
On the Feasibility of Sporadic Tasks with Restricted Parallelism
on Heterogeneous Multiprocessors
Denver Massey, Shareef Ahmed, and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill

USA

{denmas22,shareef,anderson}@cs.unc.edu

ABSTRACT
Given a system of real-time tasks, a fundamental question is whether

it can be feasibly scheduled on a specific hardware platform. Prior

work has provided feasibility tests for the common sporadic task

model on different types of multiprocessors. These results, until

now, have not been extended to the more generalized restricted
parallelism sporadic, or rp-sporadic, task model. Under this model,

jobs of the same task may execute at the same time. Due to its in-

creased flexibility, this model may prove beneficial for applications

able to leverage such parallelism. This work presents feasibility

tests for rp-sporadic tasks with three common multiprocessor spec-

ifications: Identical with Affinity Masks, Uniform, and Unrelated,
extending prior analysis to this more generalized model and lay-

ing a foundation for its future use. These theoretical contributions

are accompanied by a large-scale experimental evaluation of 189

different system configurations.

CCS CONCEPTS
• Computer systems organization→ Real-time systems.

KEYWORDS
heterogeneous multiprocessors, concurrency, soft real-time

ACM Reference Format:
Denver Massey, Shareef Ahmed, and James H. Anderson. 2024. On the Fea-

sibility of Sporadic Tasks with Restricted Parallelism on Heterogeneous

Multiprocessors. In 32nd ACM International Conference on Real-Time Net-
works and Systems (RTNS ’24), November 6–8, 2024, Porto, Portugal. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3696355.3699709

ACKNOWLEDGMENTS
Work supported by NSF grants CPS 2038960, CPS 2038855, CNS

2151829, and CPS 2333120.

1 INTRODUCTION
Advances in the computational capabilities of hardware have en-

abled the deployment of ever more sophisticated software in safety-

critical real-time systems. Autonomous vehicles, for example, are

deploying algorithms capable of spotting human figures in cluttered

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

RTNS ’24, November 6–8, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1724-6/24/11

https://doi.org/10.1145/3696355.3699709

images or planning routes through quickly changing traffic [2, 8].

In ensuring system safety, it is paramount that the timeliness of

program execution can be mathematically guaranteed. Such guaran-

tees must be based on proofs that consider both the characteristics

of the software workload and the capabilities of the underlying

hardware platform.

Most real-time analysis pertains to workloads modeled as a col-

lection of recurring tasks, where successive invocations of the same

task are prevented from running in parallel with each other. In

this way, one could model a periodically invoked computer-vision

classifier for a self-driving car. In the standard workload model,

every instance of a task must wait for prior instances of that task

to complete before it is allowed to run. While this assumption is

appropriate for tasks that must necessarily be invoked sequentially,

it may be unnecessarily restrictive in other contexts. For example,

in the aforementioned computer-vision application, if each frame of

video can be processed independently, then there is no reason why

successive frames cannot be processed at the same time. Indeed,

such parallelism could greatly lessen processing latencies. Even if

some frame-to-frame dependencies exist, it still might be desirable

to allow some parallelism. For example, if the processing of one

video frame takes longer than normal, it might be beneficial to

process the next frame using older data from prior frames. Whether

this is reasonable would be an application design decision, and

specifications such as the OpenVX standard allow for a wide vari-

ety of dependencies to exist [2, 11]. These observations motivate

introducing intra-task parallelism.

With the development of powerful hardware accelerators, such

as graphics processing units (GPUs), platforms are also becoming

increasingly heterogeneous. It is of principle importance, therefore,

to employ mathematical tools that support this kind of heterogene-

ity. Current methods do not, however, account for both intra-task

parallelism and multiprocessor heterogeneity. As such, there is a

deficiency in the theoretical foundation necessary for implementing

parallelizable software stacks in real-time systems. This work reme-

dies this and begins developing a framework for future analysis of

these types of systems.

Related work. Prior work partially accounted for intra-task paral-

lelism by considering the npc-sporadic (no precedence constraints)
task model [9, 18]. Under this model, each instance of a task is

independent of the others, meaning it does not have to wait for

any preceding instances to complete. Later work then generalized

this notion to allow for varying degrees of parallelism using the rp-
sporadic (restricted parallelism) task model [2]. This generalization

will be discussed in detail in the remainder of this paper.

Additionally, feasibility conditions were originally presented for

the standard sporadic task model on Identical multiprocessors [14].

https://doi.org/10.1145/3696355.3699709
https://doi.org/10.1145/3696355.3699709

RTNS ’24, November 6–8, 2024, Porto, Portugal Massey et al.

Similar conditions were found for heterogeneous multiprocessor

types, such as Uniform multiprocessors [10], Identical multipro-

cessors with Affinity Masks [5, 17], and Unrelated multiprocessors

[4, 6]. It follows from results in [15] that the essence of feasibility

comes from determining whether or not a system is over-utilized;

however, it is not so straightforward to define “overutilization” on

these heterogeneous systems.

Contributions. This work extends known feasibility results to the

rp-sporadic model, enabling multiple jobs of the same task to run

in parallel. To accomplish this, we introduce a novel method to

analytically transform a set of tasks that allow intra-task parallelism

to a set of tasks that do not. Using the associated task sets derived

from this method, necessary and sufficient conditions for feasibility

are proven for several common multiprocessor models.

Furthermore, we conducted a large-scale experimental evalua-

tion of randomly generated systems to study how much hardware

capacity is forfeited when multiprocessors are modeled in an overly

simplistic manner. We paired these results with data showing how

intra-task parallelism was able to recover some of this lost capacity.

These experiments yielded over 500 graphs which emphasize both

the importance of accurately modeling systems and the benefits of

the increased flexibility offered by the rp-sporadic model.

Organization. The remainder of this paper provides notation and

background information (Sec. 2), discusses modeling intra-task par-

allelism (Sec. 3), introduces the transformation technique (Sec. 4),

presents generalized feasibility conditions (Sec. 5), presents the

experimental evaluation (Sec. 6), and concludes (Sec. 7). The ap-

pendices provide server abstractions for sporadic tasks (??) and
experimental results (??).1

2 BACKGROUND
In this section, we formally define the rp-sporadic task model

(restricted parallelism) [2] and provide necessary background on

feasibility. Table 1 summarizes this notation.

We consider a system of rp-sporadic tasks. Let 𝜏 = {𝜏1, 𝜏2, . . . , 𝜏𝑛}
be a set of 𝑛 tasks to be scheduled on a multiprocessor platform

𝜋 = {𝜋1, 𝜋2, . . . , 𝜋𝑚} with𝑚 processors. The speed of 𝜏𝑖 on 𝜋 𝑗 is

given by 𝑠𝑖, 𝑗 ≥ 0. Each task𝜏𝑖 releases a potentially infinite sequence

of jobs. An rp-sporadic task is represented as 𝜏𝑖 = (𝐶𝑖 ,𝑇𝑖 , 𝑝𝑖), where
𝐶𝑖 > 0 is 𝜏𝑖 ’s worst-case execution requirement (WCER)

2
relative

to an execution speed of 1.0, 𝑇𝑖 > 0 is 𝜏𝑖 ’s period, representing
the minimum separation between any two of its job releases, and

1 ≤ 𝑝𝑖 ≤ 𝑚 is 𝜏𝑖 ’s parallelism level, representing how many jobs of

𝜏𝑖 can execute in parallel, as will be discussed in Sec. 3. Tasks are

assumed to have implicit deadlines, meaning the deadline of each

task is 𝑇𝑖 time units after its release. Deadline misses are allowed

and, as will be shown, are unavoidable in certain circumstances.

When 𝑠𝑖, 𝑗 > 0, any job of 𝜏𝑖 that executes for its WCER and runs

uninterrupted on 𝜋 𝑗 completes in 𝐶𝑖/𝑠𝑖, 𝑗 time units. Otherwise,

𝑠𝑖, 𝑗 = 0, and 𝜏𝑖 cannot run on 𝜋 𝑗 . We assume that𝐶𝑖 and𝑇𝑖 are both

positive, rational numbers and that 𝑝𝑖 is an integer. The utilization
of 𝜏𝑖 is denoted 𝑢𝑖 = 𝐶𝑖/𝑇𝑖 . For a subset of tasks 𝜏 ′ ⊆ 𝜏 , we let

1
Appendix available online: https://jamesanderson.web.unc.edu/papers/rtns24-long.

pdf.

2
This quantity is usually called the worst-case execution time (WCET) in the literature;

however, this name is less appropriate when processors have different speeds [16].

Table 1: Summary of Notation.

Symbol Meaning

𝜏 Task system

𝜏𝑖 𝑖th task of 𝜏

𝜏𝑖, 𝑗 𝑗 th job of 𝜏𝑖
𝜏 ′ Subset of 𝜏

𝑛 Number of tasks

𝜋 Multiprocessor platform

𝜋 𝑗 𝑗 th processor of 𝜋

𝑚 Number of processors

𝑠𝑖, 𝑗 Speed of 𝜏𝑖 on 𝜋 𝑗
𝐶𝑖 WCER of 𝜏𝑖
𝐶𝑖, 𝑗 Execution cost of 𝜏𝑖, 𝑗
𝑇𝑖 Period of 𝜏𝑖
𝑝𝑖 Parallelism level of 𝜏𝑖
𝑟𝑖, 𝑗 Release time of 𝜏𝑖, 𝑗
𝑓𝑖, 𝑗 Completion (finish) time of 𝜏𝑖, 𝑗
𝑢𝑖 Utilization of 𝜏𝑖 ; 𝐶𝑖/𝑇𝑖
U𝜏 ′ Total utilization of 𝜏 ′;

∑
𝜏𝑖 ∈𝜏 ′ 𝑢𝑖

P𝜏 ′ Total of parallelism levels of 𝜏 ′;
∑
𝜏𝑖 ∈𝜏 ′ 𝑝𝑖

𝜏 Split task set

𝜏𝑘
𝑖

𝑘th split task of 𝜏𝑖

𝜏𝑘
𝑖,𝑗

𝑗 th job of 𝜏𝑘
𝑖

𝜏 ′ Subset of 𝜏

𝐻 Hyperperiod for a task set; lcm𝜏𝑖 ∈𝜏 {𝑇𝑖 }
LP-Feas(𝜏, 𝜋) Linear program feasibility test for 𝜏

LP-Feas(𝜏, 𝜋) Linear program feasibility test for 𝜏

𝑥𝑖, 𝑗 , 𝑥
𝑘
𝑖,𝑗
, and ℓ Variables for linear programs

𝛼𝑖 Affinity mask for 𝜏𝑖 ; 𝛼𝑖 ⊆ 𝜋

𝛼𝜏 ′ Aggregate affinity mask for 𝜏 ′;
⋃

𝜏𝑖 ∈𝜏 ′ 𝛼𝑖
𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) Subset of 𝜏 containing all split tasks of 𝜏 ′

U𝜏 ′ =
∑
𝜏𝑖 ∈𝜏 ′ 𝑢𝑖 denote the total utilization of 𝜏 ′. We similarly

define P𝜏 ′ =
∑
𝜏𝑖 ∈𝜏 ′ 𝑝𝑖 as the sum of all parallelism levels of tasks

in 𝜏 ′.
We denote the 𝑗 th job of task 𝜏𝑖 as 𝜏𝑖, 𝑗 . The release time and

completion (finish) time of job 𝜏𝑖, 𝑗 are denoted by 𝑟𝑖, 𝑗 and 𝑓𝑖, 𝑗 , re-

spectively. The execution requirement of 𝜏𝑖, 𝑗 is 𝐶𝑖, 𝑗 ≤ 𝐶𝑖 . The

response time of a job is the time between when it is released and

when it completes. The deadline of a job is given by 𝑟𝑖, 𝑗 +𝑇𝑖 .
At time 𝑡 , a job 𝜏𝑖, 𝑗 can be either unreleased, if 𝑡 < 𝑟𝑖, 𝑗 , pending, if

𝑟𝑖, 𝑗 ≤ 𝑡 < 𝑓𝑖, 𝑗 , or complete, if 𝑡 ≥ 𝑓𝑖, 𝑗 . A job is ready at time 𝑡 if it is

eligible for being scheduled at time 𝑡 . Note that a pending job may

or may not be ready, depending on the status of preceding jobs and

the task’s parallelism level. We give a more precise definition of

readiness in Sec. 3. Lastly, we assume that jobs of the same task are

scheduled in First-In-First-Out (FIFO) order based on their release

times, i.e., if multiple jobs of the same task are ready to be scheduled

at the same time, the one with the earliest release time is chosen.

Time is assumed to be continuous.

Other task models. An ordinary sporadic task system allows for no

intra-task parallelism, i.e., 𝑝𝑖 = 1 for all 𝜏𝑖 , and a job can begin exe-

cution only after the prior job from its task completes. In contrast,

an npc-sporadic task system allows unrestricted parallelism, i.e.,

https://jamesanderson.web.unc.edu/papers/rtns24-long.pdf
https://jamesanderson.web.unc.edu/papers/rtns24-long.pdf

On the Feasibility of Sporadic Tasks with Restricted Parallelism on Heterogeneous Multiprocessors RTNS ’24, November 6–8, 2024, Porto, Portugal

𝑝𝑖 =𝑚 for all 𝜏𝑖 , and a job can be scheduled concurrently with any

other job from its task, limited only by the number of processors.

These are both special cases of the rp-sporadic task model.

Feasibility. The feasibility of a task system is contingent upon the

timing constraints specified for the system. Hard real-time (HRT)

constraints require each job to complete before its deadline. Soft

real-time (SRT) constraints, in our context, require that some finite

bound exists for the response times of the system.We say that (𝜏, 𝜋)
is HRT-feasible (resp., SRT-feasible) if, for any valid release pattern

of jobs of 𝜏 , there exists a schedule for the jobs of 𝜏 on 𝜋 where

each job meets its HRT (resp., SRT) timing constraints. Otherwise,

(𝜏, 𝜋) is infeasible. We assume that there are zero overheads for

preemptions or migrations in the system; however, such factors

can be accounted for by inflating job costs [7].

Multiprocessor models. We consider the following multiprocessor

platform models: Identical, Identical with Affinity Masks, Uniform,

andUnrelated. TheUnrelatedmultiprocessor model generalizes the

other three models and allows each 𝑠𝑖, 𝑗 to be different. If 𝑠𝑖, 𝑗 = 1 for

all 𝜏𝑖 ∈ 𝜏 and 𝜋 𝑗 ∈ 𝜋 , we say 𝜋 is an Identical multiprocessor, i.e., all

processors run at the same speed, normalized to one. If speeds can

be either zero or one, we say 𝜋 is Identical with AffinityMasks, where
𝜏𝑖 has affinity for 𝜋 𝑗 if 𝑠𝑖, 𝑗 ≠ 0. If, for each 𝜋 𝑗 ∈ 𝜋 there exists 𝑠 𝑗 so

that ∀𝜏𝑖 , 𝑠𝑖, 𝑗 = 𝑠 𝑗 , we say 𝜋 is a Uniform multiprocessor, i.e., speeds

may vary between different processors, but any given processor

will run all jobs at the same speed. The feasibility condition for

Identical has already been established and is included below.

Theorem 2.1 (from [2]). The system (𝜏, 𝜋), where 𝜋 is an Identical
multiprocessor, is feasible if and only if for all 𝜏𝑖 ,𝑢𝑖 ≤ 𝑝𝑖 andU𝜏 ≤ 𝑚.

3 INTRA-TASK PARALLELISM
In this section, we discuss how intra-task parallelism affects the

scheduling of real-time tasks.

Intra-task parallelism vs. job-level dependencies. For 𝜏𝑖 , 𝑝𝑖 specifies
the maximum number of jobs that can be scheduled concurrently at

any time and is therefore used when determining if jobs are ready

to be scheduled. For example, consider some 𝜏𝑖 with 𝑝𝑖 = 3. Job 𝜏𝑖,10
will be prevented from executing despite being pending until at

least seven prior jobs of 𝜏𝑖 complete execution. There are different

ways of enforcing this in a system, and prior work did not consider

the conflicting ways of interpreting this value. We will discuss two

such interpretations, which we refer to as (A) and (B).

Definition 3.1. (A): 𝜏𝑖, 𝑗 is ready at time 𝑡 if 𝜏𝑖, 𝑗 is pending at time

𝑡 and if 𝑗 ≤ 𝑝𝑖 or job 𝜏𝑖, 𝑗−𝑝𝑖 is complete at time 𝑡 . ⊳

Definition 3.2. (B): 𝜏𝑖, 𝑗 is ready at time 𝑡 if 𝜏𝑖, 𝑗 is pending at time

𝑡 and if

��{𝜏𝑖,𝑘 : 1 ≤ 𝑘 ≤ 𝑗 :: 𝜏𝑖,𝑘 is pending at time 𝑡}
�� ≤ 𝑝𝑖 . ⊳

When 𝑝𝑖 = 1, these definitions collapse into the ready condition

for the ordinary sporadic task model (𝜏𝑖, 𝑗 is ready at time 𝑡 if 𝜏𝑖, 𝑗 is

pending at time 𝑡 and 𝑗 = 1 or 𝜏𝑖, 𝑗−1 is complete at time 𝑡).

Interpretation (A) establishes explicit dependencies between jobs
of a task. This is motivated by frameworks such as OpenVX that

specify data dependencies between instances of a computer-vision

task [2, 11]. Such strict dependencies might be too restrictive for

certain applications. Interpretation (B) allows for more flexibility.

Time0 1 2 3 4

𝜏1,1

𝜏2,1

𝜏3,1

𝜏3,2

𝜏3,3

𝜋2

𝜋1

Job Completion Execution

(a) A schedule possible with either interpretation (A) or (B).

Time0 1 2 3 4

𝜏1,1

𝜏2,1

𝜏3,1

𝜏3,2 𝜏3,3𝜋2

𝜋1

(b) A schedule possible with interpretation (B) but not (A).

Figure 1: Example 3.3 demonstrates conflicting decisions
made when scheduling under interpretations (A) and (B).

If 𝜏𝑖, 𝑗−𝑝𝑖 has not yet completed, there might be another job that

has provided data which 𝜏𝑖, 𝑗 can use. Consider again the job 𝜏𝑖,10
with 𝑝𝑖 = 3. According to interpretation (A), this job must wait for

the completion of 𝜏𝑖,7. Alternatively, under interpretation (B), 𝜏𝑖,10
is ready to execute once any seven prior jobs have completed.

Moreover, if a task has a parallelism level of 𝑝𝑖 = 𝑚, then we

would like it to function as an npc-sporadic task. Interpretation (B)
allows this. However, under interpretation (A), it is possible to have
𝑚 jobs pending with fewer than𝑚 jobs ready at a time 𝑡 .

Example 3.3. Consider the task set 𝜏 = {𝜏1 = (1, 20, 1), 𝜏2 =

(1, 20, 1), 𝜏3 = (1.75, 1, 2)}. Let 𝜏1 and 𝜏2 each release a job at time 0

with execution requirements equal to one unit. Suppose 𝜏3 releases

three jobs at times 𝑟3,1 = 0, 𝑟3,2 = 1, 𝑟3,3 = 2 with execution require-

ments 𝐶3,1 = 1.75, 𝐶3,2 = 0.5, 𝐶3,3 = 1.75. When scheduling these

jobs on an Identical multiprocessor with𝑚 = 2, interpretations (A)
and (B) cause different schedules, as illustrated in Figure 1.

Specifically, at time 𝑡 = 2, 𝜏3,3 is ready under (B) but not under
(A). This allows 𝜏3,3 to complete 0.75 time units sooner in the second

schedule, as seen in Figure 1(b). Note that similar schedules exist

that allow some jobs to finish sooner under (A) than under (B). ⊳

Example 3.3 also illustrates two important aspects of rp-sporadic

tasks. First, the rp-sporadic model supports tasks with utilizations

greater than the speed of any processor. Second, in order to make

use of parallelism, deadline misses must be allowed for implicit-

deadline tasks. Otherwise, no task will ever have more than one

ready job at a time. The remainder of this paper uses the terms

feasibility and SRT-feasibility interchangeably.

Even though interpretations (A) and (B) can prompt different

scheduling decisions, the following lemma shows that they are

equivalent (in a feasibility sense) when every job runs for its task’s

WCER, assuming Identical multiprocessors.

Lemma 3.4. If every job of 𝜏 executes for its WCER, then (𝜏, 𝜋) is
feasible under (A) if and only if (𝜏, 𝜋) is feasible under (B), when 𝜋

is an Identical multiprocessor.

RTNS ’24, November 6–8, 2024, Porto, Portugal Massey et al.

Proof. 𝐴 ⇒ 𝐵. Let 𝑆 be a feasible schedule of (𝜏, 𝜋) where (A) is
used to determine each job’s readiness and all jobs execute for their

WCERs. We will show that 𝑆 is also a feasible schedule of (𝜏, 𝜋)
under (B). We will show that at all time instants 𝑡 , any scheduled

job 𝜏𝑖, 𝑗 in 𝑆 must also be ready under interpretation (B). Let 𝜏𝑖, 𝑗 be
scheduled (hence, ready) in 𝑆 at time 𝑡 . We have two cases.

Case AB.1. 𝑗 ≤ 𝑝𝑖 . 𝜏𝑖, 𝑗 is one of the first 𝑝𝑖 jobs released by 𝜏𝑖 .

Therefore, the set {𝜏𝑖,𝑘 : 1 ≤ 𝑘 ≤ 𝑗 :: 𝜏𝑖,𝑘 is pending at time 𝑡}
consists of at most 𝑝𝑖 jobs. Thus, 𝜏𝑖, 𝑗 is ready under (B).

Case AB.2. 𝑗 > 𝑝𝑖 . 𝜏𝑖, 𝑗 is ready under (A), so 𝜏𝑖, 𝑗−𝑝𝑖 is complete

at time 𝑡 in 𝑆 . In this case, every job of 𝜏𝑖 released prior to 𝜏𝑖, 𝑗−𝑝𝑖
must also be complete at time 𝑡 in 𝑆 . Otherwise, 𝜏𝑖, 𝑗−𝑝𝑖 must have

begun execution earlier than one of those jobs, as all jobs must

execute for their WCERs, and all jobs take the same amount of time

to execute on an Identical multiprocessor. This would violate the

FIFO scheduling requirement of jobs of the same task. Thus, there

are at most 𝑗 − (𝑗 − 𝑝𝑖) = 𝑝𝑖 jobs in the set {𝜏𝑖,𝑘 : 1 ≤ 𝑘 ≤ 𝑗 ::

𝜏𝑖,𝑘 is pending at time 𝑡}, and 𝜏𝑖, 𝑗 is ready under (B).

B ⇒ A. Let 𝑆 be a feasible schedule for the system (𝜏, 𝜋) when (B)
is used to determine each job’s readiness and all jobs execute for

their WCERs. We will show that 𝑆 is also a feasible schedule under

(A). Let 𝜏𝑖, 𝑗 be scheduled (hence, ready) in 𝑆 at time 𝑡 . We now show

that 𝜏𝑖, 𝑗 is ready under (A). We have two cases.

Case BA.1. 𝑗 ≤ 𝑝𝑖 . 𝜏𝑖, 𝑗 is ready under (A).

Case BA.2. 𝑗 > 𝑝𝑖 . We will show that 𝜏𝑖, 𝑗−𝑝𝑖 completes execution by

time 𝑡 . Assume otherwise. Then, the jobs 𝜏𝑖, 𝑗−𝑝𝑖 , 𝜏𝑖, 𝑗−𝑝𝑖+1, . . . , 𝜏𝑖, 𝑗
must all be pending in 𝑆 at time 𝑡 , as all jobs of 𝜏𝑖 execute for

their WCER in FIFO order on an Identical multiprocessor. This is

a contradiction, as |{𝜏𝑖,𝑘 : 1 ≤ 𝑘 ≤ 𝑗 :: 𝜏𝑖,𝑘 is pending at time 𝑡}| ≤
𝑝𝑖 . Consequently, 𝜏𝑖, 𝑗 is ready under (A). □

The following lemma strengthens Lemma 3.4 by removing the

assumption that every job executes for its WCER.

Lemma 3.5. (𝜏, 𝜋) is feasible under (A) if and only if (𝜏, 𝜋) is
feasible under (B), when 𝜋 is an Identical multiprocessor.

Proof. Suppose (𝜏, 𝜋) is feasible under (A). For any release pat-

tern of jobs, there exists a feasible schedule under (A) where each
job executes for its WCER. By Lemma 3.4, this is also a feasible

schedule under (B) when each job executes for its WCER. For any

job that executes for less than its WCER, idleness can be inserted

into this schedule in place of the missing execution without af-

fecting feasibility. Therefore, (𝜏, 𝜋) is also feasible under (B). By a

similar argument, the converse follows. □

Thus, interpretations (A) and (B) are equivalent in a feasibility

sense, as long as tasks are running on an Identical multiprocessor.

We defer further investigation on the impact of these interpretations

on more general multiprocessor models as a future work due to

space constraints. In the remainder of the paper, we will consider

job readiness only according to interpretation (A).

4 SPLITTING TASKS
In this section, we introduce an analytical technique for transform-

ing a system of rp-sporadic tasks into a system of ordinary sporadic

Time

𝜏1
1,1

𝜏2
1,1

𝜏3
1,1

0 1 2 3 4

𝜏3
1

𝜏2
1

𝜏1
1

𝑇1 · 𝑝1

Job Release Job Completion

(a) Jobs released as early as possible without (RR).

Time

𝜏1
1,1

𝜏2
1,1

𝜏3
1,1

0 1 2 3 4

𝜏3
1

𝜏2
1

𝜏1
1

𝑇1 · 𝑝1

(b) Jobs released as early as possible with (RR).

Figure 2: Possible scenario from Example 4.2 executing at its
WCER on three Identical processors with and without (RR).
The jobs in (b) do obey (RR), so the first jobs of 𝜏2

1
and 𝜏3

1
have

their releases postponed by 𝑇𝑖 and 2𝑇𝑖 , respectively.

tasks. This is motivated by the precedence constraints imposed by

(A) and will allow us to leverage existing results for sporadic tasks.

We begin by defining the notion of a split task.

Definition 4.1. Given an rp-sporadic task set 𝜏 , we define the set

of split tasks 𝜏 for 𝜏 : For each 𝜏𝑖 ∈ 𝜏 and each 1 ≤ 𝑘 ≤ 𝑝𝑖 , include

the split task 𝜏𝑘
𝑖
= (𝐶𝑖 ,𝑇𝑖 · 𝑝𝑖 , 1). Additionally, the tasks of 𝜏 must

obey the release offsets specified by (RR), given below. ⊳

We denote the 𝑗 th job of task 𝜏𝑘
𝑖
as 𝜏𝑘

𝑖,𝑗
. Let 𝑟𝑘

𝑖,𝑗
denote the release

time of 𝜏𝑘
𝑖,𝑗
. The round-robin property, denoted (RR), is as follows:

For all 1 ≤ 𝑖 ≤ 𝑛 and 𝑗 ≥ 1,

𝑟1𝑖,1 ≥ 0

𝑟1𝑖, 𝑗 ≥ 𝑟
𝑝𝑖
𝑖, 𝑗−1 +𝑇𝑖 , for 1 < 𝑗

𝑟𝑘𝑖,𝑗 ≥ 𝑟𝑘−1𝑖, 𝑗 +𝑇𝑖 , for 1 < 𝑘 ≤ 𝑝𝑖 and 1 ≤ 𝑗 .

 (RR)

This property requires each split task to wait at least 𝑇𝑖 time

units after its preceding split task releases a job to release its own

and allows us to associate any schedule for 𝜏 with a corresponding

schedule for 𝜏 . Without (RR), 𝜏 can release up to P𝜏 jobs at once,

while 𝜏 can release at most 𝑛 jobs at once (see Figure 2). Therefore,

these release offsets force job releases in a round-robin fashion.

On the Feasibility of Sporadic Tasks with Restricted Parallelism on Heterogeneous Multiprocessors RTNS ’24, November 6–8, 2024, Porto, Portugal

Example 4.2. Consider a task 𝜏1 = (2, 1, 3). By Def. 4.1, there are

three split tasks corresponding to 𝜏1. Each split task has parameters

(2, 3, 1). Figure 2 shows potential job releases of these split tasks

as ordinary sporadic tasks. In Figure 2(a), job releases do not obey

(RR), but in Figure 2(b), they do. Note that 𝜏1 could never have the

job releases shown in Figure 2(a). ⊳

As will be shown in Lemma 4.4, the release offsets from (RR)
allow for a straightforward association between schedules of 𝜏

and its related set of split tasks 𝜏 . Example 4.3 provides a concrete

system that will aid in the presentation of the proof of Lemma 4.4.

Example 4.3. Consider 𝜏 = {𝜏1 = (3, 2, 3), 𝜏2 = (2, 6, 2), 𝜏3 =

(1, 7, 1)}. The set 𝜏 is given by 𝜏 = {𝜏1
1
, 𝜏2
1
, 𝜏3
1
, 𝜏1
2
, 𝜏2
2
, 𝜏1
3
}, where

𝜏1
1
, 𝜏2
1
, and 𝜏3

1
= (3, 6, 1), 𝜏1

2
and 𝜏2

2
= (2, 12, 1), and 𝜏1

3
= (1, 7, 1).

Suppose these tasks release jobs as soon as possible and each

job executes for its WCER. Figure 3(a) illustrates the global earliest-

deadline-first (GEDF) schedule of 𝜏 on two Identical processors.
Since 𝑚 = 2, any scheduled job must have the first or second

earliest deadline of all currently ready jobs. At time 8, job 𝜏2,2, with

a deadline of 12, is preempted when 𝜏1,5 releases with a deadline

of 10. Intra-task parallelism is exhibited by jobs of 𝜏1. Figure 3(b)

depicts a schedule for the jobs of 𝜏 with deadlines set to 𝑟𝑘
𝑖,𝑗

+𝑇𝑖 . ⊳

Lemma 4.4. (𝜏, 𝜋) is feasible if and only if (𝜏, 𝜋) is feasible.

Proof. We show this by associating jobs of 𝜏 with jobs of 𝜏 .

(⇒) Suppose (𝜏, 𝜋) is feasible under interpretation (A). Given
a release pattern of jobs of 𝜏 , we relabel the 𝑗 th job of 𝜏𝑘

𝑖
as job

(𝑗 − 1)𝑝𝑖 + 𝑘 of 𝜏𝑖 . For example, in Figure 3, the 2
nd

job of 𝜏1
1

corresponds to job 4 of 𝜏1. The minimum separation time between

consecutive job releases of 𝜏𝑖 is at least𝑇𝑖 , as no two newly relabeled

jobs will have release times within𝑇𝑖 time units of each other due to

(RR). Therefore, these job releases for 𝜏 can be converted to valid job
releases for 𝜏 . Moreover, if this job of 𝜏𝑖 is ready under interpretation

(A), then the previous job of 𝜏𝑘
𝑖
is necessarily complete, and no job

of 𝜏 gets scheduled when it is not ready. Therefore, a schedule for

𝜏 can be used as a schedule for 𝜏 .

(⇐) Suppose (𝜏, 𝜋) is schedulable. Given a release pattern of jobs
of 𝜏 , we can relabel the 𝑗 th job of 𝜏𝑖 as job ⌈ 𝑗/𝑝𝑖 ⌉ of 𝜏 (𝑗−1 mod 𝑝𝑖)+1

𝑖
.

For example, in Figure 3, the 5
th
job of 𝜏1 corresponds to job 2 of 𝜏

2

1
.

These jobs satisfy (RR) because no two jobs of 𝜏𝑖 are ever released

within 𝑇𝑖 time units of each other. Therefore, these job releases for

𝜏 can be converted to valid job releases for 𝜏 . Moreover, a split job

will only be ready when the previous job from its split task has

been completed. This corresponds to job 𝜏𝑖, 𝑗−𝑝𝑖 , as ⌈(𝑗 − 𝑝𝑖)/𝑝𝑖 ⌉ =
⌈ 𝑗/𝑝𝑖 ⌉ −1 and 𝑗 −1−𝑝𝑖 ≡ 𝑗 −1 mod 𝑝𝑖 , so no job of 𝜏 is scheduled

when it is not ready. Therefore, a schedule for 𝜏 can be used as a

schedule for 𝜏 .

It follows that any pattern of job releases of 𝜏 corresponds to a

pattern of job releases of 𝜏 , and vice versa, meaning that a feasible

schedule for one is a feasible schedule for the other. □

Properties of 𝜏 . Note that 𝜏 contains 𝑝𝑖 split tasks for each 𝜏𝑖 in 𝜏 ,

and each 𝜏𝑘
𝑖
has utilization 𝑢𝑖/𝑝𝑖 . Therefore,

|𝜏 | = P𝜏 andU𝜏 = U𝜏 . (1)

Similarly, if 𝜏 ′ ⊆ 𝜏 contains all split tasks of all tasks in 𝜏 ′ ⊆ 𝜏 , then

|𝜏 ′ | = P𝜏 ′ andU𝜏 ′ = U𝜏 ′ . (2)

5 FEASIBILITY RESULTS
This section utilizes the results proven thus far to establish fea-

sibility conditions for the rp-sporadic task model under different

heterogeneous multiprocessor platform specifications.

5.1 Unrelated
By Lemma 4.4, the feasibility condition for an rp-sporadic task set

𝜏 can be derived from that for a corresponding sporadic task set 𝜏 .

This condition is presented in [4] and stated below.

Definition 5.1 (from [4]). Given a system (𝜏, 𝜋), we define the
following linear program:

minimize ℓ

subject to: ∀𝜏𝑘𝑖 ,
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑘𝑖,𝑗 · 𝑠𝑖, 𝑗 = 𝑢𝑖/𝑝𝑖 (3)

∀𝜏𝑘𝑖 ,
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑘𝑖,𝑗 ≤ ℓ (4)

∀𝜋 𝑗 ,
∑︁
𝜏𝑘
𝑖
∈𝜏

𝑥𝑘𝑖,𝑗 ≤ ℓ, (5)

with 𝑥𝑘
𝑖,𝑗

≥ 0 and ℓ ≥ 0. We call this linear program LP-Feas(𝜏, 𝜋). ⊳

Recall that the task 𝜏𝑘
𝑖
has a utilization of 𝑢𝑖/𝑝𝑖 , so this value is

substituted in for the utilizations in [4]. Each value 𝑥𝑘
𝑖,𝑗

corresponds

to the fraction of time 𝜏𝑘
𝑖
spends on 𝜋 𝑗 in an ideal schedule, and

the value ℓ represents the makespan, which the objective function

aims to minimize [4, 6]. Next, we restate two important lemmas

from [4] and argue that they apply to split task sets that obey (RR).

Lemma 5.2 (Lemma 2 from [4]). If LP-Feas(𝜏, 𝜋) has a solution
with 0 ≤ ℓ ≤ 1, then the system (𝜏, 𝜋) is feasible.

Proof. Lemma 2 from [4] and the schedule construction of [6]

use a solution to LP-Feas(𝜏, 𝜋) to create a schedule for the periodic

job release pattern of 𝜏 by assigning 𝜏𝑘
𝑖
to 𝜋 𝑗 for 𝑥

𝑘
𝑖,𝑗

time units

during [0, ℓ). The specifics of this construction are outside the scope
of this paper, and the reader is referred to [4, 6] for complete details.

This schedule can be adapted to achieve bounded response times

for the sporadic case using a server abstraction [1]. The details of

this can be found in ?? due to space constraints.
3 □

Lemma 5.3 (Lemma 1 from [4]). If (𝜏, 𝜋) is feasible, then LP-
Feas(𝜏, 𝜋) has a solution with 0 ≤ ℓ ≤ 1.

Proof. We present an addendum to the proof from [4], which

uses the synchronous periodic job release pattern to solve LP-
Feas(𝜏, 𝜋). By (RR), such a release pattern may be impossible for 𝜏 .

Nevertheless, this lemma still holds.

Since we assume that (𝜏, 𝜋) is feasible, we can choose a specific

job release pattern that suffices for our proof. Suppose the tasks

of 𝜏 release jobs as soon as possible and each job executes for its

WCER. By the assumption of this lemma, (𝜏, 𝜋) is feasible, so there

3
Appendix available online at https://jamesanderson.web.unc.edu/papers/rtns24-long.

pdf

https://jamesanderson.web.unc.edu/papers/rtns24-long.pdf
https://jamesanderson.web.unc.edu/papers/rtns24-long.pdf

RTNS ’24, November 6–8, 2024, Porto, Portugal Massey et al.

Time0 1 2 3 4 5 6 7 8 9 10

𝜏1,1 𝜏3,1 𝜏1,3 𝜏2,2 𝜏1,5

𝜏2,1 𝜏1,2 𝜏1,4 𝜏2,2 𝜏1,6𝜋2

𝜋1

Job Completion Execution

(a) GEDF schedule for rp-sporadic task set 𝜏 .

Time0 1 2 3 4 5 6 7 8 9 10

𝜏1
1,1

𝜏1
3,1

𝜏3
1,1

𝜏2
2,1

𝜏2
1,2

𝜏1
2,1

𝜏2
1,1

𝜏1
1,2

𝜏2
2,1

𝜏3
1,2

𝜋2

𝜋1

(b) GEDF schedule for normal sporadic task set 𝜏 with deadlines set to 𝑟𝑘
𝑖,𝑗

+𝑇𝑖 .

Figure 3: GEDF schedules for 𝜏 (top) and 𝜏 (bottom) from Example 4.3. These jobs are scheduled on Identical processors 𝜋1 and
𝜋2. Note that there is a one-to-one mapping between the jobs of these two schedules, as discussed in Lemma 4.4.

exists a schedule 𝑆 for these jobs such that the response time of

every job is bounded by some value 𝑅, i.e., each 𝜏𝑘
𝑖,𝑗

finishes by

time 𝑟𝑘
𝑖,𝑗

+ 𝑅. Using this fact, we will derive values for the variables

of LP-Feas(𝜏, 𝜋). Each 𝑥𝑘
𝑖,𝑗

will end up being the fraction of time 𝜏𝑘
𝑖

spends on 𝜋 𝑗 over the course of the schedule, and we will refer to

it as the long-run execution rate of 𝜏𝑘
𝑖
on 𝜋 𝑗 .

Let𝐻 be the hyperperiod of the tasks of 𝜏 , i.e.,𝐻 = 𝑙𝑐𝑚1≤𝑖≤𝑛{𝑇𝑖 ·
𝑝𝑖 }, where 𝑙𝑐𝑚 denotes the least common multiple. We compute the

long-run execution rate of each task on each processor by analyzing

schedule 𝑆 in every hyperperiod. When releasing jobs as early as

possible, 𝜏𝑘
𝑖
releases exactly𝐻/(𝑇𝑖 ·𝑝𝑖) jobs within [0, 𝐻). Note that

(RR) forces the release times of the first jobs of 𝜏1
𝑖
and 𝜏

𝑝𝑖
𝑖

to differ

by 𝑇𝑖 (𝑝𝑖 − 1). Therefore, with 𝑞 ∈ N, each split task 𝜏𝑘
𝑖
releases

exactly one job in any interval [𝑞 ·𝑇𝑖 · 𝑝𝑖 , (𝑞 + 1) ·𝑇𝑖 · 𝑝𝑖). There are
𝐻/(𝑇𝑖 · 𝑝𝑖) such intervals in [0, 𝐻).

When (RR) is enforced, the last job of 𝜏𝑘
𝑖
to be released in [0, 𝐻)

releases at time𝐻−𝑇𝑖 and can therefore complete as late as𝐻−𝑇𝑖+𝑅.
This fact also holds for any multiple of the hyperperiod, motivating

the following definition: For times 𝑡 = 𝑞𝐻 − 𝑇𝑖 + 𝑅, 𝑞 ∈ N, let
𝑝𝑘
𝑖,𝑗
(𝑡) denote the fraction (or proportion) of the total time over

[0, 𝑡) during which 𝜋 𝑗 executes jobs of 𝜏
𝑘
𝑖
that are released before

time 𝑞𝐻 . Thus, multiplying 𝑝𝑘
𝑖,𝑗
(𝑞𝐻 −𝑇𝑖 + 𝑅) by (𝑞𝐻 −𝑇𝑖 + 𝑅) · 𝑠𝑖, 𝑗

yields the total completed execution of 𝜏𝑘
𝑖
’s jobs that are released

before time 𝑞𝐻 on processor 𝜋 𝑗 during [0, 𝑞𝐻 −𝑇𝑖 + 𝑅). Since there
are exactly 𝑞𝐻/(𝑇𝑖 ·𝑝𝑖) jobs of 𝜏𝑘𝑖 released during [0, 𝑞𝐻), each with
an execution requirement of 𝐶𝑖 , we have

∑︁
𝜋 𝑗 ∈𝜋

𝑝𝑘𝑖,𝑗 (𝑞𝐻 −𝑇𝑖 + 𝑅) · (𝑞𝐻 −𝑇𝑖 + 𝑅) · 𝑠𝑖, 𝑗 = 𝐶𝑖 ·
𝑞𝐻

𝑇𝑖 · 𝑝𝑖
. (6)

Dividing each side of (6) by (𝑞𝐻 −𝑇𝑖 + 𝑅) gives∑︁
𝜋 𝑗 ∈𝜋

𝑝𝑘𝑖,𝑗 (𝑞𝐻−𝑇𝑖 + 𝑅) · 𝑠𝑖, 𝑗 = 𝐶𝑖 ·
𝑞𝐻

(𝑞𝐻 −𝑇𝑖 + 𝑅) ·𝑇𝑖 · 𝑝𝑖
. (7)

Taking the limit on both sides of (7), we determine the long-run

execution rate of 𝜏𝑘
𝑖
over all processors in 𝜋 :

lim

𝑞→∞

∑︁
𝜋 𝑗 ∈𝜋

𝑝𝑘𝑖,𝑗 (𝑞𝐻 −𝑇𝑖 + 𝑅) · 𝑠𝑖, 𝑗

= lim

𝑞→∞
𝐶𝑖 ·

𝑞𝐻

(𝑞𝐻 −𝑇𝑖 + 𝑅) ·𝑇𝑖 · 𝑝𝑖

=𝐶𝑖 ·
𝐻

𝐻 ·𝑇𝑖 · 𝑝𝑖
=𝑢𝑖/𝑝𝑖 . (8)

We now show that all constraints in LP-Feas(𝜏, 𝜋) are satisfied
for a value of 0 ≤ ℓ ≤ 1 when 𝑥𝑘

𝑖,𝑗
= lim𝑞→∞ 𝑝𝑘

𝑖,𝑗
(𝑞𝐻 −𝑇𝑖 + 𝑅) for

all 𝑖 , 𝑘 , and 𝑗 . Constraint (3) follows from (8). Constraint (4) follows

from the fact that each task can run on at most one processor at any

given time instant, so the sum of these 𝑥 values is at most one for a

given task. Finally, constraint (5) holds as each processor cannot

execute for more than 𝑡 time units in the interval [0, 𝑡) for any 𝑡 ,

so the sum of these proportions adds up to at most one for each

processor. Thus, if 𝜏 is feasible, then there exists an assignment of

variables of LP-Feas(𝜏, 𝜋) so that 0 ≤ ℓ ≤ 1 holds. □

The next theorem follows from Lemmas 5.2 and 5.3.

Theorem 5.4. A system (𝜏, 𝜋) is feasible if and only if
LP-Feas(𝜏, 𝜋) has a solution with 0 ≤ ℓ ≤ 1.

Theorem 5.4 gives a feasibility condition for sporadic split task

set 𝜏 . Using Lemma 4.4 and Theorem 5.4, we now give a feasibility

condition for the rp-sporadic task set 𝜏 .

On the Feasibility of Sporadic Tasks with Restricted Parallelism on Heterogeneous Multiprocessors RTNS ’24, November 6–8, 2024, Porto, Portugal

Theorem 5.5. The system (𝜏, 𝜋) is feasible if and only if the fol-
lowing linear program has a solution with 0 ≤ ℓ ≤ 1:

minimize ℓ

subject to: ∀𝜏𝑖 ,
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑖, 𝑗 · 𝑠𝑖, 𝑗 = 𝑢𝑖 (9)

∀𝜏𝑖 ,
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑖, 𝑗 ≤ ℓ · 𝑝𝑖 (10)

∀𝜋 𝑗 ,
∑︁
𝜏𝑖 ∈𝜏

𝑥𝑖, 𝑗 ≤ ℓ, (11)

with 𝑥𝑖, 𝑗 ≥ 0. We call this linear program LP-Feas(𝜏, 𝜋).

Proof. (⇒) Assume that (𝜏, 𝜋) is feasible. By Lemma 4.4, (𝜏, 𝜋)
is also feasible. By Theorem 5.4, there exists a feasible solution

to LP-Feas(𝜏, 𝜋) with 0 ≤ ℓ ≤ 1. Let the values 𝑥𝑘
𝑖,𝑗

be the values

from this solution. We will demonstrate that there exists a feasible

solution to LP-Feas(𝜏, 𝜋) with objective value at most one. Let

𝑥𝑖, 𝑗 =

𝑝𝑖∑︁
𝑘=1

𝑥𝑘𝑖,𝑗 . (12)

We now show that each constraint in (9)–(11) is satisfied with

the 𝑥𝑖, 𝑗 values from (12). We first consider (9). By (12), we have

∀𝜏𝑖 ,
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑖, 𝑗 · 𝑠𝑖, 𝑗 =
∑︁
𝜋 𝑗 ∈𝜋

𝑝𝑖∑︁
𝑘=1

𝑥𝑘𝑖,𝑗 · 𝑠𝑖, 𝑗

= {by swapping order of sums}
𝑝𝑖∑︁
𝑘=1

∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑘𝑖,𝑗 · 𝑠𝑖, 𝑗

= {by (3)}
𝑝𝑖∑︁
𝑘=1

𝑢𝑖/𝑝𝑖 = 𝑢𝑖 .

Thus, (9) is satisfied. We now consider (10). By (12), we have

∀𝜏𝑖 ,
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑖, 𝑗 =
∑︁
𝜋 𝑗 ∈𝜋

𝑝𝑖∑︁
𝑘=1

𝑥𝑘𝑖,𝑗

= {by swapping order of sums}
𝑝𝑖∑︁
𝑘=1

∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑘𝑖,𝑗

≤ {by (4)}
𝑝𝑖∑︁
𝑘=1

ℓ = ℓ · 𝑝𝑖 .

Thus, (10) is satisfied. Finally, we consider (11). By (12), we have

∀𝜋 𝑗 ,
∑︁
𝜏𝑖 ∈𝜏

𝑥𝑖, 𝑗 =
∑︁
𝜏𝑖 ∈𝜏

𝑝𝑖∑︁
𝑘=1

𝑥𝑘𝑖,𝑗

= {each 𝜏𝑖 ∈ 𝜏 yields 𝑝𝑖 split tasks in 𝜏}∑︁
𝜏𝑘
𝑖
∈𝜏

𝑥𝑘𝑖,𝑗

≤ {by (5)}
ℓ .

Therefore, assignment of 𝑥𝑖, 𝑗 values according to (12) satisfies all

constraints of LP-Feas(𝜏, 𝜋) with 0 ≤ ℓ ≤ 1.

(⇐) Assume that LP-Feas(𝜏, 𝜋) has a solution so that 0 ≤ ℓ ≤ 1

holds. Let 𝑥𝑖, 𝑗 denote the values from this solution. We will show

that there exists a solution to LP-Feas(𝜏, 𝜋) with objective value at

most one. For each 1 ≤ 𝑘 ≤ 𝑝𝑖 , let

𝑥𝑘𝑖,𝑗 = 𝑥𝑖, 𝑗/𝑝𝑖 . (13)

We show that constraints (3)–(5) are satisfied when each 𝑥𝑘
𝑖,𝑗

is as-

signed according to (13). We first show that (3) is satisfied. Applying

(13) in the left-hand side of (3), we have

∀𝜏𝑘𝑖 ,
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑘𝑖,𝑗 · 𝑠𝑖, 𝑗 =
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑖, 𝑗/𝑝𝑖 · 𝑠𝑖, 𝑗 =
1

𝑝𝑖

∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑖, 𝑗 · 𝑠𝑖, 𝑗

= {by (9)}
𝑢𝑖/𝑝𝑖 .

Similarly, (4) is satisfied by applying (13), as

∀𝜏𝑘𝑖 ,
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑘𝑖,𝑗 =
∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑖, 𝑗/𝑝𝑖 =
1

𝑝𝑖

∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑖, 𝑗

≤ {by (10)}
1

𝑝𝑖
· ℓ · 𝑝𝑖 = ℓ .

Finally, (5) is satisfied, as each 𝜏𝑖 results in 𝑝𝑖 split tasks in 𝜏 :

∀𝜋 𝑗 ,
∑︁
𝜏𝑘
𝑖
∈𝜏

𝑥𝑘𝑖,𝑗 =
∑︁
𝜏𝑖 ∈𝜏

𝑝𝑖∑︁
𝑘=1

𝑥𝑘𝑖,𝑗

= {by (13)}∑︁
𝜏𝑖 ∈𝜏

𝑝𝑖∑︁
𝑘=1

𝑥𝑖, 𝑗/𝑝𝑖

=
∑︁
𝜏𝑖 ∈𝜏

𝑥𝑖, 𝑗

≤ {by (11)}
ℓ .

Thus, there exists an assignment of variables in LP-Feas(𝜏, 𝜋)
so that 0 ≤ ℓ ≤ 1 holds, which, by Theorem 5.4, implies that 𝜏 is

feasible. By Lemma 4.4, 𝜏 is feasible. □

Theorem 5.5 establishes a necessary and sufficient feasibility

condition for (𝜏, 𝜋) when 𝜋 is an Unrelated multiprocessor. This

linear program contains 2𝑛 +𝑚 constraints and 𝑛 ∗𝑚 + 1 variables.

Linear programs can be solved in polynomial time with respect to

RTNS ’24, November 6–8, 2024, Porto, Portugal Massey et al.

the number of variables [13]. Next, we derive simpler feasibility

conditions for certain special cases of the Unrelated model.

5.2 Identical with Affinity Masks
We begin by defining affinity masks. An affinity mask 𝛼𝑖 ⊆ 𝜋 for 𝜏𝑖
is a nonempty set of processors on which 𝜏𝑖 is allowed to execute.

For a subset of tasks 𝜏 ′ ⊆ 𝜏 , we define the aggregate affinity mask
as 𝛼𝜏 ′ =

⋃
𝜏𝑖 ∈𝜏 ′ 𝛼𝑖 . The Identical with Affinity Masks model is a

special case of the Unrelatedmodel. Each speed 𝑠𝑖, 𝑗 is set as follows:

If 𝜋 𝑗 ∈ 𝛼𝑖 , then 𝑠𝑖, 𝑗 = 1, otherwise 𝑠𝑖, 𝑗 = 0. Next, we amend the

feasibility condition for this multiprocessor model presented in [17]

to apply to rp-sporadic tasks.

Theorem 5.6. The system (𝜏, 𝜋), where 𝜋 is Identical with Affinity
Masks, is feasible if and only if ∀𝜏𝑖 , 𝑢𝑖 ≤ 𝑝𝑖 and there exist values
𝑥𝑖, 𝑗 ≥ 0 that satisfy

∀𝜏𝑖 ,
∑︁

𝜋 𝑗 ∈𝛼𝑖
𝑥𝑖, 𝑗 = 𝑢𝑖 (14)

∀𝜋 𝑗 ,
∑︁
𝜏𝑖 ∈𝜏

𝑥𝑖, 𝑗 ≤ 1. (15)

Proof. (⇒) Assuming that (𝜏, 𝜋) is feasible, by Theorem 5.5, LP-
Feas(𝜏, 𝜋) has a solution with 0 ≤ ℓ ≤ 1. Since 𝜋 𝑗 ∈ 𝛼𝑖 ⇒ 𝑠𝑖, 𝑗 = 1

and 𝜋 𝑗 ∉ 𝛼𝑖 ⇒ 𝑠𝑖, 𝑗 = 0,∑︁
𝜋 𝑗 ∈𝜋

𝑥𝑖, 𝑗 · 𝑠𝑖, 𝑗 =
∑︁

𝜋 𝑗 ∈𝛼𝑖
𝑥𝑖, 𝑗 .

Hence, LP-Feas(𝜏, 𝜋) becomes:

minimize ℓ

subject to: ∀𝜏𝑖 ,
∑︁

𝜋 𝑗 ∈𝛼𝑖
𝑥𝑖, 𝑗 = 𝑢𝑖 (16)

∀𝜏𝑖 ,
∑︁

𝜋 𝑗 ∈𝛼𝑖
𝑥𝑖, 𝑗 ≤ ℓ · 𝑝𝑖 (17)

∀𝜋 𝑗 ,
∑︁
𝜏𝑖 ∈𝜏

𝑥𝑖, 𝑗 ≤ ℓ, (18)

with 𝑥𝑖, 𝑗 ≥ 0, noting that 𝑥𝑖, 𝑗 = 0 when 𝜋 𝑗 ∉ 𝛼𝑖 . Constraints (16)

and (17) imply that 𝑢𝑖 ≤ ℓ · 𝑝𝑖 ≤ 𝑝𝑖 . Additionally, we see that (14)

and (15) follow directly from (16) and (18), respectively, when ℓ ≤ 1.

(⇐) Here, we assume ∀𝜏𝑖 , 𝑢𝑖 ≤ 𝑝𝑖 and both (14) and (15) hold.

We then demonstrate that (𝜏, 𝜋) is feasible by finding a solution to

LP-Feas(𝜏, 𝜋) with ℓ = 1. (14) is equivalent to (16), (15) is equivalent

to (18), and (17) follows from (14) and 𝑢𝑖 ≤ 𝑝𝑖 . □

Theorem 5.6 simplifies LP-Feas(𝜏, 𝜋) by removing over 𝑛 con-

straints. Additionally, suitable 𝑥𝑖, 𝑗 values can be found by treating

this new formulation as a max-flow problem [17].

5.3 Uniform
Recall that, under the Uniform multiprocessor model, a processor

𝜋 𝑗 has a uniform speed 𝑠 𝑗 for all 𝜏𝑖 , i.e., 𝑠𝑖, 𝑗 = 𝑠 𝑗 . Surprisingly, for

ordinary sporadic tasks, the known utilization-based feasibility con-

dition under Uniformmultiprocessors [10] cannot be easily derived

from the linear-program-based feasibility condition under Unre-
lated multiprocessors [4]. Instead, the derivation of the feasibility

condition relies on the Level Algorithm [12]. Much like Lemma 5.2,

the Level Algorithm generates a schedule that can be repeated

every time unit, ensuring bounded response times for sporadic

tasks. Thus, to derive a utilization-based feasibility condition under

Uniform multiprocessors, we apply the results of [10] to split tasks.

We first state the known feasibility condition for ordinary spo-

radic tasks on Uniform multiprocessors [10]. For ease of notation,

we assume that tasks of 𝜏 are indexed such that 𝑢𝑖/𝑝𝑖 ≥ 𝑢 𝑗/𝑝 𝑗 if
𝑖 ≤ 𝑗 , noting that 𝑝𝑖 = 1 in the case of ordinary sporadic tasks, and

processors of 𝜋 are indexed in order of non-increasing speed (𝑠𝑖 ≥ 𝑠 𝑗

if 𝑖 ≤ 𝑗). Slightly abusing the notation, we define U𝑘 =
∑𝑘
𝑖=1 𝑢𝑖 ,

P𝑘 =
∑𝑘
𝑖=1 𝑝𝑖 , and S𝑘 =

∑𝑘
𝑗=1 𝑠 𝑗 , representing the sum of the first

𝑘 utilizations, parallelism levels, and speeds, respectively. For an

ordinary sporadic task set 𝜏 , the system (𝜏, 𝜋) is feasible if and only
if [10]

∀1 ≤ 𝑘 ≤ 𝑛, U𝑘 ≤ S
min(𝑘,𝑚) .

An equivalent condition, given in [16], that is more convenient for

our purpose is

∀𝜏 ′ ⊆ 𝜏, U𝜏 ′ ≤ S
min(|𝜏 ′ |,𝑚) . (19)

We now give a feasibility condition for rp-sporadic systems under

Uniform multiprocessors.

Theorem 5.7. The system (𝜏, 𝜋), where 𝜋 is a Uniform multipro-
cessor, is feasible if and only if

∀𝜏 ′ ⊆ 𝜏, U𝜏 ′ ≤ S
min(P𝜏 ′ ,𝑚) . (20)

Moreover, an equivalent condition is

∀𝑘 : 1 ≤ 𝑘 ≤ 𝑛, U𝑘 ≤ S
min(P𝑘 ,𝑚) , (21)

where tasks are ordered by non-increasing 𝑢𝑖/𝑝𝑖 and processors are
ordered by non-increasing speed.

Proof. Consider the system of split tasks (𝜏, 𝜋). By (19), 𝜏 is

feasible under 𝜋 if and only if

∀𝜏 ′ ⊆ 𝜏, U𝜏 ′ ≤ S
min(|𝜏 ′ |,𝑚) . (22)

Therefore, by Lemma 4.4, (22) holds if and only if (𝜏, 𝜋) is feasible,
again using the server abstractions explained in ??. We now prove

that (20), (21), and (22) are equivalent, showing that they are all

necessary and sufficient feasibility conditions for (𝜏, 𝜋).

(22) ⇒ (20). Given 𝜏 ′ ⊆ 𝜏 , let 𝜏 ′ be the set of split tasks of all tasks
in 𝜏 ′. This means

U𝜏 ′ = {as the utilization of 𝜏 ′ equals that of 𝜏 ′, by (2)}
U𝜏 ′

≤ {by (22)}
S
min(|𝜏 ′ |,𝑚)

≤ {as |𝜏 ′ | = P𝜏 ′ , by (2)}
S
min(P𝜏 ′ ,𝑚) ,

which is exactly (20).

(20)⇒ (21). The conditions in (21) are just a subset of the conditions
in (20). To see this, let 1 ≤ 𝑘 ≤ 𝑛. The first 𝑘 tasks of 𝜏 form the

subset 𝜏 ′ = {𝜏1, . . . , 𝜏𝑘 } with U𝜏 ′ = U𝑘 and P𝜏 ′ = P𝑘 .

On the Feasibility of Sporadic Tasks with Restricted Parallelism on Heterogeneous Multiprocessors RTNS ’24, November 6–8, 2024, Porto, Portugal

(21) ⇒ (22). We prove the contrapositive of this case, i.e.,

∃𝜏 ′ ⊆ 𝜏, U𝜏 ′ > S
min(|𝜏 ′ |,𝑚) ⇒ (¬22)

∃𝑘 : 1 ≤ 𝑘 ≤ 𝑛, U𝑘 > S
min(P𝑘 ,𝑚) . (¬21)

Let 𝜏 ′ ⊆ 𝜏 be a set with the fewest elements that satisfies (¬22). We

must find a value of 𝑘 that satisfies (¬21). There are two cases:

Case 1. |𝜏 ′ | ≥ 𝑚. This means |𝜏 | ≥ 𝑚, as 𝜏 ′ ⊆ 𝜏 . Also, note that

P𝜏 = P𝑛 . Below, we show that (¬21) holds for 𝑘 = 𝑛.

U𝑛 = {as the utilization of 𝜏 equals that of 𝜏 , by (1)}
U𝜏

≥ {as 𝜏 ′ ⊆ 𝜏}
U𝜏 ′

> {by (¬22)}
S
min(|𝜏 ′ |,𝑚)

= {as |𝜏 ′ | ≥ 𝑚 by the assumption of this case}
S𝑚

= {as𝑚 ≤ |𝜏 | = P𝑛 , by (1)}
S
min(P𝑛,𝑚) .

Case 2. |𝜏 ′ | < 𝑚. Let 𝜏
𝑗

ℎ
∈ 𝜏 ′ have the lowest utilization, chosen

arbitrarily in case of a tie. The utilization of 𝜏
𝑗

ℎ
is

𝑢ℎ

𝑝ℎ
= {asU𝜏 ′ is the sum all utilizations from 𝜏 ′}

U𝜏 ′ −U
𝜏 ′\{𝜏 𝑗

ℎ
}

> {by (¬22), and min(|𝜏 ′ |,𝑚) = |𝜏 ′ | in this case}
S|𝜏 ′ | −U

𝜏 ′\{𝜏 𝑗

ℎ
}

≥
{
U

𝜏 ′\{𝜏 𝑗

ℎ
} ≤ S|𝜏 ′\{𝜏 𝑗

ℎ
} |

as subsets of 𝜏 smaller than 𝜏 ′ satisfy (22),

}
S|𝜏 ′ | − S|𝜏 ′\{𝜏 𝑗

ℎ
} |

=

{
as S𝑘 =

∑𝑘
𝑖=1 𝑠𝑖 and |𝜏 ′ \ {𝜏 𝑗

ℎ
}| = |𝜏 ′ | − 1

}
|𝜏 ′ |∑︁
𝑖=1

𝑠𝑖 −
|𝜏 ′ |−1∑︁
𝑖=1

𝑠𝑖 = 𝑠 |𝜏 ′ | . (23)

Next, consider the set 𝜏 ′ of all tasks that have a split task in

𝜏 ′, i.e., 𝜏 ′ = {𝜏𝑖 ∈ 𝜏 :: ∃𝜏𝑞
𝑖

∈ 𝜏 ′}. We denote the set containing

all of the split tasks of 𝜏 ′ as 𝑠𝑝𝑙𝑖𝑡 (𝜏 ′). Thus, 𝜏 ′ ⊆ 𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) and
|𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) | = P𝜏 ′ , by (2). We show (¬21) holds for 𝑘 = |𝜏 ′ |.

U𝑘 = U|𝜏 ′ |

≥
{
the first |𝜏 ′ | tasks is at least that of 𝜏 ′
by task order, the total utilization of

}
U𝜏 ′

= {as the utilization of 𝜏 ′ equals that of 𝑠𝑝𝑙𝑖𝑡 (𝜏 ′), by (2)}
U𝑠𝑝𝑙𝑖𝑡 (𝜏 ′)

≥ {as 𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) = 𝜏 ′ ∪ (𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) \ 𝜏 ′)}
U𝜏 ′ + U𝑠𝑝𝑙𝑖𝑡 (𝜏 ′)\𝜏 ′

> {by (¬22), and min(|𝜏 ′ |,𝑚) = |𝜏 ′ | in this case}
S|𝜏 ′ | + U𝑠𝑝𝑙𝑖𝑡 (𝜏 ′)\𝜏 ′

≥
{
and 𝑢ℎ/𝑝ℎ is defined to be the least of these

as the right term has |𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) \ 𝜏 ′ | elements,

}
S|𝜏 ′ | +

��𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) \ 𝜏 ′�� 𝑢ℎ
𝑝ℎ

> {by (23), 𝑢ℎ/𝑝ℎ > 𝑠 |𝜏 ′ | }
S|𝜏 ′ | +

��𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) \ 𝜏 ′�� 𝑠 |𝜏 ′ |
≥ {as |𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) \ 𝜏 ′ | ≥ min(|𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) |,𝑚) − |𝜏 ′ |}.

S|𝜏 ′ | +
min(|𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) |,𝑚)∑︁

𝑗= |𝜏 ′ |+1
𝑠 |𝜏 ′ |

≥ {by processor order, 𝑠 𝑗 ≤ 𝑠 |𝜏 ′ | if 𝑗 > |𝜏 ′ |}.

S|𝜏 ′ | +
min(|𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) |,𝑚)∑︁

𝑗= |𝜏 ′ |+1
𝑠 𝑗

=

{
by definition, S𝑘 =

∑𝑘
𝑖=1 𝑠𝑖

}
S
min(|𝑠𝑝𝑙𝑖𝑡 (𝜏 ′) |,𝑚)

=
{��𝑠𝑝𝑙𝑖𝑡 (𝜏 ′)�� = P𝜏 ′ , by (2)

}
S
min(P𝜏 ′ ,𝑚) .

Thus, (¬21) holds. This completes the proof that (21)⇒ (22).

We have shown that (22)⇒ (20) ⇒ (21)⇒ (22). □

Condition (20) is in a convenient form for certain types of analy-

sis, much as is (19) [16]; however, it requires checking a number of

conditions that is exponential in the size of the task system. Thus,

we also present (21), as it is an equivalent polynomial time test.

6 EXPERIMENTAL EVALUATION
Prior work has explored some of the effects of parallelism levels

in real-time systems [2, 3], but, to our knowledge, no prior work

has experimentally investigated the feasibility impacts associated

with enabling or discouraging node parallelism or choosing among

the Unrelated, Uniform, and Identicalmodels. In the context of this

work, it would not be enlightening to randomly generate task sets

and look solely at how parallelism affects their feasibility, as the

results would simply reflect the distributions chosen for generating

task utilizations. For example, the percentage of systems with tasks

that required 𝑝𝑖 ≥ 2 would be equivalent to the proportion of tasks

generated with utilizations at least 2. Instead, we compared how

different multiprocessor models affect feasibility. What is lost when

a model is oversimplified, as might be the case in real-world applica-

tions? What is gained by allowing parallelism in a system that can

support it? In this section, we discuss the results of the experimental

investigation we conducted to investigate such questions.

Task system generation. In our investigation, systems were ran-

domly generated using three parameters: processor count, utiliza-

tion distribution, and processor speed distribution. The processor

count,𝑚, was one of 4, 8, or 16.

RTNS ’24, November 6–8, 2024, Porto, Portugal Massey et al.

Utilization distributionswere either uniform or bimodal. Uniform

distributions used sampling ranges that were either light, [0.001,
0.1], moderate, [0.1, 0.4], or heavy, [0.5, 0.9]. Bimodal distributions

used two sampling ranges, [0.001, 0.5] and [0.5, 0.9]. The respective

weights of these two ranges were 8/9 and 1/9 for light systems, 6/9

and 3/9 for moderate systems, and 4/9 and 5/9 for heavy systems.

Systems were randomly generated with processors grouped into

either one, two, or three different speed classes. Identical systems

had just one speed class, with a speed chosen uniformly from [0.5,

0.9]. Systems with two speed classes had both fast and slow speeds,

sampled from [0.5, 0.9] and [0.1, 0.4], respectively. Such systems are

either Uniform, where all processors in the same class had the same

speed, or Unrelated, where the speed of each processor was chosen

independently for each task. Similarly, systems with three speed

classes were generated with fast,medium, and slow speeds, sampled

from [0.6, 0.9], [0.3, 0.5], and [0.1, 0.2], respectively. These systems

also had Uniform and Unrelated variations. An additional random
system type allowed for every processor to be in its own class,

where every speed was sampled uniformly from [0.0, 1.0]. These

options resulted in 189 different possible system configurations.

Experimental design. Given a configuration as defined above, task

systems were generated that had total utilizations ranging from

1.0 to𝑚. The number of ways to assign parallelism levels to each

of these tasks is too large to perform a reasonable study. Instead,

we first focus on two particular assignments and then attempt to

optimally choose the values for 𝑝𝑖 .

While increasing parallelism should lead to more systems becom-

ing feasible, it is not easy to see how large of an effect parallelism

will have just by looking at the feasibility tests given. We therefore

used our tests to check each system when 𝑝𝑖 = 1 for all 𝜏𝑖 and

when 𝑝𝑖 =𝑚 for all 𝜏𝑖 . Then, each of the above Unrelated systems

was copied and cast to a new Uniform system. This means that

for each 𝜋 𝑗 in the copied system, every speed 𝑠𝑖, 𝑗 was reduced to

min1≤𝑖≤𝑛 (𝑠𝑖, 𝑗), the slowest speed of any task on that processor.

This mimics the way real-world systems might be pessimistically

approximated using simpler models. Next, each Uniform system

was cast to an Identical system, in which every speed was set to the

slowest speed in the entire system. This was done to quantify the

utilization lost when systems are subjected to analytical oversim-

plifications. This study is not intended to be a direct comparison

of these multiprocessor models, as casting will necessarily lose

capacity. We instead measure the benefits provided by parallelism,

circumventing the issue of our results being directly proportional

to the chosen random task utilization distributions.

For each system, we computed the Average Necessary Parallelism
(ANP) to achieve feasibility. We achieved this by converting the

condition from Theorem 5.5 into an Integer Linear Program (ILP),

with each 𝑝𝑖 allowed to range from 1.0 to𝑚 and ℓ = 1. This ILP was

then solved for the minimum average 𝑝𝑖 value, and the objective

value was recorded. We similarly cast every system to its Uniform
or Identical approximation and repeated the tests. If fewer than 5%

of systems were able to be made feasible in this way, then no data

point was recorded.

Systems were generated for each data point until the margin of

error for the 95% confidence interval was within 1% of the mean, or

2 4 6 8 10 12 14 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
Fe

as
ib

le

Feasibility Comparison:
(bi-moderate, unr-two-speed-random),

m=16, pi = 1
Unrelated
Uniform
Identical

Figure 4: Feasibility comparison for task sets generated with
moderate bimodal utilization distributions and two speed
classes for Unrelated.

2 4 6 8 10 12 14 16
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n
Fe

as
ib

le
Feasibility Comparison:

(bi-moderate, unr-two-speed-random),
m=16, pi = 16

Unrelated
Uniform
Identical

Figure 5: Feasibility comparison for task sets generated with
moderate bimodal utilization distributions and two speed
classes for Unrelated.

until 5,000 systems were generated, whichever came first. Example

graphs are given in Figure 4, Figure 5, and Figure 6.

Performing all experiments yielded 567 total graphs. On aver-

age, each graph contained about 250 data points, and each point

was computed with about 400 randomly generated systems. Some

selected graphs can be found in Appendix B.
4

6.1 Observations.
We lack the space for an in-depth discussion of all 567 graphs, so

we use metrics to discuss them holistically. First, for each feasibility

4
Additionally, all graphs and data can be found online at https://jamesanderson.web.

unc.edu/papers/.

https://jamesanderson.web.unc.edu/papers/
https://jamesanderson.web.unc.edu/papers/

On the Feasibility of Sporadic Tasks with Restricted Parallelism on Heterogeneous Multiprocessors RTNS ’24, November 6–8, 2024, Porto, Portugal

2 4 6 8 10
Utilization

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e
p i

Average Necessary Parallelism:
(bi-moderate, unr-two-speed-random),

m=16
Unrelated
Uniform
Identical

Figure 6: Average Necessary Parallelism for task sets gener-
ated withmoderate bimodal utilization distributions and two
speed classes for Unrelated. Graphs stop when fewer than
5% of systems are able to be made feasible.

graph, like those in Figure 4 and Figure 5, we measured the area

under each curve. These values were then normalized by dividing

by the processor count used in the corresponding experiment. We

call this the Normalized Feasible Region (NFR) for each graph. For

example, Figure 5 has an NFR of 0.61 for its Unrelated curve, 0.30

for its Uniform curve, and 0.07 for its Identical curve.
Next, we examined the utilization where each curve crosses the

80% feasible line. We will call this the 0.8-Threshold, and it serves to
measure the resulting feasibility of the system while allowing us to

discuss the utilization lost when casting to simpler models.

Observation 1. Oversimplifying the system model reduced the
0.8-Threshold by 33%, on average. When casting a model to a

simpler type, such as from Unrelated to Uniform or from Uniform
to Identical, systems became infeasible at significantly lower uti-

lizations. We also noticed a roughly 70% average decrease in NFR

across all systems after being cast.

Observation 2. When parallelism was allowed, NFR increased
by 1.7 times on average. For systems with a parallelism level

of one, the average NFR was 0.26. This metric increased to 0.45

when 𝑝𝑖 was set to 𝑚 for all tasks. Additionally, ANP across all

systems was 1.5, meaning that significant parallelism is generally

not required for a system to become feasible. Overall, Identical
systems required much more parallelism, due to the pessimistic

nature of needing to use the slowest speed in the system.

We also saw that the 0.8-Threshold value increased by 2.1 times,

on average, when parallelism levels were set to𝑚, meaning that

system utilization could be allowed to double under the right cir-

cumstances. Many systems were able to regain lost utilization after

being cast to a simpler model when parallelism was allowed.

Figure 4 and Figure 5 provide two examples of these observa-

tions using systems with moderate bimodal utilization distributions

running on 16Unrelated processors with two speed classes. By com-

paring the three curves in Figure 4, the dramatic effects of casting

systems can be seen. Moreover, the effects of allowing parallelism

can be seen in Figure 5. Figure 6 shows how ANP for these systems

was generally much less than the maximum possible value of 16,

especially for the Uniform and Unrelated cases. This is especially

interesting in the Unrelated case where NFR increased from 0.38 to

0.61 with parallelism levels of 16 despite having an ANP of 1.03.

The shapes of these curves were common throughout our entire

dataset. 12 more examples are given in ??.

7 CONCLUSION
Real-time computing today is being impacted by two trends: a grow-

ing need to support complex software workloads and increasing

heterogeneity in the hardware platforms for supporting such work-

loads. In this work, we have considered the rp-sporadic task model,

a generalization of the standard sporadic task model that allows for

settable per-task parallelism levels. This model increases scheduling

flexibility and can thereby support workloads that are infeasible

under the standard sporadic model by leveraging concurrency.

Additionally, we have considered a range of multiprocessor plat-

form models with varying degrees of heterogeneity. For each of

these platform models, we have presented feasibility conditions for

the scheduling of rp-sporadic task sets. In deriving these conditions,

we showed that there exists a mapping from rp-sporadic task sets

to standard sporadic task sets. This mapping serves as a useful

analytical tool for understanding the rp-sporadic model.

Lastly, we covered a large-scale experimental evaluation of ran-

domly generated systems. In these experiments, model oversimpli-

fication greatly impacted the feasibility of systems while the added

flexibility offered by the rp-sporadic model offset such effects.

With these feasibility conditions and experimental results in

place, we plan in future work to study the issue of scheduler opti-

mality under the rp-sporadic model in the context of these various

multiprocessor platform models. Both HRT and SRT optimality are

of interest, as is the runtime efficiency of any considered schedulers.

REFERENCES
[1] Shareef Ahmed and James H. Anderson. 2021. Tight Tardiness Bounds for Pseudo-

Harmonic Tasks Under Global-EDF-Like Schedulers. In Euromicro Conference on
Real-Time Systems, ECRTS. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

11:1–11:24.

[2] Tanya Amert, Sergey Voronov, and James H. Anderson. 2019. OpenVX and

Real-Time Certification: The Troublesome History. In IEEE Real-Time Systems
Symposium, RTSS. IEEE, 312–325.

[3] Tanya Amert, Ming Yang, Sergey Voronov, Saujas Nandi, Thanh Vu, James H.

Anderson, and F. Donelson Smith. 2021. The price of schedulability in cyclic

workloads: The history-vs.-response-time-vs.-accuracy trade-off. Journal of
Systems Architecture 120 (2021), 102292.

[4] Sanjoy Baruah. 2004. Feasibility analysis of preemptive real-time systems upon

heterogeneous multiprocessor platforms. In IEEE Real-Time Systems Symposium,
RTSS. IEEE, 37–46.

[5] Sanjoy Baruah and Björn Brandenburg. 2013. Multiprocessor Feasibility Analysis

of Recurrent Task Systems with Specified Processor Affinities. In IEEE Real-Time
Systems Symposium, RTSS. IEEE, 160–169.

[6] Antoine Bertout, Joël Goossens, Emmanuel Grolleau, and Xavier Poczekajlo. 2020.

Template schedule construction for global real-time scheduling on unrelated

multiprocessor platforms. In 2020 Design, Automation & Test in Europe Conference
& Exhibition (DATE). IEEE, 216–221.

[7] B. B. Brandenburg. 2011. Scheduling and locking in multiprocessor real-time
operating systems. Ph. D. Dissertation. University of North Carolina, Chapel Hill,

NC.

RTNS ’24, November 6–8, 2024, Porto, Portugal Massey et al.

[8] Glenn A. Elliott, Kecheng Yang, and James H. Anderson. 2015. Supporting Real-

Time Computer Vision Workloads Using OpenVX on Multicore+GPU Platforms.

In IEEE Real-Time Systems Symposium, RTSS. IEEE, 273–284.
[9] Jeremy P. Erickson and James H. Anderson. 2011. Response Time Bounds for

G-EDF Without Intra-Task Precedence Constraints. In International Converence
On Principles Of Distributed Systems, ICPDS. IEEE, 128–142.

[10] Shelby Funk, Joel Goossens, and Sanjoy Baruah. 2001. On-line scheduling on

uniform multiprocessors. In IEEE Real-Time Systems Symposium, RTSS. IEEE,
183–192.

[11] The Khronos Group. [n. d.]. The OpenVX Specification. https:

//registry.khronos.org/OpenVX/specs/1.3.1/html/OpenVX_Specification_

1_3_1.html#sub_graph_parameters

[12] Edward C. Horvath, Shui Lam, and Ravi Sethi. 1977. A Level Algorithm for

Preemptive Scheduling. J. ACM 24, 1 (1977), 32–43.

[13] Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. 2021. A faster

algorithm for solving general LPs. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2021). ACM, 823–832.

[14] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for Multiprogram-

ming in a Hard-Real-Time Environment. J. ACM 20, 1 (1973), 46–61.

[15] Aloysius Mok. 1983. Fundamental design problems of distributed systems for
the hard-real-time environment. Ph. D. Dissertation. Massachusetts Institute of

Technology.

[16] Stephen Tang, Sergey Voronov, and James H. Anderson. 2019. GEDF Tardiness:

Open Problems Involving Uniform Multiprocessors and Affinity Masks Resolved.

In Euromicro Conference on Real-Time Systems, ECRTS. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 13:1–13–21.

[17] Sergey Voronov and James H. Anderson. 2018. An Optimal Semi-Partitioned

Scheduler Assuming Arbitrary Affinity Masks. In IEEE Real-Time Systems Sym-
posium, RTSS. IEEE, 408–420.

[18] Kecheng Yang and James H. Anderson. 2014. Optimal GEDF-based schedulers

that allow intra-task parallelism on heterogeneous multiprocessors. In IEEE
Symposium on Embedded Systems for Real-time Multimedia, ESTIMedia. IEEE,
30–39.

https://registry.khronos.org/OpenVX/specs/1.3.1/html/OpenVX_Specification_1_3_1.html#sub_graph_parameters
https://registry.khronos.org/OpenVX/specs/1.3.1/html/OpenVX_Specification_1_3_1.html#sub_graph_parameters
https://registry.khronos.org/OpenVX/specs/1.3.1/html/OpenVX_Specification_1_3_1.html#sub_graph_parameters

	Abstract
	Acknowledgments
	1 Introduction
	2 Background
	3 Intra-Task Parallelism
	4 Splitting Tasks
	5 Feasibility Results
	5.1 Unrelated
	5.2 Identical with Affinity Masks
	5.3 Uniform

	6 Experimental Evaluation
	6.1 Observations.

	7 Conclusion
	References

