V |3 maxk{Mk}).
Ex. 6. Consider a semi-work-conserving schedule of the DAG
G in Fig. 6 on ten processors. Consider ∆S

5 for τ5. Only jobs
of τ2, τ4, and τ6 can be ready when τ5 has a ready job. Thus,
by (5), ∆S

5 = max{∆W
2 ,∆W

4 ,∆W
6 }. ♢

∆W
i and ∆S

i values for GPUs. Recall that NVIDIA GPUs
cluster their processors into SMs and a job of gang tasks must
execute on a single SM. The above-mentioned approaches to
compute ∆W

i and ∆S
i values can be applied for such a case by

first determining such values assuming a single SM and then
multiplying the values by the number of SMs allocated to the
DAG. Thus, if c SMs, each containing Mp/c processors, are

allocated to DAG G and ∆W
i,c is the value computed by (3)

assuming Mp/c processors, then ∆W
i = c ·∆W

i,c.

V. RESPONSE-TIME BOUND

In this section, we give a response-time bound for a DAG
G of gang tasks that are scheduled on µ CEs under a work-
conserving or a semi-work-conserving scheduler. Since G has
constrained deadlines, we consider a single DAG job to derive
our response-time bound. For notational convenience, we omit
job indices, e.g., τi denotes both a task and its job. Our analysis
technique is the same for work-conserving and semi-work-
conserving schedulers. Specifically, replacing ∆W

i by ∆S
i from

our response-time bound under work-conserving schedulers
yields our response-time bound under semi-work-conserving
schedulers. Thus, we give a response-time bound under an
arbitrary schedule, as assumed in the following definition.

Def. 3. Let S be a schedule of DAG job J on µ CEs where,
for all p, Mp processors of the pth CE are assigned to G. For
each task τi, let ∆i = ∆W

i (resp., ∆i = ∆S
i), if S is work-

conserving (resp., semi-work-conserving).

Note that, in S, jobs of J may execute for less than their
WCETs; our bound is also valid in such a case. Our analysis
relies on an envelope path of J in S, as defined below.

Def. 4. In S, a path of jobs {v1, v2, · · · , vk} of J is an envelope
path if and only if the following conditions hold.

(i) v1 = τ1 ∧ vk = τn,
(ii) ∀ i ∈ {1, 2, . . . , k − 1} : f(vi) = r(vi+1),
(iii) ∀ i ∈ {1, 2, . . . , k − 1} : vi ∈ pred(vi+1).

We denote an envelope path of J in S by λe.

Ex. 7. We can determine an envelope path by traversing the
schedule backward (from sink to source). In Fig. 4, τ10 is
released when τ8 finishes. Similarly, τ8 is released when τ4
finishes. Iteratively doing this until τ1 is reached, an envelope
path in Fig. 4 is {τ1, τ4, τ8, τ10}. ♢

Note that there can be multiple envelope paths of J in
S. This can happen when multiple predecessor jobs of τi
complete at the same time. For any task on the envelope path
λe of J in S , we have the following lemma.

Lemma 1. Let τi be a job of λe. At any time t ∈ [r(τi), f(τi)),
if τi, is not scheduled, then at least Mγi −∆i processors of the
γth
i CE are busy in S.

Proof. Follows from Defs. 1 and 3.

Let Ae be the union of all intervals when jobs of λe execute
in S. Also, let Ane be the union of all intervals when no jobs
of λe execute in S. Thus, Ae ∩Ane = ∅ holds, and we have

|Ae|+ |Ane| = f(τn)− r(τ1) = R(J). (6)
Thus, response time R(J) of job J can be upper bounded by
upper bounding |Ae| and |Ane|. To upper bound |Ane|, we
define interfering workload for each task on a path.

Def. 5. For any τi, we let I(τi) = Vγi
\ (dep(τi) ∪ {τi}). For

any set V ′ ⊆ V , we define I(V ′) =
⋃

τi∈V ′ I(τi).

6

Ex. 7 (Cont’d). In Fig. 4, for envelope path λe =
{τ1, τ4, τ8, τ10}, Ae = [0, 4) ∪ [9, 12) ∪ [14, 17) ∪ [17, 19),
when jobs of λe executes. In contrast, Ane = [4, 9)∪ [12, 14).
By Def. 5, I(τ4) = {τ2, τ3}. ♢

Lemma 2. Let τi be a job of λe. For any time t ∈
[r(τi), f(τi)), if τi is not scheduled at time t, then jobs that
are scheduled on the γth

i CE at time t are in I(τi).

Proof. No jobs in dep(τi) are ready during [r(τi), f(τi)).
Also, only jobs τk with γk = γi can be scheduled on τi’s
CE. Thus, the lemma holds.

Next, we give an upper bound on |Ane|. We begin by
introducing some necessary notation.

Def. 6. Let τk(V ′) be the task with the kth-highest ∆i value
among the tasks of V ′, and ∆k(V

′) is its ∆i value. We assume
ties are broken by task index.

By Def. 6, for an ℓ-node path λ of G,
{τ1(λ), τ2(λ), . . . , τℓ(λ)} is an ordered set of tasks of
λ in descending order of ∆i values. Moreover, since λp

denotes the set of tasks on λ that execute on the pth CE
(by Def. 2), τk(λp) is the task with the kth-largest ∆i value
among all tasks on λ that execute on the pth CE.

Def. 7. For any set V ′ ⊆ V of tasks, let Icup
i (V ′) =⋃i

j=1 I(τj(V
′)) and Idiff

i (V ′) = I(τi(V
′)) \ Icup

i−1(V
′).

Thus, by Defs. 7 and 5, Icupi (V ′) consists of all tasks
that may interfere with any task in {τ1(V ′), . . . , τi(V

′)}. In
contrast, Idiff

i (V ′) consists of tasks that may interfere with task
τi(V

′) but not with any task in {τ1(V ′), . . . , τi−1(V
′)}. Thus,

∪i
j=1I

diff
j (V ′) also consists of all tasks that may interfere with

any task in {τ1(V ′), . . . , τi(V
′)}. Therefore, we have

Icupi (V ′) =

i⋃
j=1

Idiff
j (V ′). (7)

Moreover, for any i ̸= j, Idiff
i (V ′) and Idiff

j (V ′) are disjoint:

∀i ̸= j : Idiff
i (V ′) ∩ Idiff

j (V ′) = ∅. (8)

Ex. 8. Assume that the DAG in Fig. 6 is scheduled by a work-
conserving scheduler on a CE of ten processors. Let V ′ =
{τ5, τ6}. According to (3), ∆5 = 1 and ∆6 = 0. Thus, by
Def. 6, τ1(V ′) = τ5 and τ2(V

′) = τ6. By Def. 5, I(τ5) =
{τ2, τ4, τ6} and I(τ6) = {τ4, τ5}. Thus, by Def 7, Icup2 (V ′) =
I(τ5)∪I(τ6) = {τ2, τ4, τ5, τ6}. By Def 7, Idiff

1 (V ′) = I(τ5) =
{τ2, τ4, τ6} and Idiff

2 (V ′) = I(τ6) \ I(τ5) = {τ5}. ♢

Def. 8. For any subset of tasks V ′
p assigned to the pth CE

(Def. 2) and 1 ≤ j ≤ |V ′
p |, we define F (V ′

p , j) as follows:

F (V ′
p , j) =

j∑
i=1

vol(Idiff
i (V ′

p)))

Mp −∆i(V ′
p)

. (9)

In the following lemma, we upper bound |Ane| by consider-
ing all tasks in λe

p in decreasing order of their ∆i values, i.e.,
in the order: τ1(λ

e
p), . . . , τ|λe

p|(λ
e
p). Under such an ordering,

we assume that a task that can interfere with multiple tasks

Time

Mp

processors Idiff
1 (λe

p)

∆1(λ
e
p)

idle procs.

τ1(λ
e
p) Idiff

2 (λe
p)

∆2(λ
e
p)

idle procs.

τ2(λ
e
p)

Fig. 7: Proof of Lem. 3.

on λe
p executes when the task with the largest ∆i value is

ready but unscheduled. Fig. 7 illustrates the idea: a task that
can interfere with both τ1(λ

e
p) and τ2(λ

e
p) is scheduled when

tasks of Idiff
1 (λe

p) are executing, i.e., Idiff
1 (λe

p) contains that task.

Lemma 3. |Ane| ≤
∑µ

p=1 F (λe
p, |λe

p|) holds.

Proof. For any job τi(λ
e
p) ∈ λe

p with 1 ≤ p ≤ µ, let Ane
i,p be the

union of intervals when τi(λ
e
p) is ready but unscheduled. Note

that τi(λe
p) follows Def. 6. Thus, Ane

i,p ⊆ Ane. By the definition

of Ane, we have
⋃µ

p=1

⋃|λe
p|

i=1 A
ne
i,p = Ane. Moreover, by Def. 4,

no two jobs of λe are ready at the same time. Thus, for any
pair of jobs τi(λ

e
p) and τj(λ

e
q) on λe with τi(λ

e
p) ̸= τj(λ

e
q),

Ane
i,p ∩Ane

j,q = ∅ holds. Therefore, we have

|Ane| =
µ∑

p=1

|λe
p|∑

i=1

|Ane
i,p|. (10)

We now upper bound Ane by upper bounding
∑|λe

p|
i=1 |Ane

i,p|
in (10) for all 1 ≤ p ≤ µ. For any job τk on the pth CE, let
τk execute for Ck,i,p time units during Ane

i,p. By Lem. 2, jobs
not in I(τi(λ

e
p)) cannot execute on the pth CE during Ane

i,p.
Thus, we have

∀τk /∈ I(τi(λ
e
p)) : γk = p :: Ck,i,p = 0. (11)

Thus, the total execution on the pth CE during Ane
i,p is∑

τk∈I(τi(λe
p))

mkCk,i,p. By Lem. 1 and Def. 6, at least
Mp −∆i(λ

e
p) processors of the pth CE are busy during Ane

i,p.
Hence, we can upper bound the length |Ane

i,p| as follows:

|Ane
i,p| ≤

∑
τk∈I(τi(λe

p))
mkCk,i,p

Mp −∆i(λe
p)

.

Therefore, we have
|λe

p|∑
i=1

|Ane
i,p| ≤

|λe
p|∑

i=1

∑
τk∈I(τi(λe

p))
mkCk,i,p

Mp −∆i(λe
p)

. (12)

By Def. 5, I(λe
p) denotes the set

⋃
τk∈λe

p
I(τk). Using I(λe

p),
we can rearrange (12) as follows:

|λe
p|∑

i=1

|Ane
i,p| ≤

∑
τk∈I(λe

p)

|λe
p|∑

i=1

mkCk,i,p

Mp −∆i(λe
p)
. (13)

Now, consider a job τk ∈ I(λe
p). Let sm(k) be the smallest i

value such that τk ∈ I(τi(λ
e
p)), i.e., ∀j < sm(k), τk /∈

I(τj(λ
e
p)). By (11), for any j < sm(k), τk does not execute

during Ane
j,p, i.e., Ck,j,p = 0. Therefore, by (13), we have

|λe|∑
i=1

|Ane
i,p| ≤

∑
τk∈I(λe

p)

|λe
p|∑

i=sm(k)

mkCk,i,p

Mp −∆i(λe
p)

7

≤ {By Def. 6, ∆i(λ
e
p) ≥ ∆i+1(λ

e
p)}∑

τk∈I(λe
p)

|λe
p|∑

i=sm(k)

mkCk,i,p

Mp −∆sm(k)(λe
p)

≤ {Since
|λe

p|∑
i=sm(k)

Ck,i,p ≤ Ck}

∑
τk∈I(λe

p)

mkCk

Mp −∆sm(k)(λe
p)
. (14)

Now, by the definition of sm(k), sm(k) = i holds when
τk is in I(τi(λ

e
p)) but not in any I(τj(λ

e
p)) with j < i.

Thus, sm(k) = i holds if and only if τk ∈ I(τi(λ
e
p)) \⋃i−1

j=1 I(τj(λ
e
p)) = Idiff

i (λe
p) (by Def. 7). Thus, by (14) and (9),

|λe
p|∑

i=1

|Ane
i | ≤

|λe
p|∑

i=1

vol(Idiff
i (λe

p))

Mp −∆i(λe
p)

= F (λe
p, |λe

p|).

The lemma holds by applying the above inequality in (10).

Applying Lem. 3 in (6), we have the following lemma.

Lemma 4. In S , the response time of J is bounded as follows:
R(J) ≤ len(λe) +

∑µ
p=1 F (λe

p, |λe
p|).

Proof. By the definition of Ae, |Ae| ≤ len(λe) holds. Apply-
ing |Ae| ≤ len(λe) and Lem. 3 in (6), the lemma holds.

Now, G’s response time can be upper bounded by consid-
ering all complete paths as an envelope path in Lem. 4.

Theorem 1. Let Λ(G) be the set of all complete paths of G.
G’s response time is bounded as follows:

R(G) ≤ max
λ∈Λ(G)

(
len(λ) +

µ∑
p=1

F (λp, |λp|)

)
(15)

Proof. Follows from Lem. 4.

Unfortunately, even for the special case of sequential nodes
(i.e., ∆i = 0), computing the exact value of the right-hand-
side of (15) is NP-hard in the strong sense [27, Thm. 4.2].
Moreover, the variation in the number of idle processors (∆i

values) during different sub-intervals of Ane (see Fig. 7)
complicates the application of existing approaches to upper
bound (15), as in [27], for the sequential case (where the
denominator in (9) is always Mp). Thus, such approaches can
focus only on maximizing the numerator of (9).
Upper bounding (15). To upper bound (15), instead of the
tasks of λp, we consider the tasks of Vp in order of decreasing
∆i values. Thus, we consider tasks of Vp in the order:
τ1(Vp), . . . , τ|Vp|(Vp). Since λp ⊆ Vp, considering the tasks
of Vp in such an order assumes that more processors are
idle during Ane. This enables upper bounding R(G) without
determining the path λ that maximizes (15).

We now show how to upper bound F (λp, |λp|) in (15)
using the tasks of Vp in order of decreasing ∆i values. Since
λp ⊆ Vp, the volume of tasks that may interfere with tasks in
λp (numerator in (9)) can be expressed as the volume of tasks

that may interfere with a subset of tasks τ1(Vp), . . . , τk(Vp). In
Lem. 5, we determine such an equivalent interfering workload
from a subset of tasks in Vp and divide them by the corre-
sponding ∆i values to upper bound F (λp, j) for any j. We
first give the following notation.

Def. 9. For any set of tasks V ′, we denote by vik(V
′)

the volume of all tasks that may interfere with any tasks
in {τ1(V ′), . . . , τk(V

′)}. Thus, by Def. 7, vik(V
′) =

vol(Icup
k (V ′)). We define vi0(V

′) = 0. Furthermore, by (7)
and (8), vik(V ′) satisfies the following:

vik(V
′) = vol

(
k⋃

i=1

Idiff
i (V ′)

)
=

k∑
i=1

vol
(
Idiff
i (V ′)

)
. (16)

Note that, by Defs. 5 and 9, the volume of all tasks that
may interfere with any task of V ′ is

vol(I(V ′)) = vi|V ′|(V
′). (17)

Lemma 5. For any path λ, CE type p, and j ≤ |λp|, let
1 ≤ y(j) ≤ |Vp| be the smallest integer so that vij(λp) ≤
viy(j)(Vp). Let x(j) = vij(λp)− viy(j)−1(Vp). Then,

F (λp, j) ≤ F (Vp, y(j)− 1) +
x(j)

Mp −∆h(Vp,y(j))
. (18)

Proof. Note that vij(λp) = viy(j)−1(Vp) + x(j). Thus, the
volume of tasks that interfere with {τ1(λp), . . . , τj(λp)} is
the same as the sum of x(j) and the volume of tasks that
interfere with {τ1(Vp), . . . , τy(j)−1(Vp)}.

We first consider the case where vij(λp) = 0. Then, by (16),
vol(Idiff

i (λp)) = 0 for all i ≤ j. Thus, by (9), F (λp, j) = 0,
and the lemma trivially holds.

We now consider vij(λp) > 0. Since y(j) is the smallest
integer with vij(λp) ≤ viy(j)(Vp), we have

viy(j)−1(Vp) < vij(λp). (19)
We start by showing the following:

(P) ∆y(j)(Vp) ≥ ∆j(λp).
Assume that ∆y(j)(Vp) < ∆j(λp). Thus, since λp ⊆
Vp, by Def. 6, each task in {τ1(λp), . . . , τj(λp)} is also
in {τ1(Vp), . . . , τy(j)−1(Vp)}. Therefore, by Defs. 5 and 7,
Icup
j (λp) ⊆ Icup

y(j)−1(Vp), which by (7) implies that
j⋃

i=1

Idiff
i (λp) ⊆

y(j)−1⋃
i=1

Idiff
i (Vp)

By (16)
====⇒ vij(λp) ≤ viy(j)−1(Vp).

This contradicts (19). Thus, (P) holds.
We now prove the lemma. We give a proof by induction on

index j. Assume that the lemma holds for j − 1:

F (λp, j − 1) ≤ F (Vp, y(j − 1)− 1) +
x(j − 1)

Mp −∆y(j−1)(Vp)
.

(20)
By (9), we have

F (λp, j) = F (λp, j − 1) +
vol(Idiff

j (λp))

Mp −∆j(λp)

≤ {By (20) and (P)}

8

F (Vp, y(j − 1)− 1) +
x(j − 1)

Mp −∆y(j−1)(Vp)

+
vol(Idiff

j (λp))

Mp −∆y(j)(Vp)
. (21)

To prove the lemma, we now express vol(Idiff
j (λp)) in (21)

using the volume of a subset of tasks in Vp. By (16), we
have vol(Idiff

j (λp)) = vij(λp) − vij−1(λp). Applying the
definition of y(·) and x(·) in vij(λp) − vij−1(λp), we have
vol(Idiff

j (λp)) = viy(j)−1(Vp)+x(j)−viy(j−1)−1(Vp)−x(j−
1) =

∑y(j)−1
i=y(j−1) vol(I

diff
i (Vp))+x(j)−x(j−1). Dividing this

equation by Mp −∆y(j)(Vp) yields

vol(Idiff
j (λp))

Mp −∆y(j)(Vp)

=

y(j)−1∑
i=y(j−1)

vol(Idiff
i (Vp))

Mp −∆y(j)(Vp)
+

x(j)− x(j − 1)

Mp −∆y(j)(Vp)

≤ {By Def. 6, for any i ≤ y(j),∆i(Vp) ≥ ∆y(j)(Vp)}
y(j)−1∑

i=y(j−1)

vol(Idiff
i (Vp))

Mp −∆i(Vp)
+

x(j)

Mp −∆y(j)(Vp)

− x(j − 1)

Mp −∆y(j−1)(Vp)
.

Applying the above inequality in (21), we have

F (λp, j) ≤ F (Vp, y(j − 1)− 1) +

y(j)−1∑
i=y(j−1)

vol(Idiff
i (Vp))

Mp −∆i(Vp)

+
x(j)

Mp −∆y(j)(Vp)

= {By (9)}

= F (Vp, y(j)− 1) +
x(j)

Mp −∆y(j)(Vp)
.

This completes the proof of the lemma.

Using (18) to upper bound F (λp, |λp|) requires determining
y(|λp|) and x(|λp|). By Lem. 18 and (21), determining such
values requires determining vi|λp|(λp) = vol(I(λp)). We up-
per bound vol(I(λp)) by determining a path λmin(p) for which
the volume of tasks on the pth CE is the minimum. Since tasks
on a path do not contribute to its interfering workload, for any
λ, vol(I(λp)) does not exceed vol(Vp)− vol(λ

min(p)
p). Using

the following definition, this is shown in Lem. 6.

Def. 10. For any 1 ≤ p ≤ µ, let Λp(G) be the set of
all complete paths that have at least one task assigned to the
pth CE. Let λmin(p) be a path in Λp(G) with the minimum
vol(λ

min(p)
p), i.e., λmin(p) = argminλ∈Λp(G)(vol(λp)).

Lemma 6. For any path λ and 1 ≤ p ≤ µ, vol(I(λp)) ≤
vol(Vp)− vol(λ

min(p)
p).

Proof. If |λp| = 0, then vol(I(λp)) = 0, and the lemma
trivially holds. Assuming |λp| > 0, by Def. 10, vol(λp) ≥
vol(λ

min(p)
p). Since each task in I(λp) executes on the pth

CE, by Def. 5, I(λp) ⊆ Vp. However, by Def. 5, I(λp) does

not contain any task τi ∈ λp ⊆ Vp. Thus, vol(I(λp)) ≤
vol(Vp) − vol(λp) holds. Since, vol(λp) ≥ vol(λ

min(p)
p), we

have vol(I(λp)) ≤ vol(Vp)− vol(λ
min(p)
p).

We now define the two terms h(p) and g(p) that can be used,
instead of y(|λp|) and x(|λp|), to upper bound F (λp, |λp|).
Using these values, we upper bound F (λp, |λp|) in Lem. 7 by
adding (potentially) more terms in (18).

Def. 11. For any 1 ≤ p ≤ µ, let 1 ≤ h(p) ≤ |Vp| be the
smallest integer with vol(Vp) − vol(λ

min(p)
p) ≤ vih(p)(Vp)

holds. Also, let g(p) = vol(Vp)−vol(λ
min(p)
p)−vih(p)−1(Vp).

Lemma 7. For any λ and 1 ≤ p ≤ µ, the following holds.

F (λp, |λp|) ≤ F (Vp, h(p)− 1) +
g(p)

Mp −∆h(p)(Vp)

Proof. Let y(|λp|) be the smallest integer so that
vi|λp|(λp) ≤ viy(|λp|)(Vp) holds. Let x(|λp|) =
vi|λp|(λp)− viy(|λp|)−1(Vp). By Lem. 5, we have

F (λp, |λp|) ≤ F (Vp, y(|λp|)− 1) +
x(|λp|)

Mp −∆y(|λp|)(Vp)
.

(22)
By (17), we have vol(I(λp)) = vi|λp|(λp). By Lem. 6,

vol(I(λp)) = vi|λp|(λp) ≤ vol(Vp)−vol(λ
min(p)
p). Therefore,

by the definition of y(|λp|) and h(p), we have y(|λp|) ≤ h(p).
We now consider two cases.
Case 1. y(|λp|) = h(p). Since vol(I(λp)) = vi|λp|(λp) ≤
vol(Vp)−vol(λ

min(p)
p), by the definition of x(|λp|) and g(p),

we have x(|λp|) ≤ g(p). Thus, the lemma holds by replacing
y(|λp|) and x(|λp|) with h(p) and g(p), respectively, in (22).
Case 2. y(|λp|) < h(p). By the definition of x(|λp|),
x(|λp|) = vi|λp|(λp) − viy(|λp|)−1(Vp) ≤ viy(|λp|)(Vp) −
viy(|λp|)−1(Vp) = vol(Idiff

y(|λp|)(Vp)). Replacing x(|λp|) with
vol(Idiff

y(|λp|)(Vp)) and adding additional non-negative terms
in (22), we have

F (λp, |λp|) ≤ F (Vp, y(|λp|)− 1) +
vol(Idiff

y(|λp|)(Vp))

Mp −∆y(|λp|)(Vp)

+

h(p)−1∑
i=y(|λp|)+1

vol(Idiff
i (Vp))

Mp −∆i(Vp)
+

g(p)

Mp −∆h(p)(Vp)

= F (Vp, h(p)− 1) +
g(p)

Mp −∆h(p)(Vp)
.

Thus, the lemma holds.

Using Lem. 7, we have the following theorem.

Theorem 2. G’s response time is bounded as follows:

R(G) ≤ len(G)+

µ∑
p=1

(
F (Vp, h(p)− 1) +

g(p)

Mp −∆h(p)(Vp)

)
,

(23)
where len(G) denotes length of the longest path of G.

Proof. The theorem follows from applying len(G) =
maxλ∈Λ(G) len(λ) and Lem. 7 in Thm. 1.

9

Running time. len(G) and each vol(λ
min(p)
p) can be com-

puted in O(V +E) time. For DAG, the set I(τi) for all tasks
can be computed in O(|V |2) time. Using precomputed I(τi)
sets, for each task, each Idiff set (to compute F (Vp, h(p)−1))
can be computed in O(|V |) time. Since each task appears
at most once in the response-time bound expression in (23),
computing all numerators in (23) takes O(|V |2) time. Since
computing all ∆i values takes O(|V |3 maxp{Mp}) time, the
total running time is O(|V |3 maxp{Mp}).

VI. PROCESSOR ALLOCATION

In this section, we give an ILP to allocate processors among
multiple DAGs. We consider DAGs G1, G2, · · · , GN . For all
introduced notation, we use a superscript k to denote the
corresponding term for the kth DAG Gk. We also assume
that the pth CE has Mp processors.

For DAG Gk, let Rk
p,m denote the value(

F (V k
p , hk(p)− 1) + gk(p)

m−∆
hk(p)

(V k
p)

)
of (23) and len(Gk)

denote its longest-path length. Using this notation, the ILP is
specified as follows.

Variables: For each pair of DAG Gk and pth CE, we define
Mp variables xk

p,1, x
k
p,2, · · · , xk

p,Mp
. xk

p,m is 1 if DAG Gk is
assigned m processors on the pth CE, and 0 otherwise.

Constraint 1. For each pair of DAG and CE, exactly one xk
p,m

is 1 (the DAG receives m processors on that CE):

∀k ∈ {1, · · · , N},∀p ∈ {1, · · · , µ} ::

Mp∑
m=1

xk
p,m = 1.

Constraint 2. The total number of allocated processors per
CE is at most the number of processors that CE has:

∀p ∈ {1, · · · , µ} ::

N∑
k=1

Mp∑
m=1

m · xk
p,m ≤ Mp.

Constraint 3. On allocated processors, each DAG meets its
deadline:

∀k ∈ {1, · · · , N} : len(Gk) +

µ∑
p=1

Mp∑
m=1

Rk
p,mxk

p,m ≤ Dk.

The ILP has N
∑µ

p=1 Mp variables and Nµ + N + µ
constraints. For systems with many heavy DAGs, the ILP can
be solved efficiently, as seen in our experimental evaluation.

VII. EXPERIMENTS

We now present the results of the experiments we conducted
to evaluate the response-time bounds of our approach. First,
we compared schedulability under work-conserving and semi-
work-conserving scheduling for a DAG on an arbitrary number
of processors. Second, for multicore+GPU platforms, we com-
pared schedulability under semi-work-conserving scheduling
on GPUs with traditional locking-based approaches [5]. Fi-
nally, we demonstrated the practicality of our approach via a
case study on a multicore+GPU platform.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge Probabilities

0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10

No
rm

al
ize

d
Bo

un
d

Semi-work-conserving-Small
Semi-work-conserving-Moderate
Semi-work-conserving-Heavy
Work-conserving-All

(a) Normalized bound vs. edge generation probabilities.

20 40 60 80 100 120
Node Count

0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10

No
rm

al
ize

d
Bo

un
d

Semi-work-conserving-Small
Semi-work-conserving-Moderate
Semi-work-conserving-Heavy
Work-conserving-All

(b) Normalized bound vs. node count.

Fig. 8: Results of experiments on arbitrary number of CEs.

A. Experiments on Arbitrary Number of CEs

In this experiment, we compared the response-time bounds
in Theorem 2 under work-conserving and semi-work-
conserving schedulers. We generated DAGs following the
Erdős-Rényi method [18]. The number of nodes per DAG
was selected from [20, 120]. Each task’s WCET was chosen
from [50, 100]. For each pair of nodes (τi, τj) with i < j,
an edge from τi to τj was added if a uniformly generated
random number in [0, 1] was at most a predefined edge-
generation probability. We selected this probability value from
{0.1, 0.3, 0.5, 0.7, 0.9}. A higher edge-generation probability
makes DAGs more sequential. As in [48], additional edges
were added to make each DAG weakly connected.

The number of CEs was randomly selected from [2, 6].
The number of processors per CE was selected from
{8, 16, 24, 32}, which represent common values in real-world
use cases [4], [36]. Each task was assigned to one of the CEs
with uniform probabilities. We considered small, moderate, or
heavy degrees of parallelism, for which mi values were uni-
formly distributed in [1, 0.2Mγi

], [1, 0.4Mγi
], and [1, 0.7Mγi

],
respectively, where Mγi is the number of processors on τi’s
CE. For each combination of edge-generation probabilities and
degrees of parallelism, we generated 1,000 task sets.

We computed the average normalized response-time bound,
which is the ratio between the response-time bound under
semi-work-conserving and work-conserving scheduling. Thus,
normalized response-time bounds less than 1.0 imply smaller
response-time bounds under semi-work-conserving schedul-
ing than under work-conserving scheduling. The normalized
response-time bounds are plotted in Fig. 8.

Observation 1. For small, moderate, and heavy degrees of
parallelism, the average response-time bounds under semi-
work-conserving scheduling were 1.001×, 1.005×, and 1.04×

10

of those under work-conserving scheduling, respectively.

For heavy degrees of parallelism, semi-work-conserving
scheduling caused larger response-time bounds compared to
work-conserving scheduling. This is because the amount of
wasted processing capacity (∆i values) due to each task can
often be larger for semi-work-conserving scheduling (see (5)).
For smaller edge-generation probabilities, the difference in
response-time bounds between work-conserving and semi-
work-conserving scheduling increased. (see Fig. 8(a)). This
is because the interfering workload (the summation term
in (23)) contributed more significantly to the response-time
bounds. Increasing the number of nodes slightly increased
the normalized response-time bounds (see Fig. 8(b)). For
small degrees of parallelism, the response-time bounds under
both work-conserving and semi-work-conserving scheduling
were close, as ∆i values under both scheduling were small.
Note that semi-work-conserving scheduling becomes work-
conserving when all tasks have mi = 1.

B. Experiments on Multicore+GPU

In this experiment, we considered systems scheduled on
multicore+GPU platforms. We compared our response-time
bounds under semi-work-conserving scheduling with locking-
based approaches. For the locking-based approach, we consid-
ered a recently proposed locking protocol, called the SMLP,
which allows multiple jobs to access a GPU simultaneously by
allocating SMs among them [5]. Under the SMLP, an upper
bound on priority-inversion blocking4 (pi-blocking) time can
be derived under any job-level fixed-priority scheduling [5].
Using such a pi-blocking bound, DAG response-time bounds
can be derived by inflating task WCETs and then applying
any suspension-oblivious response-time analysis techniques.

For the locking-based approach, we considered two state-of-
the-art response-time bounds: RM-HE [30] and WC-HE [28].
RM-HE considers prioritized list scheduling of a DAG of
sequential tasks and supports multi-DAG systems by prioritiz-
ing different DAGs by the rate-monotonic algorithm. WC-HE
applies under any work-conserving scheduler, where multiple
DAGs are supported by federated scheduling techniques.
Single-DAG systems. To describe task generation, we use
NVIDIA-GPU-specific terms. Our GPU-specific task parame-
ter generation was inspired by prior work [5], [43], [53]. We
considered platforms consisting of {8, 16, 24, 32} processors
and {16, 32, 48} SMs, where each SM consists of 2,048
GPU threads. We first generated coarse-grained DAG tasks
consisting of sequential CPU tasks by the same task-generation
method given in Sec. VII-A, where we set µ = 1 and mi = 1
to generate only CPU tasks. We randomly selected some CPU
tasks as GPU-accessing tasks. We considered small ([1–20]%),
moderate ([20-50]%), and heavy ([50–80]%) ratios of GPU-
accessing tasks. We generated GPU-access lengths according
to the method in [5]. The maximum GPU-access lengths
were selected uniformly from [0.1Ci, 0.7Ci]. By [5], a task’s

4Under the locking-based approach, higher-priority jobs can suffer pi-
blocking when they wait for GPU but a lower-priority job is scheduled.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Edge Probabilities

1.0
1.2
1.4
1.6
1.8
2.0
2.2

No
rm

al
ize

d
bo

un
d

Our
RM_He
WC_He

Fig. 9: Normalized bound vs. edge generation probabilities for
moderate GPU-access ratio.

maximum GPU-access length occurs when the number of SMs
allocated to the task is small. Similar to [5], for each GPU-
accessing task τi, we selected a value ρi, not exceeding the
number of total SMs, that represents the maximum number
of SMs the task can utilize, i.e., GPU-access lengths do not
increase if more SMs are allocated.

To apply our approach, we then generated fine-grained
DAGs by splitting the GPU-accessing tasks of coarse-grained
DAGs. Each GPU-accessing task was split into two CPU tasks
and multiple GPU blocks. Each block was a gang task, for
which we selected block sizes (i.e., mi values) randomly from
{126, 256, 512, 1028}. The number of blocks was determined
so that increasing the number by one required more the ρi
SMs. Finally, edges were added from one CPU task to all
GPU blocks and from all GPU blocks to the other CPU task.
For each combination of processor count, SM count, edge
probabilities, and GPU-accessing task ratios, we generated
1,000 task sets. We compared our bound (OUR) under semi-
work-conserving scheduling with RM-HE and WC-HE. Fig. 9
presents these three bounds normalized with respect to OUR.

Observation 2. For small, moderate, and heavy GPU-
accessing-task ratios, bounds under RM-HE (resp., WC-HE)
were, on average, 1.24×, 2.07×, and 3.30× (resp., 1.25×,
2.09×, and 3.32×), respectively, of those under OUR.

For systems with many GPU-accessing tasks, OUR gave
much smaller response-time bounds than RM-HE and WC-
HE. Fig. 9 shows this by plotting normalized bounds with
respect to edge-generation probabilities. The bounds of RM-
HE and WC-HE were larger compared to OUR for larger
edge-generation probabilities. This is because of pi-blocking-
related inflation of WCETs under RM-HE and WC-HE. With
large edge-generation probabilities, accumulated inflation of
WCETs along the longest path of DAG became high.
Multi-DAG systems. In this section, we used the above
single DAG-generation method iteratively to generate multi-
ple DAGs. For each processor count in {8, 16, 24, 32}, we
generated task systems with coarse-grained DAGs that have
normalized utilizations, i.e., sum of all DAG utilizations over
processor count, from 0.1 to 1 with a step size of 0.1.
Similar to [30], we chose DAG G’s period uniformly from
[len(G), 6 · len(G)], where len(G) is its longest-path length.
For each combination of processor count, SM count, edge
probabilities, and GPU-accessing task ratios, we generated

11

0.2 0.4 0.6 0.8 1.0
Normalized Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R

at
io

Our
HE_RM_21
HE_WC_22

Fig. 10: Acceptance ratio vs. normalized utilizations for light
GPU-access ratio.

1,000 task sets. For each combination, we determined the
acceptance ratio, which gives the percentage of task systems
that were schedulable under each of OUR, RM-HE, and WC-
HE. Fig. 10 presents these acceptance ratios.

Observation 3. For small, moderate, and heavy GPU-
accessing-task ratios, RM-HE (resp., WC-HE) scheduled
14%, 19%, and 30% (resp., 15%, 22%, and 48%) of the
systems compared to OUR, respectively.

Similar to single-DAG experiments, WCET inflations
caused fewer systems to be schedulable under RM-HE and
WC-HE than OUR. However, as seen in Fig. 10, WC-HE
scheduled some systems that OUR cannot. This is because
light DAGs share processors under WC-HE, while our analysis
requires allocating a dedicated processor to each light DAG.

C. Case Study on Multicore+GPU

For this case study, we employed the pedestrian-detection
algorithm Histogram of Oriented Gradients (HOG) [19]. HOG
computes gradients over each frame of a video feed via a series
of CUDA kernels, forming a DAG of gang tasks with sequen-
tial CPU and parallel GPU computations. These experiments
were conducted on a machine running a modified version
of LITMUSRT [14], [16], a Linux-based real-time kernel.
The machine had a 3.5-GHz AMD Ryzen 9 3950X 16-Core
Processor and one NVIDIA RTX 6000 Ada Generation GPU.

We considered both single- and multi-DAG scenarios. In
both scenarios, we ran HOG under the locking-based approach
using the OMLP protocol [9], [15] and under federated
scheduling with the default semi work-conserving sched-
uler [10]. In the multi-DAG scenario, we ran four parallel
HOG instances. We used libsmctrl [11] to partition GPU
among the four HOG instances under federated scheduling. We
measured response times of 1,000 DAG jobs, each processing
a video frame at five image-scale levels. In the single-DAG
scenario, under the locking-based approach and semi work-
conserving scheduling, the average (resp., maximum) response
time was 2.6ms (resp., 8.5ms) and 2.5ms (resp., 7.1ms),
respectively. Thus, there was a 16.5% reduction in maximum
response time under the semi work-conserving approach. For
multiple DAGs, under the locking-based approach and semi
work-conserving scheduling, the average (resp., maximum)
response time was 9.9ms (resp., 15.9ms) and 143.0ms (resp.,
31.5ms), respectively.

VIII. RELATED WORK

The literature on scheduling DAG tasks and gang tasks is
quite vast. Below, we comment on some relevant works.
DAG scheduling. Most work on DAG scheduling considered
nodes as sequential tasks and assumed homogeneous multipro-
cessor platforms. Graham gave a well-known response-time
bound for DAGs under any work-conserving scheduler [26].
Recently proposed multi-path bounds improved Graham’s
bound by considering multiple paths of the DAGs [28],
[52]. Some work also considered assigning node priorities to
improve Graham’s bound [17], [29], [30]. These bounds can
be applied to multi-DAG systems using federated scheduling
techniques [12]. Variants of federated scheduling exist that al-
low multiple DAGs to share a few processors [33], [34]. Other
work on multi-DAG scheduling applied global and partitioned
scheduling techniques and analyzed inter-DAG interference to
derive response-time bounds [24], [39], [41], [44].

Jaffey first considered scheduling DAGs on heterogeneous
platforms and gave an analysis based on envelope paths [32].
Later work improved this bound using a less pessimistic
envelope path and interfering workload estimations [27], [31].
Lin et al. gave a type-aware federated scheduling algorithm on
two-CE platforms that allows the sharing of processors of a
CE among those DAGs that are light with respect to a CE [40].
Other work considered soft real-time DAGs on heterogeneous
processors [55] and graph-restructuring techniques [49]. Work
on scheduling DAGs on multicore+GPU either considered
lock-based approaches [9] or soft real-time DAGs [56].
Gang scheduling. Most prior work on gang scheduling fo-
cused on independent gang tasks. Schedulability tests for
preemptive gang scheduling are known for global [2], [20],
[25], [35], [38], [38], [46] and variants of partitioned schedul-
ing [50], [51]. Recent work proposed schedulability tests for
non-preemptive gang scheduling [21], [37], [42]. Scheduling
of bundled gang tasks was studied under global and par-
titioned fixed-priority scheduling [47], [54]. All the above-
mentioned work considered independent or bundled gang tasks
and specific schedulers that are special cases of graphs of
gang tasks and work-conserving schedulers, respectively. To
mitigate interference due to shared resources, scheduling one
gang task at a time was studied [6], which leaves more
processors idle than semi-work-conserving schedulers.

IX. CONCLUSION

In this work, we considered the scheduling of DAGs com-
posed of gang tasks on heterogeneous processing platforms.
We presented a polynomial-time response-time bound for such
DAGs under any scheduler that is either work-conserving or
semi-work-conserving. We have also given an ILP formula-
tion to allocate processors among multiple DAGs. We have
demonstrated the utility of our approach through schedulability
studies and a case study on a multicore+GPU platform. In
future work, we plan to devise techniques to share processors
of different CEs among light DAGs. We also plan to devise
response-time bounds for arbitrary-deadline DAGs.

12

REFERENCES

[1] S. Ahmed and J. H. Anderson, “Exact Response-Time Bounds of
Periodic DAG Tasks under Server-Based Global Scheduling,” in RTSS,
2022, pp. 447–459.

[2] ——, “Soft Real-Time Gang Scheduling,” in RTSS, 2023, pp. 331–343.
[3] ——, “Open Problem Resolved: The “Two” in Existing Multiprocessor

PI-Blocking Bounds Is Fundamental,” in ECRTS, 2024, pp. 11:1–11:21.
[4] B. Akesson, M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis,

“An Empirical Survey-based Study into Industry Practice in Real-time
Systems,” in RTSS, 2020, pp. 3–11.

[5] S. W. Ali, Z. Tong, J. Goh, and J. H. Anderson, “Predictable GPU
Sharing in Component-Based Real-Time Systems,” in ECRTS, 2024,
pp. 15:1–15:22.

[6] W. Ali and H. Yun, “RT-Gang: Real-Time Gang Scheduling Framework
for Safety-Critical Systems,” in RTAS, 2019, pp. 143–155.

[7] T. Amert, S. Voronov, and J. Anderson, “OpenVX and real-time certifi-
cation: The troublesome history,” in RTSS, 2019, pp. 312–325.

[8] T. Amert, N. Otterness, M. Yang, J. H. Anderson, and F. D. Smith,
“GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed,” in
RTSS, 2017, pp. 104–115.

[9] T. Amert, Z. Tong, S. Voronov, J. Bakita, F. D. Smith, and J. H.
Anderson, “TimeWall: Enabling Time Partitioning for Real-Time Mul-
ticore+Accelerator Platforms,” in RTSS, 2021, pp. 455–468.

[10] J. Bakita and J. H. Anderson, “Demystifying NVIDIA GPU Internals to
Enable Reliable GPU Management,” in RTAS, 2024, pp. 294–305.

[11] ——, “Hardware Compute Partitioning on NVIDIA GPUs,” in RTAS,
2023, pp. 54–66.

[12] S. Baruah, “The federated scheduling of constrained-deadline sporadic
DAG task systems,” in DATE, 2015, pp. 1323–1328.

[13] A. Biondi and G. Buttazzo, “Timing-aware FPGA partitioning for real-
time applications under dynamic partial reconfiguration,” in AHS, 2017,
pp. 172–179.

[14] B. B. Brandenburg, “Scheduling and Locking in Multiprocessor Real-
time Operating Systems,” Ph.D. dissertation, 2011.

[15] B. B. Brandenburg and J. H. Anderson, “Optimality Results for Multi-
processor Real-Time Locking,” in RTSS, 2010, pp. 49–60.

[16] J. M. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. H.
Anderson, “LITMUSRT : A Testbed for Empirically Comparing Real-
Time Multiprocessor Schedulers,” in RTSS, 2006, pp. 111–126.

[17] S. Chang, R. Bi, J. Sun, W. Liu, Q. Yu, Q. Deng, and Z. Gu,
“Toward Minimum WCRT Bound for DAG Tasks Under Prioritized
List Scheduling Algorithms,” IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst., vol. 41, no. 11, pp. 3874–3885, 2022.

[18] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J. Vincent, and
F. Wagner, “Random graph generation for scheduling simulations,” in
SIMUTools, 2010, p. 60.

[19] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, vol. 1, 2005, pp. 886–893 vol. 1.

[20] Z. Dong and C. Liu, “Analysis techniques for supporting hard real-time
sporadic gang task systems,” Real Time Syst., vol. 55, no. 3, pp. 641–
666, 2019.

[21] ——, “A Utilization-based Test for Non-preemptive Gang Tasks on
Multiprocessors,” in RTSS, 2022, pp. 105–117.

[22] Z. Dong, K. Yang, N. Fisher, and C. Liu, “Tardiness Bounds for Sporadic
Gang Tasks Under Preemptive Global EDF Scheduling,” IEEE Trans.
Parallel Distrib. Syst., vol. 32, no. 12, pp. 2867–2879, 2021.

[23] G. A. Elliott, K. Yang, and J. H. Anderson, “Supporting real-time com-
puter vision workloads using OpenVX on multicore+GPU platforms,”
in RTSS, 2015, pp. 273–284.

[24] J. C. Fonseca, G. Nelissen, and V. Nélis, “Improved response time
analysis of sporadic DAG tasks for global FP scheduling,” in RTNS,
2017, pp. 28–37.

[25] J. Goossens and V. Berten, “Gang FTP scheduling of periodic and
parallel rigid real-time tasks,” CoRR, vol. abs/1006.2617, 2010.

[26] R. L. Graham, “Bounds on Multiprocessing Timing Anomalies,” SIAM
J. of Appl. Math., vol. 17, no. 2, pp. 416–429, 1969.

[27] M. Han, N. Guan, J. Sun, Q. He, Q. Deng, and W. Liu, “Response Time
Bounds for Typed DAG Parallel Tasks on Heterogeneous Multi-Cores,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 11, pp. 2567–2581, 2019.

[28] Q. He, N. Guan, M. Lv, X. Jiang, and W. Chang, “Bounding the
Response Time of DAG Tasks Using Long Paths,” in RTSS, 2022, pp.
474–486.

[29] Q. He, X. Jiang, N. Guan, and Z. Guo, “Intra-Task Priority Assignment
in Real-Time Scheduling of DAG Tasks on Multi-Cores,” IEEE Trans.
Parallel Distrib. Syst., vol. 30, no. 10, pp. 2283–2295, 2019.

[30] Q. He, M. Lv, and N. Guan, “Response Time Bounds for DAG Tasks
with Arbitrary Intra-Task Priority Assignment,” in ECRTS, 2021, pp.
8:1–8:21.

[31] Q. He, Y. Sun, M. Lv, and W. Liu, “Efficient Response Time Bound for
Typed DAG Tasks,” in RTCSA, 2023, pp. 226–231.

[32] J. M. Jaffe, “Bounds on the Scheduling of Typed Task Systems,” SIAM
J. Comput., vol. 9, no. 3, pp. 541–551, 1980.

[33] X. Jiang, N. Guan, H. Liang, Y. Tang, L. Qiao, and W. Yi, “Virtually-
Federated Scheduling of Parallel Real-Time Tasks,” in RTSS, 2021, pp.
482–494.

[34] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-Federated Scheduling
of Parallel Real-Time Tasks on Multiprocessors,” in RTSS, 2017, pp.
80–91.

[35] S. Kato and Y. Ishikawa, “Gang EDF Scheduling of Parallel Task
Systems,” in RTSS, 2009, pp. 459–468.

[36] S. Kato, S. Tokunaga, Y. Maruyama, S. Maeda, M. Hirabayashi,
Y. Kitsukawa, A. Monrroy, T. Ando, Y. Fujii, and T. Azumi, “Autoware
on board: enabling autonomous vehicles with embedded systems,” in
ICCPS, 2018, pp. 287–296.

[37] S. Lee, N. Guan, and J. Lee, “Design and Timing Guarantee for Non-
Preemptive Gang Scheduling,” in RTSS, 2022, pp. 132–144.

[38] S. Lee, S. Lee, and J. Lee, “Response Time Analysis for Real-Time
Global Gang Scheduling,” in RTSS, 2022, pp. 92–104.

[39] J. Li, Z. Luo, D. Ferry, K. Agrawal, C. Gill, and C. Lu, “Global EDF
scheduling for parallel real-time tasks,” Real-Time Systems, vol. 51,
no. 4, pp. 395–439, 2015.

[40] C. Lin, J. Shi, N. Ueter, M. Günzel, J. Reineke, and J. Chen, “Type-
Aware Federated Scheduling for Typed DAG Tasks on Heterogeneous
Multicore Platforms,” IEEE Trans. Computers, vol. 72, no. 5, pp. 1286–
1300, 2023.

[41] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional DAG tasks in
multiprocessor systems,” in ECRTS, 2015, pp. 211–221.

[42] G. Nelissen, J. M. i Igual, and M. Nasri, “Response-Time Analysis for
Non-Preemptive Periodic Moldable Gang Tasks,” in ECRTS, 2022, pp.
12:1–12:22.

[43] P. Patel, I. Baek, H. Kim, and R. Rajkumar, “Analytical Enhancements
and Practical Insights for MPCP with Self-Suspensions,” in RTAS,
R. Pellizzoni, Ed., 2018, pp. 177–189.

[44] R. Pathan, P. Voudouris, and P. Stenström, “Scheduling Parallel Real-
Time Recurrent Tasks on Multicore Platforms,” IEEE Trans. Parallel
Distrib. Syst., vol. 29, no. 4, pp. 915–928, 2018.

[45] P. Purdom, “A Transitive Closure Algorithm,” BIT, vol. 10, pp. 76–94,
1970.

[46] P. Richard, J. Goossens, and S. Kato, “Comments on ”Gang EDF
Schedulability Analysis”,” CoRR, vol. abs/1705.05798, 2017.

[47] V. Rispo, F. Aromolo, D. Casini, and A. Biondi, “Response-Time
Analysis of Bundled Gang Tasks Under Partitioned FP Scheduling,”
IEEE Transactions on Computers, vol. 73, no. 11, pp. 2534–2547, 2024.

[48] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Parallel
Real-Time Scheduling of DAGs,” IEEE Trans. Parallel Distrib. Syst.,
vol. 25, no. 12, pp. 3242–3252, 2014.

[49] M. A. Serrano and E. Quiñones, “Response-time analysis of DAG tasks
supporting heterogeneous computing,” in DAC, 2018, pp. 125:1–125:6.

[50] B. Sun, T. Kloda, and M. Caccamo, “Strict Partitioning for Sporadic
Rigid Gang Tasks,” in RTAS. IEEE, 2024, pp. 252–264.

[51] N. Ueter, M. Günzel, G. von der Brüggen, and J. Chen, “Hard Real-Time
Stationary GANG-Scheduling,” in ECRTS, 2021, pp. 10:1–10:19.

[52] ——, “Parallel Path Progression DAG Scheduling,” IEEE Trans. Com-
puters, vol. 72, no. 10, pp. 3002–3016, 2023.

[53] Y. Wang, C. Liu, D. Wong, and H. Kim, “GCAPS: GPU Context-Aware
Preemptive Priority-Based Scheduling for Real-Time Tasks,” in ECRTS,
2024, pp. 14:1–14:25.

[54] S. Wasly and R. Pellizzoni, “Bundled Scheduling of Parallel Real-Time
Tasks,” in RTAS, 2019, pp. 130–142.

[55] K. Yang, M. Yang, and J. H. Anderson, “Reducing response-time bounds
for DAG-based task systems on heterogeneous multicore platforms,” in
RTNS, 2016, pp. 349–358.

[56] M. Yang, T. Amert, K. Yang, N. Otterness, J. H. Anderson, F. D. Smith,
and S. Wang, “Making OpenVX Really “Real Time”,” in RTSS, 2018,
pp. 80–93.

13

