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Abstract—Different global and semi-partitioned schedulers
have been proposed that are soft-real-time (SRT) optimal for
sporadic task systems, meaning they can guarantee bounded
deadline tardiness. However, under known analyses, tardiness
bounds increase with respect to the number of processors, which
reduces the applicability of these schedulers in systems with
a large number of processors. In this paper, a semi-clustered
scheduler, SC-EDF, is presented that has a constant tardiness
bound. SC-EDF partitions tasks into clusters, each of which may
include one fractional processor. Each cluster is scheduled by
G-EDF, and the fractional processors are realized using Pfair
scheduling techniques.

I. INTRODUCTION

Unlike hard-real-time (HRT) systems, missing deadlines by
a bounded amount, i.e., bounded tardiness, is acceptable [9] in
a soft-real-time (SRT) system. The optimality of a scheduling
algorithm in an SRT system is determined by the ability of the
algorithm to ensure bounded tardiness for any task system that
does not over-utilize all processors or contain any single task
that over-utilizes a single processor [9]. Many global and semi-
partitioned algorithms are known to be SRT-optimal [9, 12]. In
global scheduling, a job can be scheduled on any available
processor, while in semi-partitioned scheduling, most tasks
execute only on a fixed processor and the remaining tasks
are allowed to migrate among processors.

Unfortunately, existing analyses of global and semi-
partitioned algorithms provide tardiness bounds that increase
with respect to the number of processors [2, 3, 9–11, 13, 14].
Additionally, existing analyses are seemingly not tight for
systems with large processor counts. Thus, the practicality
of these scheduling algorithms is questionable for systems
with a large number of processors. Moreover, the applicability
of relatively tighter analyses [10, 14] is problematic because
those bounds are not in closed form and require complex
algorithms, even with exponential time complexity [14], to
compute a tardiness bound. Although HRT-optimal schedulers
ensure a minimum tardiness of zero, the high overheads of
such schedulers may be undesirable in practice [4–6].

In this paper, we develop a scheduling approach that can
enable constant tardiness bounds without resorting to the
costly techniques of HRT-optimal algorithms. Our approach is
motivated by the fact that the known closed-form analysis of
the global earliest-deadline-first (G-EDF) scheduler provides
a relatively tight tardiness bound in closed form [9] for a
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small number of processors. This inspires us to propose a
new scheduling algorithm that partitions tasks into small-sized
clusters where the size of a cluster is determined by the sum
of the utilizations of the tasks in that cluster, and schedule
each cluster by G-EDF on the required number of processors.
However, partitioning tasks into integer-sized clusters is the
same as the bin-packing problem, which is NP-hard in the
strong sense and incurs utilization loss. Therefore, we allow
the size of a cluster to be a rational number and create a
periodic server task to schedule the fractional part. The server
tasks are scheduled on the required number of processors using
Pfair [6] scheduling techniques to provide proportional shares
to the server tasks. However, our usage of such techniques
avoids the high cost usually seen in Pfair scheduling by using
a relatively large allocation quantum. Figs. 2 and 3, which are
discussed in detail later, illustrate our approach.

Prior work. Since the original work on tardiness under
G-EDF by Devi and Anderson [9], considerable work has
been done regarding tardiness under different schedulers. The
currently known tightest analysis of G-EDF has been given by
Valente [14]. Window-constrained schedulers, a generalization
of the G-EDF scheduler, also provide bounded tardiness [13].
The G-FL scheduler is known to be the best G-EDF-like
scheduler in terms of minimizing tardiness under a certain
type of analysis [10]. Apart from global schedulers, several
semi-partitioned schedulers have also been proposed that can
ensure bounded tardiness [2, 3, 11].

Contribution. In this paper, we present SC-EDF (semi-
clustered earliest-deadline-first), which is the first SRT-optimal
scheduler known to us that ensures constant tardiness without
excessive preemptions and migrations. Semi-clustered sched-
ulers generalize semi-partitioned ones by partitioning tasks
into clusters and allowing different clusters to receive a small
fraction of their allocation from common processors. To the
best of our knowledge, SC-EDF is the first proposed SRT-
optimal semi-clustered algorithm. SC-EDF has a tardiness
bound of c · Cmax, where Cmax is the maximum execution
cost among all tasks and c is a constant. SC-EDF does not
require particular partitioning techniques, but works for any
partitioning strategy provided that the clusters satisfy certain
conditions. To assess the efficacy of SC-EDF, we present the
results of an experimental study that compares tardiness and
the number of preemptions under it to those under G-EDF.
These experiments show that SC-EDF is particularly effective
in comparison to G-EDF on large multiprocessor platforms
where many high-utilization tasks are common.



Organization. In the rest of this paper, we give neces-
sary background information including the considered system
model (Sec. II), present SC-EDF in detail (Sec. III) and
tardiness analysis under it (Sec. IV), discuss our experimental
results (Sec. V), and conclude (Sec. VI).

II. PRELIMINARIES

We consider a task system τ consisting of n implicit-
deadline sporadic tasks τ1, τ2, . . . , τn to be scheduled on
a multiprocessor platform consisting of m ≥ 2 identical
processors. Each task τi releases a potentially infinite sequence
of jobs τi,1, τi,2, . . .. Each task τi is specified by the parameters
(Ci, Ti), where Ci denotes τi’s (worst-case) execution cost,
and Ti denotes its period, which is the minimum separation
time between two consecutive job releases of τi. If the
separation time between consecutive jobs of each task τi is
exactly Ti, then the task system is called periodic. The relative
deadline of τi is denoted by Di = Ti. The utilization of τi,
denoted by ui, is the ratio Ci/Ti. The utilization of the task
system τ is U =

∑n
i=1 ui. We require ui ≤ 1.0 and U ≤ m to

hold, which are necessary conditions for SRT schedulability
[9]. The maximum and minimum execution cost among all the
tasks in τ are denoted by Cmax and Cmin, respectively. The
ceiling of the utilization of the task system dUe is denoted by
U+. We assume all task parameters to be rational and time to
be continuous. For any time t > 0, the notation t− is used to
denote an instant t− ε where ε→ 0+.

The release time, absolute deadline, completion time, and
execution cost of job τi,j are denoted by ri,j , di,j , fi,j , and
Ci,j , respectively. The jobs of each task are sequential, i.e.,
τi,j+1 cannot start execution before τi,j completes even if τi,j
misses its deadline. The response time of τi,j is denoted by
Ri,j = fi,j − ri,j . The tardiness of a job τi,j is defined as
max{0, fi,j − di,j}. The tardiness of task τi is the maximum
tardiness among any of its jobs. The following definitions
closely follow from material in [9, 13].

Def. 1. A job τi,j is active at time t in a schedule S if ri,j ≤
t < di,j . If a task τi has an active job at t, then τi is active at t.

Def. 2. A job τi,j is pending at time t in a schedule S if ri,j ≤ t
and τi,j has not completed execution by t in S.

Def. 3. Let C` (resp., U `) denote the sum of the highest `
execution costs (resp., utilizations) of tasks in τ .

Allocation. The amount of time allocated to a task τi
in a schedule S over an interval [t1, t2) is denoted by
A(τi, t1, t2,S). Similarly, the amount of time allocated to
τ in a schedule S over the interval [t1, t2) is denoted by
A(τ, t1, t2,S). Thus,

A(τ, t1, t2,S) =
∑
τi∈τ

A(τi, t1, t2,S). (1)

Ideal schedule. Let π̂1, π̂2, . . . , π̂n be n processors having
speeds u1, u2, . . . , un, respectively. In an ideal schedule I,
each task τi is partitioned to execute on processor π̂i. Each
job starts execution as soon as it is released in I. Executing

at speed ui, the response time of each job of τi is at most Ti
in I. For task τi, A(τi, t1, t2, I) ≤ ui(t2 − t1). For the task
system τ , A(τ, t1, t2, I) ≤ U(t2 − t1).

LAG. The lag of a task τi in a schedule S at time t is the
difference between its allocation in S and I, respectively, over
the time interval [0, t). Thus, the lag of τi at time t in S is

lag(τi, t,S) = A(τi, 0, t, I)− A(τi, 0, t,S). (2)

Similarly, the LAG of a task system τ in a schedule S at time
t is defined as

LAG(τ, t,S) =
∑
τi∈τ

lag(τi, t,S) = A(τ, 0, t, I)−A(τ, 0, t,S).

(3)
Since LAG(τ, 0,S) = 0, for t2 ≥ t1 we have

LAG(τ, t2,S) = LAG(τ, t1,S)+A(τ, t1, t2, I)−A(τ, t1, t2,S).
(4)

Concrete and non-concrete tasks system. A task system
is concrete if the release time and actual execution time of
every job of each task is known, and non-concrete, otherwise.
Infinitely many concrete task systems can be specified for a
non-concrete task system and we call each such concrete task
system a concrete instantiation of the non-concrete system.

Minimum-parallelism form. Minimum-parallelism (MP)
form allows different SRT components or clusters to be sched-
uled on a multiprocessor platform without utilization loss.
In MP-form, at most one processor allocated to each cluster
is partially available [12]. To analyze tardiness assuming
processor supply is in MP-form, restricted processor capacity
must be considered. Chakroborty et al. introduced service
functions to specify available processor capacity [8]. Leontyev
and Anderson defined the service function of a processor with
restricted supply as follows [13].

Def. 4. The service function βk(∆) for processor πk lower
bounds the available capacity Hk(t, t + ∆) over any interval
[t, t+ ∆) [13], where

βk(∆) = max{0, ûk(∆− σk)}, (5)

ûk is the long-term utilization available on πk and σk is the
x-intercept necessary for βk(∆) to lower bound Hk(t, t+ ∆).

Ex. 1. Consider a processor πk whose availability pattern is
shown in Fig. 1(a) where intervals of availability are shown
as shaded regions. The availability pattern repeats every eight
time units, within which πk is available for four time units.
Thus, ûk is 0.5. The thick curve in Fig. 1(b) represents
the piecewise linear available processor capacity. The service
function βk(∆) = max{0, 0.5(∆−2)} is shown by the dashed
curve. Here σk = 2. ♦

III. SC-EDF

In this section, we present algorithm SC-EDF which sched-
ules a set of sporadic tasks on a multiprocessor platform.
Our goal in designing SC-EDF is to develop a scheduling
algorithm that has a tardiness bound in the form c · Cmax
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Fig. 1: (a) Availability of processor πk, and (b) the service function
of πk.

without any utilization loss or excessive job preemptions,
where c is a relatively small constant.

A. Scheduling

SC-EDF consists of two parts: an offline method for
assigning tasks to processors and an online scheduler. In the
offline method, SC-EDF partitions tasks into some disjoint
subsets G1, G2, · · · , G`. We call each subset a cluster. The
utilization of Gi, denoted by Ui, is the sum of the utilizations
of the tasks in Gi. We refer to the utilization of a cluster as
the size of the cluster, and use these terms interchangeably.
The clusters are constructed according to the following rule.

R. Each cluster has a size within [1, p+ 1) where p is an
integer such that p ≥ 2.

We allocate bUic fully available processors to each cluster
Gi. To schedule the fractional part of each cluster Gi, we
construct a synchronous (i.e., starts execution at time 0)
periodic server task Si of utilization uSi = Ui − bUic. If
the utilization of Si is uSi = a

b , then we set the period and
execution cost of Si to be b · q and a · q, respectively, where q
is the quantum size, which is a tunable parameter applicable
to the scheduling of server tasks. The total utilization of the
server tasks is US =

∑`
i=1 u

S
i . The server tasks are scheduled

on
⌈
US
⌉

processors by a Pfair scheduler. The tasks of Gi
are in turn scheduled on the processors fully allocated to Gi
and the periodic server Si by a G-EDF scheduler. Therefore,
each cluster Gi has processor supply in MP-form, i.e., bUic
fully available processors and at most one partially available
processor.

Choice of p. We will later derive a tardiness bound under
SC-EDF that will depend on p. To keep the tardiness bound
constant, we propose p to be a small constant, i.e., p ≤ 4.

Choice of quantum size. We propose the quantum size q
to be some number within [Cmin, Cmax]. The reason behind
such a choice is to reduce the large preemption overhead
incurred by Pfair schedulers when the quantum size is small.
Intuitively, a cluster’s server is available to its tasks for at
least the amount of time required to complete the job with the
smallest execution cost. However, the interval of time over
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Fig. 2: (a) An SC-EDF schedule for the task system in Ex. 2.

which the server is unavailable to the cluster can be large for
such a choice, causing larger tardiness compared to the choice
of a smaller quantum size.

Utilizing unallocated processors. If U ≤ m − 1, then
some processors will be unallocated. To improve tardiness, we
schedule the pending tasks of all clusters that are not scheduled
on the processors and servers allocated to the clusters on the
unallocated processors in a G-EDF manner. Later, we will de-
rive a tardiness bound assuming the unallocated processors are
idle. Note that, scheduling tasks on the unallocated processors
does not increase tardiness.
Ex. 2. Consider a task system τ consisting of τ1 = (5, 6), τ2 =
(5, 6), τ3 = (3, 4), τ4 = (3, 4), τ5 = (1, 2), and τ6 = (1, 2) to
be scheduled on four processors by SC-EDF. Assume p = 2,
and τ is partitioned into two clusters G1 = {τ1, τ2, τ6} and
G2 = {τ3, τ4, τ5} according to rule R. The utilization of G1

is U1 = 5
6 + 5

6 + 1
2 = 13

6 , and the utilization of G2 is U2 =
2
3 + 2

3 + 1
2 = 11

6 . There are two server tasks S1 = (1, 6) and
S2 = (5, 6) for G1 and G2, respectively. G1 is scheduled on
two fully available processors and the server S1, while G2 is
scheduled on one fully available processor and the server S2.
S1 and S2 are scheduled on a processor by a Pfair scheduler.
Fig. 2 shows the SC-EDF schedule of τ up to 13 time units.
Since S2 executes over the interval [0, 4), G2 executes on two
processors during this interval. On the other hand, G1 executes
on three processors over the interval [4, 5), since S1 executes
during this interval. ♦

B. Partitioning

Although SC-EDF works for any partitioning method that
satisfies rule R, it is desirable to maximize the number of
fully available processors allocated to the clusters. Instead of
devising a potentially sophisticated procedure, we propose a
simple greedy algorithm, as shown in Alg. 1, to partition tasks
onto clusters that does not guarantee to maximize the number
of fully available processors. The greedy algorithm creates
an initial partitioning of τ , corrects any cluster that violates
rule R, creates periodic servers, and allocates processors to
the clusters and servers (lines 27–32). During the initial
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Algorithm 1 Greedy Partitioning

1: procedure InitialPartitioning()
2: Index tasks in descending order of utilization
3: i, j, k ← 1, n, 1
4: while i ≤ j do . Until all tasks are assigned
5: Create an empty cluster Gk

6: while i ≤ j and ui + Uk ≤ p do
7: Add τi to Gk . Available task with highest
8: utilization
9: i← i+ 1

10: while i ≤ j and Uk < p do
11: Add τj to Gk . Available task with smallest
12: utilization
13: j ← j − 1

14: k ← k + 1

15: procedure Refine()
16: G`, G`−1 ← last and second-to-the-last cluster by
17: InitialPartitioning()
18: if U` < 1.0 then
19: if U` + U`−1 < p+ 1 then
20: Add all tasks of G` to G`−1, and
21: remove G`

22: else
23: while U` < 1.0 do
24: Remove a task τu from G`−1, and
25: add τu to G`

26: procedure Partitioning()
27: InitialPartitioning()
28: Refine()
29: for each cluster Gk do
30: Create a server Sk of utilization Uk − bUkc
31: Allocate bUkc processors to Gk

32: Allocate
⌈
US

⌉
processors to the servers

partitioning, the algorithm iteratively constructs clusters by
adding the available task with highest utilization to a cluster
while the size of the cluster is at most p (lines 6–9). To keep
the fractional part of each cluster small, the algorithm then
repeatedly adds the unassigned task with smallest utilization
until the size of the cluster is at least p (lines 10–13). Only
the last cluster constructed by procedure InitialPartitioning
can have size less than p. In case such a cluster is formed,
procedure Refine corrects this by either merging the final two
clusters (line 19–21) or moving some tasks from the second-
to-the-last cluster to the last cluster (lines 22–25).
Ex. 3. Consider a task system τ consisting of τ1 = (4, 5), τ2 =
(4, 5), τ3 = (4, 5), τ4 = (3, 5), τ5 = (3, 5), τ6 = (1, 2), τ7 =
(1, 2), and τ8 = (1, 2). For p = 2, the initial partitioning under
the greedy algorithm is shown in Fig. 3(a). To construct G1,
the greedy algorithm considers the tasks in decreasing order
of utilization. It adds τ1 and τ2 to G1, but the addition of
τ3 causes the size of G1 to exceed 2.0. Instead of adding
τ3, the algorithm then considers tasks in increasing order of
utilization and adds τ8 to G1. Since after adding τ8, the size
of G1 exceeds 2.0, no further tasks are added to G1. Similarly,
G2 and G3 are formed. Since the size of G3 is 2

3 < 1.0, the
algorithm refines the partitioning as illustrated in Fig. 3(b).
The sum of the size of G2 and G3 is 2 + 2

5 + 2
3 = 46
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Fig. 3: (a) Output of InitialPartitioning and (b) Refine procedure
for the task system in Ex. 3, and (c) the result of increasing server
utilizations for the task system in Ex. 4.

Hence, τ6 is removed from G2, and added to G3. ♦

Increasing server utilizations. If U is not integral, then the
sum of the utilizations of the servers US is also not integral.
This can cause capacity loss, since the servers are scheduled
on
⌈
US
⌉

processors. We can remedy this by increasing the
utilizations of the servers by distributing the residual utilization⌈
US
⌉
−US . To distribute the residual utilization, we increase

the utilization of the server of each cluster evenly to make
US =

⌈
US
⌉
. If increasing the utilization evenly causes some

server’s utilization to exceed 1.0, we set its utilization to 1.0
and redistribute the remaining utilization to the other clusters.

Ex. 4. Consider the task system and the partitioning illustrated
in Ex. 3. Since the total utilization of the servers is now
1.1 and they are scheduled on two processors, the available
utilization 2.0− 1.1 = 0.9 is distributed among the servers as
illustrated in Fig. 3(c). The server utilization of G2 is increased
by 0.1 because increasing its utilization by 0.3 would cause its
utilization to exceed 1.0. The remaining available utilization
0.8 is divided evenly between the servers of G1 and G3. ♦

IV. TARDINESS BOUND

In this section we derive a tardiness bound under SC-EDF.
Our approach consists of three steps: firstly, we derive a
tardiness bound under G-EDF in MP-form; secondly, we
derive a supply function for the server tasks scheduled by
Pfair; and finally, we combine the tardiness bound obtained
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in the first step and the supply function obtained in the second
step.

A. Tardiness Bound for Tasks in MP-Form under G-EDF

In this section, we derive a tardiness bound for a set of
implicit-deadline periodic tasks τN = {τ1, τ2, · · · , τn} on m
processors in MP-form under G-EDF. As shown in [15], any
tardiness bound derived for periodic task systems scheduled by
G-EDF also holds for sporadic task systems under G-EDF.
Therefore, without loss of generality, we limit our attention
to periodic task sets in deriving our bound. Note that [15]
holds for uniform heterogeneous platforms, but an identical
platform is a special case of a uniform heterogeneous one. For
the sake of generality, we use n and m to denote the number
of tasks and the number of processors, respectively, although
when we apply the results of this section later, we will be
considering subsets of tasks and processors. We also use the
relevant definitions and notation from Sec. II. Our tardiness
bound under G-EDF in MP-form is an improvement compared
to the tardiness bound given in [13]. We improve that bound
by extending techniques used to improve the tardiness bound
under G-EDF when all processors are fully available [9] to
the best currently known analysis of tardiness under G-EDF in
MP-form [13]. Let β(∆) = max{0, û(∆− σ)} be the service
function of the restricted processor. By analysis from [13], the
tardiness of a task τk is at most y + Ck, where

y =
Cm−1 + 2û · σ − ûCk
m− 1 + û− Um−1 . (6)

We show in contrast that the tardiness of a task τk is at most
x+Ck provided that the total utilization does not exceed m−
1 + û, where

x ≥ CU
+−1 + 2û · σ − ûCk

m− 1 + û− UU+−2 . (7)

We prove the tardiness bound in (7) by contradiction. To
this end, we assume that there exists a concrete instantiation
τ of non-concrete task system τN such that the following
conditions hold.

A1. The tardiness of a job τk,` exceeds x + Ck and the
tardiness of every job with deadline earlier than td =
dk,` is at most x+ Ck.

A2. No concrete instantiation of τN satisfying A1 releases
fewer jobs than τ .

A3. No concrete instantiation of τN satisfying A1 and A2
has a smaller sum of the execution costs of all released
jobs than τ .

By A2, τ consists of only jobs with deadlines at or before td.
Let S be the corresponding G-EDF schedule of τ .

Deriving an upper bound of LAG. We now derive an upper
bound of LAG(τ, td,S). Defs. 5–8 are adapted from [9, 13].

Def. 5. A time instant t is called busy if at least U+ tasks
have pending jobs at t, and non-busy otherwise. A time interval
[t1, t2) is called busy (non-busy) if each instant in the interval
is busy (non-busy).

Def. 6. An interval [t, t′) is a maximal non-busy interval if
[t, t′) is a non-busy, and there is no interval [t̃, t̃′) with either (i)
t̃ < t and t̃′ ≥ t′ or (ii) t̃ ≤ t and t̃′ > t′ that is a non-busy
interval (see Fig. 4)..

Def. 7. An interval [t1, t2) is called LAG-increasing if
LAG(τ, t−,S) < LAG(τ, t,S) holds for any t ∈ [t1, t2). An in-
terval [t1, t2) is called LAG-non-increasing if LAG(τ, t−,S) ≥
LAG(τ, t,S) holds for any t ∈ [t1, t2).

Def. 8. An interval [t, t′) is a maximal non-busy LAG-
increasing interval if [t, t′) is both a non-busy and a LAG-
increasing interval, and there is no interval [t̃, t̃′) with either (i)
t̃ < t and t̃′ ≥ t′ or (ii) t̃ ≤ t and t̃′ > t′ that is both non-busy
and LAG-increasing.

Def. 9. Let φ be the latest time instant such that at most U+−1
tasks release their first jobs by φ−.

Lemma 1, given next, was initially proved in [9] assuming
processors are fully available, and later extended in [13] to the
case when one or more processors can have limited supply.

Lemma 1. [9, 13] Let t be a time instant at or before td. Let
τi,j be the earliest pending job of task τi at t. If di,j < t, then
lag(τi, t,S) ≤ x · ui + Ci, otherwise lag(τi, t,S) ≤ Ci.

Lemmas 2, 3, and 4, given next, were initially proved in [9]
for sporadic tasks under G-EDF assuming processors are fully
available in the context of maximal non-busy LAG-increasing
intervals. Using similar techniques, we prove them for the case
of maximal non-busy intervals for periodic tasks scheduled by
G-EDF with processor supply in MP-form.

Lemma 2. Let [tn, tb) be a maximal non-busy interval such
that tn > φ and tb ≤ td Then, there exists a job τi,j such that
fi,j ≤ tn and di,j ≥ tb.

Proof. Assume for a contradiction that τi,j does not exist. We
first show that there exists a job τi,j such that fi,j < tb and
di,j ≥ tb. Since [tn, tb) is a maximal non-busy interval, there
exists a task τi having no pending job at t−b . Let τi,j be the
latest job of τi completed before t−b . Since τi has no pending
job at t−b , the release of the next job τi,j+1 must be at or after
tb. Hence, since τi is periodic, the deadline of τi,j is at or
after tb. Therefore, fi,j < tb and di,j ≥ tb holds.

Next, we show that τi,j completes execution at or before
tn. For a contradiction, assume that τi,j executes after tn in
S as illustrated in Fig. 4. Let δ be the amount of execution
of τi,j completed at or before tn, and let τ ′ be a concrete
instantiation of τN obtained by reducing the execution cost
of τi,j to δ. Let S ′ be a G-EDF schedule of τ ′ such that ties
are resolved identically in both S and S ′. Hence, τi,j does not
execute after tn in S ′. Clearly, S and S ′ are identical at or
before tn. Since there are at most U+− 1 tasks with pending
jobs in [tn, tb), no job of τ ′ is scheduled on the additional
available processor in S ′ due to τi,j not executing in [tn, tb).
Hence, the completion time of every job except τi,j is the
same in both S and S ′. Thus τ ′ is a concrete instantiation of
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Fig. 4: Scenario considered in the proof of Lemma 2.

τN satisfying A1 and A2 with less execution time for τi,j ,
contradicting A3.

Def. 10. A job fragment J of a job is a portion of the job that
executes continuously in S.

Def. 11. The removal of a job from τ can cause one or more
job fragments to shift earlier in S . Such shifts of job fragments
can be viewed as a set of one or more displacement chains
where a displacement chain consists of one or more equal-
length job fragments. We denote the uth displacement chain by
∆u = (Ju,1, Ju,2, · · · , Ju,nu

), and the time instant when Ju,v
starts execution in S by tu,v .

Lemma 3. Let [tn, tb) be a maximal non-busy interval such
that tn > φ and tb ≤ td Then, there exists a job τg,h such that
τg,h executes at t−b and dg,h ≥ tb.
Proof. Assume for a contradiction that

B. τg,h as described in the lemma statement does not exist.
By Lemma 2, there exists a job τi,j such that fi,j ≤ tn and
di,j ≥ tb. Since the tardiness of τi,j is 0, τi,j cannot be
τk,`. We now consider the concrete instantiation τ ′ of τN by
removing a job fragment of length ε from τi,j . Let S ′ be the
G-EDF schedule of τ ′ such that ties are resolved identically in
both S and S ′. We will show that no job fragment scheduled
at or after tb shifts left, which implies by A1 that the tardiness
of τk,` is more than x+Ck in S ′, contradicting A3. Assume to
the contrary that there is a job fragment scheduled at or after tb
that undergoes a left shift. Let ∆u be a displacement chain, as
illustrated in Fig. 5, caused by the removal of a job fragment
of τi,j , i.e., Ju,1 in the figure is a job fragment of τi,j . By the
definition of a displacement chain, for any two consecutive
job fragments Ju,v and Ju,v+1, we have tu,v < tu,v+1. Since
G-EDF prioritizes Ju,v over Ju,v+1 and the deadline of τi,j
is at or after tb, each job fragment of ∆u has a deadline at or
after tb.

Let Ju,v and Ju,v+1 be two job fragments of ∆u such
that Ju,v starts its execution before tb, and Ju,v+1 ends its
execution after tb in S. If tu,v+1 < tb, then there is a job τg,h
as described in the statement of the lemma, contradicting B.
Now consider the remaining possibility, i.e., tu,v+1 ≥ tb holds.
Since Ju,v+1 starts execution before tb in S ′ (after shifting),

tn tb

Unavailable processor supply

A job fragment of τi,j

Idle processors

Execution of jobs of τ

Maximal non-busy interval

Execution of τi,j

Displacement chain ∆u

Ju,v+1Ju,v

Ju,1

td

U+ − 1

available
processors

fully

Fig. 5: Scenario considered in the proof of Lemma 3.

the job containing Ju,v+1 is active at t−b in S (before shifting).
As [tn, tb) is a non-busy interval, there must be a job fragment
J ′ of the same task executing at t−b causing Ju,v+1 to not
execute at t−b in S. It follows that J ′ is in the displacement
chain ∆u, which implies that J ′ has a deadline at or after
tb, contradicting B. Hence, if B holds, then no job fragment
scheduled at or after tb in S undergoes a left shift in obtaining
S ′, which implies that the schedule after tb is the same in both
S and S ′. Thus, τ ′ is a concrete instantiation of τN satisfying
A1 and A2, but has smaller sum of the execution costs of all
released jobs, contradicting A3.

Def. 12. Let tc be the latest non-busy time instant at or before
td if there is any, otherwise let tc = 0.

Lemma 4. LAG(τ, tc,S) ≤ x · UU+−2 + CU
+−1.

Proof. If tc is in [0, φ], then LAG at tc is at most 0, because of
the work-conserving nature of G-EDF. We now consider the
remaining case where tc > φ. Since tc is a non-busy instant,
there must be a non-busy interval [t′c, tc) with t′c > φ. There
are at most U+−1 tasks with pending jobs at tc. By Lemma 3,
among the tasks with pending jobs at tc, at least one task has
only one pending job at tc having a deadline at or after tc.
Thus, by (3) and Lemma 1, the lemma follows.

The following lemma gives an upper bound on LAG at td
in terms of LAG at tc. Since [tc, td) is a busy interval, LAG
can only increase due to unavailability of the processor with
restricted supply. A more general version of Lemma 5 was
proved in [13] in the context of window-constrained schedulers
when more than one processor can have restricted supply. A
proof of Lemma 5 as stated for our context is provided in an
online appendix [1].

Lemma 5. [13] LAG(τ, td,S) ≤ LAG(τ, tc,S) + û · σ.

Lemma 6. LAG(τ, td,S) ≤ x · UU+−2 + CU
+−1 + û · σ.

Proof. Immediate from Lemmas 4 and 5.

Necessary condition for tardiness to exceed x+Ck. We now
give a necessary condition for the tardiness of τk,` to exceed
x+ Ck.
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Def. 13. Let W be the total allocation of τ after td in S.

Def. 14. Let R be the amount of unavailable processor time
over the interval [td, td+x+Ck) of the processor with restricted
supply.

The following lemma gives a lower bound of W+R for the
tardiness of τk,` to exceed x+Ck. A more general version of
Lemma 7 where more than one processor can have restricted
supply was proved in [13].

Lemma 7. [13] If the tardiness of τk,` exceeds x+ Ck, then

W +R > mx+ Ck. (8)

Deriving tardiness bound. We now derive a tardiness bound
using similar techniques from [13]. By the definition of
LAG, td, and W ,

W = LAG(τ, td,S). (9)

Let H(td, td+x+Ck) be the amount of time the processor with
restricted supply is available over the interval [td, td+x+Ck).
We now derive an upper bound of R.

R = {By Def. 14}
x+ Ck −H(td, td + x+ Ck)

≤ {By Def. 4}
x+ Ck − β(x+ Ck)

= {By (5)}
x+ Ck −max{0, û(x+ Ck − σ)}

≤ {Since û(x+ Ck − σ) ≤ max{0, û(x+ Ck − σ)}}
x+ Ck − û(x+ Ck − σ)

= {Rearranging}
(1− û)(x+ Ck) + û · σ (10)

Therefore, W +R can be upper bounded as follows.

W +R ≤ {By (9), (10), and Lemma 6}
xUU

+−2 + CU
+−1 + 2û · σ

+ (1− û)(x+ Ck)
(11)

Since the tardiness of τk,` exceeds x+ Ck, by (8) and (11),

xUU
+−2 + CU

+−1 + 2û · σ + (1− û)(x+ Ck) > mx+ Ck,

which implies

x <
CU

+−1 + 2û · σ − ûCk
m− 1 + û− UU+−2 (12)

However, (12) contradicts (7). Therefore, the tardiness of τk,`
is at most x + Ck where x is defined as (7). Thus, we have
the following theorem.

Theorem 1. The tardiness of any task τk under G-EDF in MP-
form is at most x+ Ck, where x is as defined in (7).

Note that, the denominator of (7) is always positive. Hence,
no additional utilization restriction is required for Theorem 1
to hold. In Sec. IV-B below, we will derive the supply function

for the periodic server of each cluster in SC-EDF.

B. Deriving Supply Function

We now consider the synchronous periodic servers τs =
{S1, S2, · · · , S`} to be scheduled by a Pfair scheduler as
described in Sec. III. Our goal is to derive the supply function
corresponding to the available processor time to an arbitrary
periodic server task Si. Let βi(∆) = max{0, ûi(∆− σi)} be
the service function corresponding to Si. To determine βi(∆),
we need to find appropriate values of ûi and σi. Let uSi be
the utilization of Si. By the definition of ûi, ûi = uSi . Next,
we determine σi.

Let P be a Pfair schedule of τs. For notational convenience,
we initially assume the Pfair scheduler uses a quantum size of
1.0 time unit, with integral server periods and execution costs.
Later, we will show how to reinterpret σi for an arbitrary
quantum size.

Lemma 8. [4] For any task Si and time instant t, −1 <
lag(Si, t,P) < 1.

Lemma 9. For any interval [t, t+ ∆),

A(Si, t, t+ ∆,P) > ∆ûi − 2. (13)

Proof. We first lower bound the difference between the lag of
Si at t and t+ ∆. This difference is minimized when the lag
of Si at t is minimum and the lag of Si at t+∆ is maximum.
Thus,

lag(Si, t,P)− lag(Si, t+ ∆,P) > {By Lemma 8}
−1− 1

= −2. (14)

By (4), we have

lag(Si, t+ ∆,P) = lag(Si, t,P) + A(Si, t, t+ ∆, I)

− A(Si, t, t+ ∆,P). (15)

Rearranging (15), we get

A(Si, t, t+ ∆,P) = A(Si, t, t+ ∆, I) + lag(Si, t,P)

− lag(Si, t+ ∆,P)

> {By the definition of I and (14)}
∆ûi − 2.

Lemma 10. For any ∆, βi(∆) = max{0, ûi(∆ − σi)} lower
bounds the actual allocation of Si in P where σi = 2

ûi
.

Proof. We prove this lemma by showing βi(∆) < A(Si, t, t+
∆,P) for any interval [t, t+ ∆). We consider two cases.

Case 1. ∆ ≤ σi. In this case, βi(∆) = 0. Since A(Si, t, t +
∆,P) is non-negative, the lemma holds.

Case 2. ∆ > σi. In this case,

βi(∆) = {By (5)}
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Fig. 6: The service function of the server task S2 in Ex. 5.

ûi(∆− σi)
= {By the choice of σi}

ûi(∆−
2

ûi
)

= {Rearranging}
∆ûi − 2. (16)

By Lemma 9 and (16), βi(∆) < A(Si, t, t+ ∆,P).

Corollary 1. If the quantum size is q and the server parameters
are integer multiples of q, then βi(∆) lower bounds the actual
allocation of Si in P for σi = 2

ûi
q.

Ex. 5. Consider the server task S2 of Ex. 2. The utilization of
S2 is 5

6 . Hence, û2 = 5
6 . Since the quantum size is 1.0 in the

schedule shown in Ex. 2, σ2 = 2
5/6 ·1 = 12

5 . Thus, the service
function corresponding to S2 is β2(∆) = max{0, 56 (∆− 12

5 )}.
Fig. 6 illustrates β2(∆) over the interval [3, 10). Since, σ2 is
12
5 , β2(∆) is 0 from time 3 to 3 + 12

5 = 27
5 . ♦

C. Tardiness bound under SC-EDF

We now derive a tardiness bound under SC-EDF using the
results from Secs. IV-A and IV-B.

Theorem 2. The tardiness of a task τk ∈ τ under SC-EDF is
at most x+ Ck, where

x =
Cp + 4q −min{ûi}Cmin

1 + min{ûi}
(17)

and q is the quantum size used in scheduling the server tasks.

Proof. Suppose τk is assigned to cluster Gi of size Ui where
Gi is allocated h fully available processors and a periodic
server of utilization ûi. Note that, if Ui = 1, then τk does not
miss a deadline. We thus consider Ui > 1. We have two cases.

Case 1. ûi = 0. In this case, Ui is integral and Gi is scheduled
on h = Ui fully available processors. By [9], tardiness of τk
is at most x′ + Ck where

x′ ≥ CU
+
i −1 − Ck

h− UU+
i −2

(18)

Let y denotes the right-hand side of (18). Then, we have

y =
CU

+
i −1 − Ck

h− UU+
i −2

≤ {Since h = Ui = U+
i and by Rule R}

Cp+1−1 − Ck
Ui − UUi−2

≤ {Since per-task utilizations are at most one,
Ui > 1, and by Def. 3}
Cp − Ck

Ui − (Ui − 2) · 1
≤ {Simplifying and by the definition of Cmin}

Cp − Cmin
2

. (19)

By (17), (18), and (19), the theorem holds.

Case 2. ûi > 0. In this case, Gi is scheduled on h + 1
processors where one processor is partially available. By
Theorem 1 interpretted in the context of Gi, the tardiness of
τk is at most x′ + Ck where

x′ ≥ CU
+
i −1 + 2ûi · σi − ûiCk

h+ 1− 1 + ûi − UU
+
i −2

. (20)

Let z denotes the right-hand side of (20). Then, we have

z =
CU

+
i −1 + 2ûi · σi − ûiCk
h+ ûi − UU

+
i −2

≤ {Since h = bUic ≥ U+
i − 1}

CU
+
i −1 + 2ûi · σi − ûiCk

U+
i − 1 + ûi − UU

+
i −2

≤ {Since per-task utilizations are at most one,
Ui > 1, and by Def. 3}

CU
+
i −1 + 2ûi · σi − ûiCk

U+
i − 1 + ûi −

(
U+
i − 2

)
· 1

= {Simplifying}
CU

+
i −1 + 2ûi · σi − ûiCk

1 + ûi
≤ {By rule R}

Cp+1−1 + 2ûi · σi − ûiCk
1 + ûi

= {By the definition of σi as in Corollary 1}
Cp + 2ûi · 2

ûi
q − ûiCk

1 + ûi
= {Simplifying}

Cp + 4q − ûiCk
1 + ûi

≤ {By the definition of min{ûi} and Cmin}
Cp + 4q −min{ûi}Cmin

1 + min{ûi}
. (21)

The theorem follows by (20) and (21).
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Corollary 2. If the quantum size is Cmin, then x as defined in
(17) is at most p · Cmax + (4−min{ûi})Cmin.

Proof. By (17),

x =
Cp + 4q −min{ûi}Cmin

1 + min{ûi}
≤ {By Def. 3, Cp ≤ p · Cmax}

p · Cmax + 4q −min{ûi}Cmin
1 + min{ûi}

≤ {Since min{ûi} ≥ 0}
p · Cmax + 4q −min{ûi}Cmin

= {By the choice of q}
p · Cmax + (4−min{ûi})Cmin. (22)

V. EXPERIMENTS

In this section, we present the results of experimental
evaluations we performed to compare SC-EDF with G-EDF.
We evaluated maximum observed tardiness, the analytical tar-
diness bound, and the number of preemptions under SC-EDF
compared to those under G-EDF for randomly generated
periodic task sets. To compare the tardiness bounds, we used
the closed-form G-EDF tardiness bound from [9]. We also
evaluated the effect of the quantum size on tardiness and the
number of preemptions in SC-EDF.

We generated task sets by a similar method of [7]. Task-
system utilizations were chosen to be medium, heavy, very
heavy, or wide, which correspond to per-task utilizations being
uniformly distributed in [0.1, 0.5], [0.5, 1], [0.8, 1], or [0.1, 1],
respectively. For each choice of task-system utilization, peri-
ods were chosen to be integers uniformly distributed between
[3, 33] ms, [10, 100] ms, or [50, 250] ms, which we refer to
using the terminology short, medium, and long, respectively.
The number of processors was chosen to be 32. Task sets
were generated for utilization caps within [24, 32] with a step
size of 0.5. For each combination of utilization distribution,
periods, number of processors, and utilization cap, 50 task
sets were generated by adding randomly generated tasks until
five consecutive attempts to add a next task would cause the
utilization cap to be exceeded. For each task set, p was set to
be 2 and the quantum size was chosen from Cmin to Cmax
with a step size of 1

4 (Cmax − Cmin). The observed tardiness
and the number of preemptions were measured by scheduling
each task set for 10,000 time units. Due to space constraints,
we present a small representative selection of our results—
other results can be found in an online appendix [1].
Obs. 1. The average observed maximum tardiness of
SC-EDF was larger than that of G-EDF for task sets with
high total utilizations.

This can be seen in Figs. 7 and 8. This is likely because each
cluster has some time intervals in SC-EDF when the number
of processors available to the cluster is less than the size of the
cluster. Utilizing the unallocated processors to execute pending

24 25 26 27 28 29 30 31 32
System utilization

0

5

10

15

20

25

30

Av
er

ag
e 

ta
rd

in
es

s (
m

s)

Uniform medium utilizations,  uniform short periods, 
p = 2, q = Cmin,  and m = 32

SC-EDF analytical tardiness
GEDF analytical tardiness
SC-EDF tardiness
GEDF tardiness
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Fig. 8: Average observed and analytical tardiness with respect to
system utilization for uniform very heavy utilizations, uniform short
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tasks of the clusters reduces observed tardiness for task sets
with relatively smaller total utilizations.

Obs. 2. For heavy and very heavy task sets with high total
utilizations and smaller quantum sizes, the average tardiness
bound of SC-EDF is smaller than that of G-EDF. The
converse is true for task sets with low total utilizations. For
medium task sets, the average tardiness bound of SC-EDF is
larger than that of G-EDF.

This can be observed in Figs. 7 and 8. For task sets with
smaller total utilizations, the denominator of the tardiness
bound under G-EDF in [9] is larger, which results in rela-
tively smaller tardiness bound under G-EDF. Moreover, the
tardiness bound under SC-EDF has an additional term due
to the restricted processor supply, which is also derived from
relatively pessimistic analysis.

Obs. 3. The average number of preemptions in SC-EDF is
typically smaller than that of G-EDF for task sets with high
total utilizations, and the converse is true for task sets with
low total utilizations.

This can be seen in Fig. 9. Only tasks within the same
cluster and the availability pattern of the periodic server can
cause preemptions in SC-EDF. For low total utilizations,
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additional preemptions occur due to utilizing the unallocated
processors to schedule pending tasks.
Obs. 4. The average observed tardiness under SC-EDF in-
creases with respect to the quantum size. The converse is true
for the average number of preemptions.

Increasing the quantum size causes the periodic server
to be unavailable for a longer period of time in SC-EDF,
resulting in increased tardiness as shown in Fig. 10. In contrast,
increasing the quantum size results in fewer preemptions of
the periodic servers in SC-EDF as shown in Fig. 11.

VI. CONCLUSION

In this paper, we have presented a semi-clustered scheduler
SC-EDF that has a tardiness bound of the form of c · Cmax.
It is the first scheduler known to have such a tardiness bound
without introducing frequent task preemptions. We have also
demonstrated the competitive performance of SC-EDF com-
pared to G-EDF, especially for task sets with high utilizations,
by an experimental evaluation.

This work opens up several directions for future work. For
example, it is not known whether any semi-partitioned or
global scheduler with job-level fixed priorities has a constant
tardiness bound; we plan to investigate this issue. We also plan
to devise other semi-clustered schedulers that have a constant
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Fig. 11: Average number of preemptions over a schedule with respect
to the quantum size for uniform heavy utilizations, uniform short
periods, p = 2, and m = 32.

tardiness bound but less preemption and migration overheads
than SC-EDF.
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