
Soft Real-Time Gang Scheduling
Shareef Ahmed and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill
{shareef, anderson}@cs.unc.edu

Abstract—Due to the emergence of parallel architectures and
parallel programming frameworks, modern real-time applica-
tions are often composed of parallel tasks that can occupy
multiple processors at the same time. Among parallel task models,
gang scheduling has received much attention in recent years
due to its performance efficiency and applicability to parallel
architectures such as graphics processing units. Despite this
attention, the soft real-time (SRT) scheduling of gang tasks has
received little attention. This paper, for the first time, considers
the SRT-feasibility problem for gang tasks. Necessary and suf-
ficient feasibility conditions are presented that relate the SRT-
feasibility problem to the HRT-feasibility problem of “equivalent”
task systems. Based on these conditions, intractability results for
SRT gang scheduling are derived. This paper also presents server-
based scheduling policies, corresponding schedulability tests, and
an improved schedulability condition for the global-earliest-
deadline-first (GEDF) scheduling of gang tasks. Moreover, GEDF
is shown to be non-optimal in scheduling SRT gang tasks.

I. INTRODUCTION

Recent advances in multicore platforms, hardware ac-
celerators (e.g., graphics processing units (GPUs)), and
parallel-programming models (e.g., OpenMP) have led to the
widespread adoption of parallelization in supporting real-time
workloads. These advances have contributed to the growth
of artificial intelligence (AI)-based autonomous applications,
which heavily rely on the ability to group multiple application
threads into gangs for efficient computation. To support such
applications in safety-critical real-time systems, analyzable
scheduling techniques are needed for gang-based task models
where k parallel threads execute in unison on k processors.
Due to its significance, gang scheduling has garnered much
attention in recent years [6], [8], [10], [12], [16], [21].

With the exception of [8], all prior work on gang scheduling
pertains to hard real-time (HRT) systems, where each instance
of a task must meet its deadline. In contrast, for soft real-time
(SRT) systems, a task instance can be tardy and may only
require bounded tardiness by completing execution within a
bounded amount of time after its deadline. The lone work
on SRT gang scheduling cited above, due to Dong et al. [8],
gives a sufficient condition for bounded tardiness and a tardi-
ness bound for gang tasks under global-earliest-deadline-first
(GEDF) scheduling.
Complexities in SRT gang scheduling. Despite its impor-
tance, the work by Dong et al. illustrates the pessimism
inherent in SRT gang scheduling. Since the seminal work

Work was supported by NSF grants CPS 1837337, CPS 2038855, CPS
2038960, and CNS 2151829, ARO grant W911NF-20-1-0237, and ONR grant
N00014-20-1-2698.

Time

3

2

τ1

τ2

0 5

Release Deadline Completion Task execution

Fig. 1: Two gang tasks on four processors. The number inside
each execution block denotes the degree of parallelism.

of Devi and Anderson [5], it has been known that GEDF
can ensure bounded tardiness for any ordinary sporadic task
system without causing any utilization loss. Unfortunately, this
is not the case for gang tasks, as there exist gang task systems
with utilizations greater than but arbitrarily close to 1.0 for
which tardiness is unbounded [8].

Additionally, existing schedulability conditions for SRT
gang tasks can be overly pessimistic. For example, consider
two gang tasks τ1 and τ2 with a degree of parallelism (i.e., the
number of processors required to execute the task) of three and
two, respectively. Task τ1 (resp., τ2) has a worst-case execution
time of 2.0 (resp., 6.0) time units, while each has a period and
relative deadline of 8.0 time units. If scheduled on a four-core
platform by GEDF, the schedulability condition by Dong et
al. [8] cannot guarantee bounded tardiness for this task system
(we elaborate later in Sec. V). However, as seen in Fig. 1, this
task system is actually HRT-schedulable under GEDF (this is
true for any release pattern of these tasks).

Motivated by this, we consider herein the SRT-feasibility
problem for preemptive gang scheduling, which asks whether
a given gang task system can be scheduled such that each
instance of a task has bounded tardiness. We give necessary
and sufficient conditions for SRT feasibility, based on which
we show that the SRT-feasibility problem is NP-hard. To the
best of our knowledge, this is the first intractability result
regarding SRT scheduling where only bounded tardiness is re-
quired. Furthermore, we give server-based scheduling policies
for gang tasks and corresponding schedulability conditions for
bounded tardiness. We also show that GEDF is non-optimal
in scheduling SRT gang tasks and give an improved condition
for achieving bounded tardiness under GEDF.

Related work. Most prior work on gang scheduling focuses
on preemptive gang scheduling for HRT systems. It is known
that optimally scheduling HRT gang tasks is NP-hard in the
strong sense even when all tasks have the same period and
relative deadline [14]. Schedulability tests for HRT preemptive

gang scheduling have been presented for GEDF [6], [12],
[16], [21], fixed-priority (FP) scheduling [10], [16], and sta-
tionary scheduling algorithms [24]. It has also been shown
that schedules for periodic HRT gang tasks can be optimally
constructed (offline) in polynomial time for a fixed number of
processors [11]. Recently, more expressive gang task models
have been considered, such as gang tasks with precedence
constraints [3] and mixed-criticality gang tasks [4]. For the
non-preemptive scheduling of HRT gang tasks, schedulability
tests have been presented for GEDF and FP scheduling [7],
[15], [20]. For SRT scheduling, both a schedulability test and
tardiness bound under GEDF have been presented [8].

SRT scheduling of ordinary sporadic tasks and directed-
acyclic-graph-(DAG)-based tasks has been well studied. A
wide class of schedulers including GEDF and first-in-first-
out (FIFO) schedulers can ensure bounded response times
for ordinary sporadic tasks and DAG-based tasks on identi-
cal multiprocessor platforms without incurring any utilization
loss [1], [2], [5], [9], [17]–[19]. Recent work has shown that,
under GEDF and its variants, such a property holds even when
execution speeds of different processors vary, or each task can
only be scheduled on certain processors [22], [23], [25].
Contributions. Our contribution is fivefold:

First, we develop necessary and sufficient conditions for the
SRT-feasibility problem. Each condition involves associating
a SRT task system with a corresponding HRT one that is
“equivalent” in a feasibility sense.

Second, by utilizing these feasiblity conditions, we show
that the SRT-feasibility problem for gang tasks is NP-hard.

Third, leveraging the sufficient condition for SRT-feasibility,
we propose server-based scheduling policies and correspond-
ing schedulability tests for gang tasks.

Fourth, we demonstrate that GEDF scheduling is not opti-
mal for scheduling SRT gang tasks. Furthermore, we present
an improved schedulability test for gang scheduling under
GEDF that outperforms existing tests (although it may result
in a worse tardiness bound).

Finally, we present an experimental evaluation of our results
that illustrates their benefits.
Organization. After covering needed background (Sec. II), we
discuss the SRT-feasibility of gang tasks (Sec. III), provide our
server-based scheduling policies (Sec. IV), discuss the GEDF
scheduling of gang tasks (Sec. V), present our experiments
(Sec. VI), and conclude (Sec. VII).

II. PRELIMINARIES

We consider a set Γ of n sporadic gang tasks to be globally
scheduled on M identical processors. Each gang task τi
releases a potentially infinite sequence of jobs τi,1, τi,2,
Each sporadic (resp., periodic) gang task τi has a period Ti,
which is the minimum (resp., exact) separation time between
any two consecutive job releases of τi. The relative deadline of
τi is denoted by Di. We consider implicit deadlines, meaning
that Di = Ti holds for each τi. Task τi has a worst-case
execution time (WCET) of Ci. The execution time of job τi,j is
Ci,j . Each task τi has a degree of parallelism mi, which is the

TABLE I: Notation summary.
Symbol Meaning Symbol Meaning
n No. of gang tasks mi Degree of parallelism of τi
M No. of processors λi Horizontal utilization of τi
Γ Task system ri,j Release time of τi,j
τi ith task of Γ di,j Deadline of τi,j
τi,j jth job of τi fi,j Finish time of τi,j
Ti Period of τi H Hyperperiod
Ci WCET of τi hi H/Ti

Di Rel. deadline of τi ΓH
s Set of servers

ui Utilization of τi I Ideal schedule of Γ
U

∑
i ui S A schedule of Γ

Cmax maxi Ci lag lag of a task or a job
Tmax maxi Ti LAG LAG of Γ or a set of jobs

number of simultaneously available processors required to exe-
cute any job of τi. Thus, the worst-case execution requirement
(WCER) of each job of τi can be represented by a rectangle
of area mi × Ci in a schedule. We let Cmax = maxi{Ci},
Cmin = mini{Ci}, and Tmax = maxi{Ti}. Jobs of τi are
sequential, meaning that no two jobs of τi can execute in
parallel.

The release time, deadline, and finish time of τi,j are
denoted by ri,j , di,j , and fi,j , respectively. The response time
and tardiness of τi,j are fi,j − ri,j and max{0, fi,j − di,j},
respectively. Task τi’s response time (resp., tardiness) is the
maximum response time (resp., tardiness) of any of its jobs.

The utilization of τi is ui = (Ci×mi)/Ti. Note that, unlike
sporadic tasks, ui can exceed 1.0 for a gang task τi. The total
utilization of task system Γ is U =

∑n
i=1 ui. The horizontal

utilization λi of τi is Ci/Ti. The hyperperiod H is the least
common multiple of all periods. We let hi denote H/Ti.

A periodic gang task τi has an offset ϕi that denotes the
release time of the first job of τi. For brevity, we denote a
periodic (resp., sporadic) gang task by (ϕi, Ti, Ci,mi) (resp.,
(Ti, Ci,mi)). We summarize all introduced notation in Tbl. I.

We assume time to be discrete and a unit of time to be
1.0. All scheduling decisions and job releases occur at integer
points in time. We also assume all task parameters to be
integers. Therefore, when a job τi,j executes during a unit
interval [t− 1, t), it continuously executes during [t− 1, t).

Def. 1. A job τi,j of task τi ∈ Γ is pending at time t if ri,j ≤
t < fi,j holds. τi,j is ready at time t if it is pending at time t
and job τi,j−1 (if j > 1) finishes execution by time t.

Concrete and non-concrete tasks system. A task system
is concrete if the release time and actual execution time of
every job of each task is known, and non-concrete, otherwise.
Infinitely many concrete task systems can be specified for a
non-concrete task system and we call each such a concrete task
system a concrete instantiation of the non-concrete system.
Feasibility and schedulability. A task system Γ is SRT-
schedulable (resp., HRT-schedulable) under a scheduling algo-
rithm A if and only if tardiness of each task of Γ is bounded
(resp., 0) under A for any concrete instantiation of Γ. Task
system Γ is SRT-feasible (resp., HRT-feasible) if and only
if Γ is SRT-schedulable (resp., HRT-schedulable) under some
scheduling algorithm. A scheduling algorithm is SRT-optimal
(resp., HRT-optimal) if and only if it can schedule any SRT-

feasible (resp., HRT-feasible) task system.
Parallelism-induced idleness. When scheduling gang tasks,
parallelism-induced idleness may occur [8]. A time instant t is
parallelism-induced idle if there is an idle processor at time t
and a job τi,j is pending but unscheduled at time t due to
the lack of mi available processors. In Fig. 1, there is an
idle processor during time interval [0, 2). Although τ2 has
a pending job during this interval, it cannot execute, as the
number of available processor is less than m2. Thus, there is
parallelism-induced idleness during [0, 2).

III. SRT-FEASIBILITY OF GANG TASKS

In this section, we consider the problem of determining
the SRT-feasibility of a gang task system. In this section, we
assume the following, which we justify in Lemma 2 in the
context of SRT-feasibility.

A Each job of any task τi executes for its WCET Ci.

Lemma 1. If a concrete instantiation Γc of a non-concrete
task system Γ, satisfying Asm. A, is SRT-schedulable by some
algorithm, then any concrete instantiation Γ′

c of Γ that differs
from Γc only in job execution times is also SRT-schedulable by
some algorithm.

Proof. Let S be a schedule of Γc such that each task has
bounded tardiness. Using S, we construct a schedule S ′ of
Γ′
c. In S ′, each job τi,j executes whenever it is scheduled in

S until it completes. If τi,j finishes at time t in S and at time
t′ < t in S ′, then at any time t′′ ∈ [t′, t) when τi,j is scheduled
in S, S ′ keeps the processors τi,j occupies in S idle. Thus,
each job has bounded tardiness, as it finishes no later in S ′

than S .

Lemma 2. If every concrete instantiation of Γ satisfying
Asm. A is SRT-schedulable by some algorithm, then Γ is SRT-
feasible.

Proof. Assume that Γ is not SRT-feasible. Then, there exists
a concrete instantiation Γ′

c of Γ that is not SRT-schedulable
by any algorithm. By the assumption of the lemma, Γ′

c does
not satisfy Asm. A. Let Γc be the concrete instantiation of Γ
such that Γc satisfies Asm. A, and it only differs from Γ′

c in
terms of job execution times. Since Γc satisfies Asm. A, it is
SRT-schedulable by some algorithm. Thus, by Lemma 1, Γ′

c

is SRT-schedulable by some algorithm, a contradiction.

Before proving the hardness of the SRT-feasibility problem
for gang tasks, we first give a necessary condition (Sec. III-A)
and a sufficient condition (Sec. III-B) for bounded tardiness.

A. Necessary Condition for SRT-Feasibility

We give a necessary condition for SRT-feasibility in
Lemma 3, which utilizes the following definition.

Def. 2. Given the sporadic task system Γ = {τ1, τ2, . . . , τn},
let ΓkH = {τkH1 , τkH2 , . . . , τkHn } be a set of implicit-deadline
periodic gang tasks such that k is a positive integer and τkHi =
(0, kH, khiCi,mi).

Lemma 3. If Γ is SRT-feasible, then there is a positive inte-
ger k such that the periodic task system ΓkH is HRT-feasible.

Proof. Let Γc be a concrete instantiation of Γ such that each
task periodically releases its jobs starting from time 0. Since
Γ is SRT-feasible, there is a schedule S of Γc such that each
task τi has bounded tardiness. Let xi be τi’s tardiness in S.
Let ei(t) ≥ 0 be the remaining execution time of all jobs of
τi released before time t in S.

We now consider the ei(t) values at times 0, H, 2H, In
Γc, each task τi releases a job at time t ∈ {0, H, 2H, . . .}. By
the definition of ei(t), at any time t ∈ {0, H, 2H, . . .}, ei(t)
does not include the execution time of τi’s job released
at time t. Since τi’s tardiness is xi, at any time t ∈
{0, H, 2H, . . .}, τi’s jobs released before time t have at most
xi time units of execution remaining at time t. (Note that τi’s
jobs must execute in sequence, so if its tardiness is xi, then all
of its tardy jobs at a hyperperiod boundary must be complete
within xi time units beyond that boundary.) Thus, at any time
t ∈ {0, H, 2H, . . .}, 0 ≤ ei(t) ≤ xi holds for all i.

Therefore, since ei(t) is an integer, ei(t) can take at most
xi + 1 distinct values at any time t ∈ {0, H, 2H, . . .}.
Thus, the tuple (e1(t), e2(t), . . . , en(t)) takes on one of
X =

∏n
i=1(xi + 1) distinct values at any time t ∈

{0, H, 2H, . . .}. Therefore, there must be a pair of integers
b < d ≤ X + 1 such that (e1(bH), e2(bH), . . . , en(bH)) =
(e1(dH), e2(dH), . . . , en(dH)) holds. Let k = d− b.

Since τi releases jobs periodically in Γc, it releases (d −
b) · H

Ti
= khi jobs in [bH, dH). Thus, by Asm. A, during

[bH, dH), τi executes for ei(bH)+ khiCi − ei(dH) = khiCi

time units. Let Sk be the portion of schedule S during
[bH, dH). Using Sk, we can create a HRT-feasible schedule
SkH of ΓkH . SkH mimics Sk with the exception that τkHi

executes in SkH instead of τi whenever τi is scheduled in Sk.
Since every task τi is scheduled for khiCi time units in Sk,
τkHi is scheduled for its WCET in SkH . Thus, there exists a
HRT-feasible schedule of ΓkH .

B. Sufficient Condition for SRT-Feasibility

In this section, we give a sufficient SRT-feasibility condition
for gang tasks as shown in Lemma 4.

Lemma 4. If there is a periodic task system ΓkH that is HRT-
feasible, then the sporadic task system Γ is SRT-feasible.

Note that we do not require the same value of k in both
Lemmas 3 and 4. To prove Lemma 4, we give a server-based
scheduling policy for Γ based on a HRT-feasible schedule of
ΓH . For ease of notation, we prove the lemma for ΓH . We
begin by defining reservation servers.
Reservation servers. For each task τi, we define a periodic
reservation server SH

i . We denote the set of all servers as ΓH
s .

Each server SH
i has a period TH

i = H , a horizontal budget
CH

i = hiCi, and a degree of parallelism of mH
i = mi. The

total budget, also the called budget, of SH
i is miC

H
i . Thus,

by Def. 2 (with k = 1), SH
i and τHi have the same period and

degree of parallelism.

Time

3 3

2 2

τ2,1 τ2,2 τ2,3 τ2,4

τ1,1 τ1,2 τ1,3 τ1,4 τ1,5τ1

SH
1

τ2

SH
2

0 5 10

Budget
of SH

1

6

Release Deadline Completion

Task execution Server execution

Fig. 2: Example server-based scheduling. The numbers inside
server execution boxes denote mi values.

Replenishment Rule. For any non-negative integer ℓ, the
budget of SH

i is replenished to miC
H
i at time ℓ ·H .

Consumption Rule. SH
i consumes budget at the rate of

mi execution units per unit of time when it is scheduled
until its budget is exhausted.

Scheduling servers. Servers are scheduled according to the
following rule.

P Let SH be a HRT schedule of ΓH where each job of any
task ΓH executes for its WCET. The servers in ΓH

s are
scheduled according to SH , i.e., server SH

i is scheduled
at time t if and only if τHi is scheduled at time t in SH .

Ex. 1. Assume that Γ consists of two gang tasks τ1 = (2, 1, 2)
and τ2 = (3, 1, 3) to be scheduled on a four-core platform.
Since the task periods are 2.0 and 3.0, we have H = 6,
h1 = 6/2 = 3, and h2 = 6/3 = 2. Thus, by Def. 2, ΓH con-
sists of periodic tasks τH1 = (0, 6, 3, 2) and τH2 = (0, 6, 2, 3).
As shown in Fig. 2, there is a HRT-feasible schedule of ΓH ,
which, by Rule P, is also the server schedule of SH

1 and SH
2 .

At time 0, the budget of SH
1 is replenished to m2C

H
2 =

2 · 3 = 6. During time [0, 3), SH
1 is scheduled, hence, its

budget is consumed at the rate of 2.0 unit per unit of time
during [0, 3). Thus, SH

1 ’s budget is exhausted at time 3. ♢

For ease of notation, we also denote the server schedule by
SH . By Rule P, we have the following lemma, which shows
that SH

i has sufficient budget to be scheduled whenever τHi
is scheduled in SH .

Lemma 5. If τHi is scheduled in SH at time t, then SH
i has at

least mi units of budget remaining at time t.

Proof. Assume that t is the first time instant when SH
i has less

than mi units of remaining budget, but τHi is scheduled. Let ℓ
be the non-negative integer such that t ∈ [ℓH, (ℓ+ 1)H). By
the Replenishment Rule, SH

i ’s budget is miC
H
i at time ℓH .

By the Consumption Rule, SH
i ’s budget is consumed at the

rate of mi units per unit of time when it is scheduled. Thus,
the remaining budget at time t is an integer multiple of mi.
Therefore, at time t, SH

i ’s budget is at most 0.
By the Consumption Rule, SH

i is scheduled for at least
miC

H
i

mi
= CH

i time units during [ℓH, t). Thus, By Rule P, τHi is
scheduled for at least CH

i time units during [ℓH, t). By Def. 2,
τHi ∈ ΓH releases its (ℓ+ 1)st job at time ℓH . Thus, by the
definition of SH , the (ℓ+1)st job of τHi completes by time t,
as τHi is scheduled for at least CH

i time units during [ℓH, t).
Since t < (ℓ + 1)H , there is no ready job of τHi at time t.
Thus, τHi cannot be scheduled at time t. Contradiction.

We now prove the following lemma, which we will later
use to prove Lemma 4.

Lemma 6. For any non-negative integer ℓ, server SH
i is sched-

uled for CH
i = hiCi time units during any time interval

[ℓH, (ℓ+ 1)H) in SH .

Proof. By Lemma 5, SH
i has at least mi units of remaining

budget at any time when τHi is scheduled. Therefore, SH
i can

be scheduled whenever τHi is scheduled.
By Def. 2, τHi ∈ ΓH releases its (ℓ+ 1)st job at time ℓH .

By the definition of SH and Def. 2, the (ℓ+1)st job of τHi is
scheduled for its WCET of hiCi time units and completes by
time (ℓ + 1)H in SH . Thus, SH

i is scheduled for hiCi time
units during [ℓH, (ℓ+ 1)H) in SH .

Scheduling tasks on servers. Jobs of the sporadic tasks in Γ
are scheduled on servers via the following rules.
R1 Jobs of τi are scheduled on server jobs of SH

i .
R2 If server SH

i is scheduled and job τi,j is ready at time t,
then τi,j is scheduled on the processors on which SH

i is
scheduled at time t.

Ex. 1 (Cont’d). Consider the scheduling of τ1 and τ2 in Fig. 2.
At time 0, τ1 has a ready job τ1,1 and SH

1 is scheduled. Thus,
by Rule R2, τ1,1 is scheduled at time 0. At time 1, there is no
pending job of task τ1. Thus, despite SH

1 being scheduled at
time 1, no job of τ1 is scheduled at time 1. ♢

We now show that each task τi has bounded response time
if SH is a HRT-feasible schedule of ΓH . We first show, in
Lemma 7, that jobs released during (ℓH, (ℓ+ 1)H] complete
execution by time (ℓ+ 2)H . Using this lemma, we will then
derive a response time bound of τi in Lemmas 8 and 9.

Lemma 7. If servers are scheduled according to Rule P and
tasks are scheduled according to Rules R1 and R2, then, for any
non-negative integer ℓ, any job τi,j released during (ℓH, (ℓ +
1)H] completes execution at or before time (ℓ+ 2)H .

Proof. Assume otherwise. Let ℓ be the smallest non-negative
integer such that there is a job τi,j released during (ℓH, (ℓ+
1)H] that completes execution after time (ℓ+2)H . Thus, any
job released during time interval ((ℓ − 1)H, ℓH] completes
execution at or before time (ℓ+1)H . Therefore, no job released
at or before time ℓH is pending at or after time (ℓ+ 1)H .

Let L be the remaining execution time of τi’s jobs that are
released during (ℓH, (ℓ + 1)H] at time (ℓ + 1)H . Since τi

releases its job sporadically, at most H/Ti = hi jobs of τi
are released during (ℓH, (ℓ+ 1)H]. Therefore, L ≤ hiCi. By
Lemma 6, SH

i is scheduled for hiCi time units during [(ℓ +
1)H, (ℓ+2)H). Since jobs of τi execute sequentially and L ≤
hiCi, by Rule R2, all job released during (ℓH, (ℓ+1)H] must
complete execution by time (ℓ+ 2)H , a contradiction.

Lemma 8. Let τi,j be the qth job of τi among τi’s jobs that are
released during (ℓH, (ℓ + 1)H] where q ≤ hi and ℓ is a non-
negative integer. If servers are scheduled according to Rule P
and tasks are scheduled according to Rules R1 and R2, then
τi,j’s response time is at most 2H − (hi − q)Ci − (q − 1)Ti.

Proof. We first prove that SH
i is scheduled for at least qCi

time units during [(ℓ+1)H, (ℓ+2)H − (hi − q)Ci). Assume
otherwise. During [(ℓ + 2)H − (hi − q)Ci, (ℓ + 2)H), SH

i

can be scheduled for at most (hi − q)Ci time units. Thus,
SH
i is scheduled during [(ℓ + 1)H, (ℓ + 2)H) for less than
qCi + (hi − q)Ci = hiCi time units, contradicting Lemma 6.

By Lemma 7, no job released at or before time ℓH is
pending after time (ℓ+ 1)H . The total execution time of the
first q jobs of τi released during (ℓH, (ℓ+1)H] is at most qCi.
Therefore, by Rule R2, τi,j completes execution at or before
time (ℓ + 2)H − (hi − q)Ci, as SH

i is scheduled for at least
qCi time units during [(ℓ+ 1)H, (ℓ+ 2)H − (hi − q)Ci).

Since τi releases jobs sporadically, we have ri,j ≥ ℓH +
(q−1)Ti. Therefore, τi,j’s response time is at most (ℓ+2)H−
(hi−q)Ci−ℓH−(q−1)Ti = 2H−(hi−q)Ci−(q−1)Ti.

Lemma 9. If servers are scheduled according to Rule P and
tasks are scheduled according to Rules R1 and R2, then task
τi’s response time is at most 2H − (hi − 1)Ci.

Proof. Let τi,j be an arbitrary job of τi. Assume that τi,j
is released during (ℓH, (ℓ + 1)H] where ℓ is a non-negative
integer and τi,j is the qth job among τi’s jobs that are released
during (ℓH, (ℓ + 1)H]. By Lemma 8, τi,j’s response time is
at most 2H − (hi − q)Ci − (q − 1)Ti = 2H − (hi − 1)Ci +
(q − 1)(Ci − Ti). Since q ≥ 1 and Ci ≤ Ti, τi,j’s response
time is at most 2H − (hi − 1)Ci. Thus, the lemma holds.

By Lemma 9, Γ is SRT-feasible. This proves Lemma 4.
The response-time bound in Lemma 9 can be exponential

with respect to the task count. However, for common task
systems that have pseudo-harmonic periods, where H = Tmax

holds, the response-time bound is less than 2Tmax.

C. Computational Complexity of SRT-Feasibility

We now prove the following theorem using the conditions
derived in Secs. III-A and III-B.

Theorem 1. SRT-feasibility for gang tasks is NP-hard.

Proof. The proof is via reduction from the partition problem.
The partition problem. Given a set A = {a1, a2, · · · , ap} of
positive integers with

∑p
i=1 ai = 2B, the partition problem

asks whether A can be partitioned into two equal-sum subsets
A1 and A2, i.e.,

∑
a∈A1

=
∑

a∈A2
= B.

Reduction. Let A = {a1, a2, · · · , ap} with
∑p

i=1 ai = 2B be
an arbitrary instance of the partition problem. We construct an
instance of the SRT-feasibility problem as follows. Let Γ be a
set of p sporadic gang tasks to be scheduled on B processors.
Task τi ∈ Γ has a period of 2.0 time units, a WCET of 1.0
time unit, and mi = ai.

We now prove that A can be partitioned into two equal-
sum subsets if and only if there exists a schedule S of Γ on
B processors where each task has bounded tardiness.

Sufficiency. Assume that A can be partitioned into two equal-
sum subsets A1 and A2. We will prove that ΓH is HRT-
feasible, which, by Lemma 4, implies that each task in Γ
has bounded tardiness under some scheduling algorithm. Since
each task’s period is 2.0, we have H = 2.0. Therefore, by
Def. 2, ΓH consists of p tasks such that τHi = (0, 2, 1,mi).
Since tasks in ΓH are implicit-deadline periodic tasks, it
suffices to show that there exists a schedule such that the
first jobs of all tasks in ΓH complete by time 2.0. We
construct such a HRT-feasible schedule SH as follows. SH

schedules tasks corresponding to subset A1 (respectively,
A2) during time interval [0, 1) (respectively, [1, 2)). Since∑

ai∈A1
ai =

∑
ai∈A2

ai = B and mi = ai for all i, exactly
B processors execute jobs of ΓH at any time during [0, 2).
Since A1 ∪ A2 = A and A1 ∩ A2 = ∅, each task in ΓH is
scheduled for exactly 1.0 time unit in SH . Thus, in SH , the
first jobs of all tasks in ΓH complete by time 2.0.

Necessity. Assume that there is a schedule S of Γ on B
processors where each task in Γ has bounded tardiness. Then,
by Lemma 3 and Def. 2, there exists a positive integer
k and a HRT-feasible task system ΓkH consisting of tasks
τi = (0, 2k, k,mi). Since tasks in ΓkH are periodic and have
implicit deadlines, there is a schedule SkH of ΓkH on B
processors where the first jobs of all tasks in ΓkH complete
at or before time 2k, i.e., each task execute for k time units
during time interval [0, 2k).

We first show that there is no idle processor in SkH at any
time instant during [0, 2k). Assume otherwise. Since there is
at least one idle processor during a unit-sized time interval,
the total execution of tasks in ΓkH is at most 2kB − 1 units.
The total execution requirement of the first jobs of tasks in
ΓkH is

∑p
i=1 k ·mi = k

∑p
i=1mi = k

∑p
i=1 ai = 2kB. Thus,

at least one task’s first job does not complete execution by
time 2k in SkH and SkH cannot be a HRT-feasible schedule
of ΓkH , a contradiction.

We now show that there exists a partition of A into two
equal-sum subsets. Let Q be the set of tasks that are scheduled
during [0, 1) in SkH . Since all B processors are busy during
[0, 1), we have

∑
τkH
i ∈Qmi = B. Let A1 be the subset of

A that consists of elements ai corresponding to tasks in Q.
Thus,

∑
ai∈A1

ai = B. Since
∑

ai∈A ai = 2B, we have∑
ai∈A\A1

ai = B. Thus, there exists a partition of two equal-
sum subsets of A.

Algorithm 1 FP-scheduling of servers.
Variables:
O : A priority ordering
Sched(t) : Set of jobs to be scheduled at time t

1: procedure FP
2: M ′ ←M
3: Order servers according to O
4: for each SH

i ∈ ΓH do
5: if mi ≤M ′ and SH

i ’s remaining budget > 0 then
6: Sched(t)← Sched(t) ∪ {SH

i }
7: M ′ ←M ′ −mi

IV. SCHEDULABILITY UNDER SERVER-BASED
SCHEDULING

In Sec. III, we gave a server-based approach for scheduling
gang tasks. We showed that if servers can be scheduled to
meet their deadlines, then the gang tasks in Γ have bounded
tardiness under the server-based scheduling policy. However,
we relied on a HRT schedule of the servers (Rule P).
Unfortunately, obtaining such a schedule is NP-hard in the
strong sense [14]. In this section, we provide some scheduling
policies and corresponding exact HRT-schedulability tests for
servers, which provide a sufficient means of testing SRT-
feasibility for gang tasks by Lemma 4.

Referring to the server-based scheme used to prove this
lemma, it is important to note that the HRT-schedulability of
the servers in ΓH

s under a given scheduling policy can be
different from HRT-schedulability of the tasks in ΓH under
that policy. This is because a server SH

i is required to be
scheduled for exactly CH

i time units during [0, H), as this
ensures that τi receives a sufficient processor allocation during
[0, H). In contrast, for ΓH , τHi can execute for less than its
WCET CH

i , which can cause scheduling anomalies by causing
some jobs to miss their deadlines. Thus, for servers, only the
case where SH

i is scheduled for exactly CH
i time units during

[0, H) needs to be considered, which may not be sufficient for
HRT-schedulability of ΓH under the same scheduling.

A. Fixed-Priority Scheduling of Servers

Under fixed-priority (FP) scheduling, each server has a
fixed priority. At any time instant, the highest-priority servers
that can execute together (without requiring more than M
processors) are scheduled as in Alg. 1. As all servers are
replenished synchronously every H time units, FIFO and
implicit-deadline GEDF scheduling (each with consistent tie-
breaking) are equivalent to FP when scheduling servers.
Determining server priorities. We consider the following
heuristics for determining server priorities.

• Parallelism-decreasing order. SH
i has higher priority

than SH
j if mi ≥ mj , with ties being broken consistently.

• Utilization-decreasing order. SH
i has higher priority

than SH
j if ui ≥ uj , with ties being broken consistently.

Schedulability test. The HRT-schedulability of the servers
under FP scheduling can be determined by simulating the
server schedule over the time interval [0, H). The time com-
plexity for this is polynomial with respect to the task and

processor counts. This is because no server is replenished
within (0, H), so the servers are scheduled non-preemptively.
Thus, scheduling decisions are taken only at time 0 and when
a server exhausts its budget. Hence, there are O(n) time
instants when scheduling decisions are made. Further, each
such decision is of polynomial time complexity.

B. Least-Laxity-First Scheduling of Servers

Under least-laxity (LLF) scheduling, servers with smaller
laxity have higher priority. A server’s laxity corresponds to
the amount of time it can be delayed without violating its
deadline. Formally, for a server SH

i , letting CH
i (t) (resp.,

DH
i (t)) to denote its remaining budget (resp., remaining time

to its deadline) at time t, its laxity LH
i (t) at time t is

LH
i (t) = DH

i (t)−CH
i (t). Thus, LLF scheduling also functions

like Alg. 1 with O denoting LLF ordering.
Schedulability test. Similar to FP scheduling, the HRT-
schedulability of servers under LLF scheduling can be done by
simulating the server schedule during [0, H). However, unlike
FP scheduling, the simulation may take O(H) time, as server
priorities may change during runtime.

C. ILP-Based Scheduling of Servers

Finally, we show that a server schedule can be obtained by
solving an integer linear program (ILP), specified as follows.
Variables. For each server SH

i , we define H variables
xHi,1, x

H
i,2, . . . , x

H
i,H . xHi,t is 1 if SH

i is scheduled during time
interval [t− 1, t) and 0 otherwise.
Constraint 1. SH

i is scheduled for hiCi time units (its hori-
zontal budget—see the discussion after Lemma 4) in [0, H):

∀i ::
H∑
t=1

xHi,t = hiCi.

Constraint 2. At most M processors are occupied at any time:

∀t ::
n∑

i=1

mi · xHi,t ≤M.

Note that mi is a constant.
Translating from a valid assignment of values to the xHi,t

variables to a correct server schedule is straightforward. Note
that this method provides an exact sever feasibility test.
Unfortunately, it has exponential time complexity.

V. SCHEDULABILITY UNDER GEDF

In this section, we consider the preemptive scheduling of
gang tasks by GEDF, which functions as shown in Alg. 2.
Under GEDF, ready jobs with earlier deadlines have higher
priorities. We assume that deadline ties are broken arbitrarily
but consistently (e.g., by task index). When considering a
ready job τi,j under GEDF, if mi is larger than the number
of remaining available processors, then τi,j is skipped (line 5
in Alg. 2).

Algorithm 2 GEDF job selection policy.
Variables:

Ready(t) : Set of ready jobs at time t
Sched(t) : Set of jobs to be scheduled at time t

1: procedure GEDF
2: M ′ ←M
3: Order jobs in Ready(t) in deadline-increasing order
4: for each τi,j ∈ Ready(t) do
5: if mi ≤M ′ then
6: Sched(t)← Sched(t) ∪ {τi,j}
7: M ′ ←M ′ −mi

Time

2

2

2

3

3

3

3

τH1

τH3

τH5

τH7

τH2

τH4

τH6

0 5 10 15 20 25

Release Deadline Completion Task execution

Fig. 3: A HRT-feasible schedule of ΓH in Theorem 2. The
numbers inside execution boxes denote mi values.

A. Non-SRT-Optimality under GEDF
In this section, we show that GEDF is non-optimal in

scheduling SRT gang tasks.

Theorem 2. GEDF is non-SRT-optimal for gang scheduling.

Proof. We give a gang task system and a release sequence for
it that has unbounded tardiness under GEDF. Let Γ be a gang
task system consisting of seven tasks to be scheduled on six
processors. Each task τi has a WCET of 7.0 time units and
a period of 21.0 time units. Let m1 = m3 = m5 = 2 and
m2 = m4 = m6 = m7 = 3.
Feasibility. Consider ΓH from by Def. 2. Since all task periods
are 21, each τHi has the same period, WCET, and degree of
parallelism as τi. Fig. 3 shows a HRT-feasible schedule of ΓH .
Thus, by Lemma 4, Γ is SRT-feasible.
Unschedulability under GEDF. Fig. 4 shows a GEDF
schedule for Γ where each task τi releases its first job at
time i− 1 and subsequent jobs periodically, i.e., its jth job is
released at time i − 1 + (j − 1)Ti. The GEDF prioritization
policy causes at least one idle processor during [0, 21), as a
task with mi = 3 is scheduled alongside a task with mi = 2.
A similar scenario occurs during the time interval [22, 43).
This causes the response time of the second job of each task
to be larger than its first job. At times 49 and 50, the third jobs
of τ1 and τ2, respectively, are scheduled. Thus, the schedule

during time [1, 50) starts to repeat at time 50, causing each
task’s response times to grow unboundedly.

Since GEDF cannot ensure bounded tardiness for a SRT-
feasible task system, it is not SRT-optimal for gang tasks.

Note that, according to the proof of Theorem 2, GEDF is
non-SRT-optimal for gang scheduling even when each task’s
mi value is at most three.

B. A GEDF Schedulability Test

We now give a schedulability test for GEDF. We begin by
introducing some terminology.
Allocation. The cumulative processor capacity allocated to
a job τi,j , task τi, task system Γ, and a set of jobs
Ψ, in a schedule S over an interval [t, t′) is denoted by
A(τi,j , t, t

′,S), A(τi, t, t′,S), A(Γ, t, t′,S), and A(Ψ, t, t′,S),
respectively. Thus, A(τi, t, t

′,S) =
∑

j A(τi,j , t, t
′,S),

A(Γ, t, t′,S) =
∑n

i=1 A(τi, t, t
′,S), and A(Ψ, t, t′,S) =∑

τi,j∈Ψ A(τi,j , t, t
′,S).

Ideal schedule. Let π̂1, π̂2, . . . , π̂n be n processors with
speeds u1, u2, . . . , un, respectively. In an ideal schedule I,
each task τi is partitioned to execute on processor π̂i. Each
job starts execution as soon as it is released and completes ex-
ecution by its deadline in I. For task τi (resp., task system Γ),
A(τi, t, t

′, I)) ≤ ui(t
′−t) (resp., A(Γ, t, t′, I) ≤ U(t′−t)). In

I, parallelism constraints of gang tasks may not be maintained.
lag and LAG. The lag of job τi,j at time t in a schedule S is

lag(τi,j , t,S) = A(τi,j , 0, t, I)− A(τi,j , 0, t,S). (1)
The lag of a task τi at time t in a schedule S is

lag(τi, t,S) =
∑
j

lag(τi,j , t,S) = A(τi, 0, t, I)−A(τi, 0, t,S).

(2)
Since lag(τi, 0,S) = 0, for t′ ≥ t we have
lag(τi, t

′,S) = lag(τi, t,S) + A(τi, t, t
′, I)− A(τi, t, t

′,S).
(3)

The LAG of a task system Γ in a schedule S at time t is

LAG(Γ, t,S) =
∑
τi∈Γ

lag(τi, t,S) = A(Γ, 0, t, I)−A(Γ, 0, t,S).

(4)
Similarly, the LAG of a set of jobs Ψ is

LAG(Ψ, t,S) =
∑

τi,j∈Ψ

lag(τi,j , t,S)

=
∑

τi,j∈Ψ

(A(τi,j , 0, t, I)− A(τi,j , 0, t,S)). (5)

Since LAG(Ψ, 0,S) = 0, for t′ ≥ t we have
LAG(Ψ, t′,S) = LAG(Ψ, t,S)+A(Ψ, t, t′, I)−A(Ψ, t, t′,S).

(6)
Ex. 2. Consider three gang tasks τ1 = (8, 5, 3), τ2 =
(10, 4, 5), and τ3 = (12, 7, 2) to be scheduled on six pro-
cessors. Figs. 5 and 6 show an ideal schedule I and a GEDF
schedule S, respectively, of these tasks. Since τ2’s utilization is
(5·4)/10 = 20/10 = 2, it executes at a rate of 2.0 in I. Task τ2
receives an allocation of 1·5 = 5 (resp., 6·2 = 12) units during
[0, 6) in S (resp., I). Therefore, lag(τ2, 6,S) = 12−5 = 7. ♢

Time

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

Deadline miss

τ1

τ3

τ5

τ7

τ2

τ4

τ6

0 5 10 15 20 25 30 35 40 45 50 55 60

Release Deadline Completion Task execution

Fig. 4: GEDF schedule of Γ in Theorem 2. The numbers inside execution boxes denote mi values.

Time

τ1 (rate: 15/8)

τ2 (rate: 20/10)

τ3 (rate: 14/12)

0 5 10 15

Release Deadline Completion Task execution

Fig. 5: An ideal schedule.

Time

3 3

5 5

2 2 2

τ1

τ2

τ3

0 5 10 15

Release Deadline Completion Task execution

Fig. 6: A GEDF schedule. The numbers inside execution
boxes denote mi values.

Def. 3. For a task τi, let ∆i denote the maximum possible
number of idle processors at any time instant when τi has a
ready job that cannot execute. Let ∆max = maxi{∆i}.

Ex. 3. Consider four gang tasks with m1 = 3,m2 = 4,m3 =
5, and m4 = 6 to be scheduled on ten processors. If τ2 has
a pending job at time t that cannot execute, then at least
seven processors are busy at time t. No combination of other
tasks can occupy exactly seven processors. However, if τ1 and
τ3 execute on m1 + m3 = 8 processors at time t, then τ3
cannot execute at time t. Thus, the maximum number of idle
processors when τ3 cannot execute is ∆2 = 10− 8 = 2. ♢

Dong et al. gave an O(M2n) time dynamic-programming
algorithm to compute the ∆i value of a task [8]. Using ∆max,
they established the following sufficient condition for bounded

tardiness of gang tasks under GEDF.

Theorem 3 ([8]). If U ≤M −∆max, then each task in Γ has
bounded tardiness under GEDF.

Consider the task system shown in Fig. 1. Since M = 4,
m1 = 3, and m2 = 2, we have ∆1 = 2 and ∆2 = 1. The
utilization of the task system is 3·2

8 + 2·6
8 = 18

8 = 2.25, which
is larger than M − ∆max = 4 − 2 = 2. Thus, the system is
not SRT-schedulable under GEDF by Theorem 3.

In this paper, we give an improved sufficient condition for
the SRT-schedulability of gang tasks under GEDF. We first
introduce some necessary terms.

Def. 4. Let Mp denote the minimum possible number of busy
processors whenever at least p tasks in Γ have pending jobs.
Ex. 3 (Cont’d). Assume that at least three tasks have pending
jobs at time t. If both τ1 and τ2 have pending jobs at time t,
then at least seven processors are busy at time t under GEDF.
On the other hand, if one of τ1 and τ2 has no pending job at
time t, then both τ3 and τ4 have pending jobs at time t. In
that case, at least m1 +m3 = 8 processors are busy at time t
under GEDF. Thus, the minimum number of busy processors
when at least three tasks have pending job is M3 = 7. ♢

Before showing how to compute Mp, we first give a suffi-
cient SRT-schedulability condition for GEDF. This condition
is comprised of two sub-conditions, which we define next.

Def. 5. Let U b =
∑

b smallest ui, i.e., U b denotes the sum of the
b smallest ui values.

∃b ∈ N0 : b < n∧U ≤ (M −∆max+U b)∧U ≤Mn−b (7)
∀i : λi ≤ 1 ∧mi ≤M (8)

Specifically, we will prove the following theorem.

Theorem 4. If (7) and (8) hold, then τi’s tardiness is at most
x+ Ci where

x ≥ max{0,
∑

(n−b−1) largest mkCk − Cmin

M −∆max + U b+1 − U
}. (9)

Here,
∑

(n−b−1) largest mkCk is the sum of the n− b− 1 largest
values of mkCk among all k.

Note that the denominator in (9) is positive if (7) is met.
This is because U b+1 > U b, implying M −∆max + U b+1 >
M − ∆max + U b ≥ U . Also, if a task system satisfies the
schedulability condition in Theorem 3, then it also satisfies (7).
This can be shown by considering b = 0, for which U ≤
M −∆max ≤ Mn holds . The last inequality holds because
by Def. 3, at least M − ∆max processors are busy if a task
has a pending but unscheduled job.
Ex. 4. Consider seven gang tasks to be scheduled on ten
processors GEDF. Let τ1 = (10, 1, 9) and τi = (10, 1, 2)
for all i > 1. Thus, U = 9·1

10 + 6× 2·1
10 = 21

10 = 2.1. Also, we
have ∆1 = 8, as τ1 cannot execute if one of the remaining
tasks is scheduled. Thus, ∆max = 8 and M − ∆max = 2.
Since U > M − ∆max = 2, the system is deemed SRT-
unschedulable by Theorem 3.

Now consider the condition in (7). For b = 1, U b = 2/10 =
0.2, so M − ∆max + U b = 2 + 0.2 = 2.2 holds, which is
larger than U . Also, at least nine processors are busy at time t
if at least n − 1 tasks have pending jobs at time t. Thus,
Mn−1 = 9 > U , and (7) is satisfied. Therefore, the system is
SRT-schedulable by Theorem 4. ♢

We now prove Theorem 4. Our proof strategy is similar to
the LAG-based approach pioneered by Devi and Anderson [5]
for ordinary sporadic tasks, and later adapted for gang tasks
by Dong et al. [8]. The LAG-based analysis in [8] relies on
determining an upper bound on LAG by considering lag values
at the latest time instant t0 at or before the deadline td of a job
of interest such that at least M −∆max processors are busy
during [t0, td). However, this may not capture the “opportunis-
tic” execution of lower-priority jobs (e.g., the execution of τ3
during [0, 5) in Fig. 6 despite having lower priority than τ2).
By defining t0 using the number of tasks with pending jobs,
instead of busy processors, we can account for such lower-
priority job execution. This may result in a larger LAG upper
bound at t0, as more tasks need to be considered, causing
larger tardiness bounds.

Assume that (7) and (8) hold for Γ and let b be the smallest
non-negative integer for which (7) is met. Let S be a GEDF
schedule of Γ. We consider an arbitrary job τi,j and inductively
prove that its tardiness is no more than x+Ci in S. Thus, we
assume the following.

F The tardiness of each job with higher priority than τi,j is
at most x+ Ci in S.

Let td = di,j and tf = fi,j . We assume that tf > td holds,
otherwise τi,j’s tardiness is 0.

Def. 6. Let ψ be the set of jobs that have higher priority than
τi,j . Let Ψ = ψ ∪ {τi,j}.

Under GEDF scheduling, τi,j can only be delayed by the
jobs in Ψ \ {τi,j}. Note that jobs not in Ψ can be scheduled
before τi,j due to the lack of enough processors to schedule
τi,j (line 5 in Alg. 2). However, such jobs will be preempted
(if needed) as soon as there are enough processors to schedule
τi,j . The following lemma gives an upper bound on lag values.

Lemma 10 ([8]). For any task τk and a time instant t ≤ td,
lag(τk, t,S) ≤ mk(xλk + Ck) holds.

Def. 7. A time instant t is called b-busy if at least n − b tasks
have pending jobs (hence, at most b tasks have no pending jobs)
in Ψ at t, and b-non-busy otherwise. A time interval is called b-
busy (resp., b-non-busy) if each instant in the interval is b-busy
(resp., b-non-busy).

The number of busy processors in a b-busy time instant t
depends on the mi values and the deadlines of the pending
jobs at time t. Also, the number of busy processors may vary
throughout a busy interval because of job releases and com-
pletions. However, by Def. 4, the number of busy processors
is lower bounded by Mn−b at any busy instant, as there are
at least n− b pending jobs.

Def. 8. Let t0 be the first time instant such that [t0, td) is a b-
busy interval. Let τ∗ be the set of tasks with jobs in Ψ that are
pending at time t0 − 1. Note that τ∗ = ∅, if t0 = 0.

Using Lemma 10, we upper-bound the LAG of Ψ at t0.

Lemma 11. LAG(Ψ, t0,S) ≤
∑

τk∈τ∗ (mk (xλk + Ck)).

Proof. By (5), we have

LAG(Ψ, t0,S) =
∑

τk,ℓ∈Ψ

lag(τk,ℓ, t0,S)

=
∑
τk∈Γ

∑
τk,ℓ∈Ψ

lag(τk,ℓ, t0,S)

=
∑

τk∈τ∗

∑
τk,ℓ∈Ψ

lag(τk,ℓ, t0,S)

+
∑

τk /∈τ∗

∑
τk,ℓ∈Ψ

lag(τk,ℓ, t0,S). (10)

We now prove two claims motivated by (10).

Claim 11.1. For any τk /∈ τ∗,
∑

τk,ℓ∈Ψ lag(τk,ℓ, t0,S) ≤ 0.

Proof. Since τk /∈ τ∗, τk has no pending job in Ψ at time
t0−1. Let τk,p ∈ Ψ be the latest job of τk released at or before
time t0−1 (hence, before time t0). By the definition of I, for
each job τk,ℓ ∈ Ψ with ℓ ≤ p, we have A(τk,ℓ, 0, t0, I) ≤ Ck,ℓ.
Additionally, since τk,p completes execution by time t0 in S,
we have A(τk,ℓ, 0, t0,S) = Ck,ℓ for each such job τk,ℓ. Thus,
for all ℓ ≤ p, we have A(τk,ℓ, 0, t0, I)− A(τk,ℓ, 0, t0,S) ≤ 0.
Therefore, by (1) we have

∀ℓ ≤ p : lag(τk,ℓ, t0,S) ≤ 0. (11)
No job τk,ℓ ∈ Ψ with ℓ > p can execute before time t0 in
both I and S. Thus, for ℓ > p, we have A(τk,ℓ, 0, t0, I) =
A(τk,ℓ, 0, t0,S) = 0. Thus, we have ∀ℓ > p : lag(τk,ℓ, t0,S) =
0. Together with (11), this implies the claim.

Claim 11.2. For any τk∈τ∗ and job τk,ℓ /∈Ψ, lag(τk,ℓ,t0,S)≥0.

Proof. Since each task executes sequentially, job τk,ℓ /∈ Ψ
cannot execute before all jobs of τk in Ψ complete execution.
Since τk has a pending job in Ψ at time t0 − 1, τk,ℓ
cannot be scheduled at or before time t0 − 1 in S . Thus,

A(τk,ℓ, 0, t0,S) = 0 holds. Since A(τk,ℓ, 0, t0, I) ≥ 0 holds,
by (1), the claim follows.

By Claim 11.1 and (10), we have LAG(Ψ, t0,S) ≤∑
τk∈τ∗

∑
τk,ℓ∈Ψ lag(τk,ℓ, t0,S), which is at most∑

τk∈τ∗(
∑

τk,ℓ∈Ψ lag(τk,ℓ, t0,S) +
∑

τk,ℓ /∈Ψ lag(τk,ℓ, t0,S))
=

∑
τk∈τ∗ lag(τk, t0,S), by Claim 11.2. Therefore, by

Lemma 10, LAG(Ψ, t0,S) ≤
∑

τk∈τ∗ mk(xλk + Ck).

Finally, we give an upper bound on the LAG of Ψ at time td.

Lemma 12. LAG(Ψ, td,S) ≤
∑

τk∈τ∗ (mk (xλk + Ck)).

Proof. Since [t0, td) is a b-busy interval, by Defs. 4 and 7, at
least Mn−b processors are busy executing jobs in Ψ during
[t0, td) in S. Thus, A(Ψ, t0, td,S) ≥ Mn−b(td − t0) holds.
By (6), we have
LAG(Ψ, td,S) = LAG(Ψ, t0,S) + A(Ψ, t0, td, I)

− A(Ψ, t0, td,S)
≤ {Since A(Ψ, t0, td, I) ≤ U(td − t0) and

A(Ψ, t0, td,S) ≥Mn−b(td − t0)}
LAG(Ψ, t0,S) + U(td − t0)−Mn−b(td − t0)

≤ {Since U ≤Mn−b by (7)}
LAG(Ψ, t0,S)

≤ {By Lemma 11}∑
τk∈τ∗

(mk (xλk + Ck)) .

Let W be the total remaining workload of Ψ at time td in
S. Using Lemma 12, we upper bound W in the lemma below.

Lemma 13. W ≤
∑

τk∈τ∗ (mk (xλk + Ci)).

Proof. By the definition of I, all jobs in Ψ finish execution by
time td in I. The completed workload of jobs in Ψ at time td
is A(Ψ, 0, td,S). Thus, the remaining workload of Ψ at time td
in S is LAG(Ψ, td,S) ≤

∑
τk∈τ∗ (mk (xλk + Ck)).

The following lemma gives a lower bound on W if τi,j’s
tardiness exceeds x + Ci. The lemma can be proven by
considering an interval [td, td + ty) during which at least
M −∆max processors execute jobs in Ψ.

Lemma 14 ([8]). If W ≤ (M − ∆max)x + Ci holds, then
τi,j’s tardiness is at most x+ Ci.

The next lemma shows that Theorem 4 holds.

Lemma 15. τi,j’s tardiness is at most x+ Ci.

Proof. Assume that τi,j’s tardiness is more than x+Ci. Then,
by Lemma 14, W > (M−∆max)x+Ci holds. By Lemma 13,
we have

(M −∆max)x+ Ci <
∑

τk∈τ∗

mk (xλk + Ck) ,

which implies

x <

∑
τk∈τ∗ mkCk − Ci

M −∆max −
∑

τk∈τ∗ mkλk

Algorithm 3 Finding Mp.
Variables:

F [i, ℓ,m] is initially NULL
B[i, ℓ,m] precomputed true/false values
mi values in non-decreasing order

1: procedure FIND Mp(i, ℓ,m)
2: if F [i, ℓ,m] ̸= NULL then
3: return F [i, ℓ,m]

4: if ℓ < 0 ∨m < 0 then
5: return ∞
6: if i = n then
7: F [i, ℓ,m]←∞
8: if ℓ = 0 and mi ≤ m then
9: F [i, ℓ,m]← mi

10: if (ℓ = 0 and mi > m) or ℓ = 1 then
11: F [i, ℓ,m]← 0

12: return F [i, ℓ,m]

13: x1 ← FIND Mp(i+ 1, ℓ− 1,m)
14: x2 ← FIND Mp(i+ 1, ℓ,m−mi) +mi

15: for each x ∈ {m−mi + 1, · · · ,m} do
16: if B[i+ 1, ℓ, x] = true then
17: x3 ← x
18: break
19: F [i, ℓ,m]← min(x1, x2, x3)
20: return F [i, ℓ,m]

=

∑
τk∈τ∗ mkCk − Ci

M −∆max −
∑

τk∈τ∗ uk

≤ {Since |τ∗| ≤ n− b− 1 and Ci ≥ Cmin}∑
(n−b−1) largest mkCk − Cmin

M −∆max −
∑

(n−b−1) largest uk

=

∑
(n−b−1) largest mkCk − Cmin

M −∆max − U +
∑

(b+1) smallest uk

= {By Def. 5}∑
(n−b−1) largest mkCk − Cmin

M −∆max + U b+1 − U
,

which contradicts (9).

Discussion. The tardiness bound given in Theorem 4 is smaller
for large b values. Thus, to compute a small tardiness bound,
the largest b value that satisfies (7) should be picked.
Computing Mp. We now show how to compute the value of
Mp. We begin by giving the following property.

Property 1. Let Me
p denote the the minimum possible number

of busy processors whenever exactly p tasks in Γ have pending
jobs. Then, for any p < n, Me

p ≤Me
p+1.

By Property 1, we have Mp =Me
p . Thus, we compute Mp

by determining Me
p . To compute Me

p , we first index tasks in
the non-decreasing order by mi, i.e., mi ≤ mi+1.

Property 2. If M ′ processors are busy at time t, then, for any
unscheduled task τi with pending jobs, M ′ +mi > M holds.

We give a dynamic-programming algorithm to compute
Me

p that satisfies Property 2 as shown Alg. 3. Alg. 3 uses
a precomputed array B, which we compute via dynamic
programming. We first describe how B is computed.

Let B[i, ℓ,m] be true if there exists a subset Γi,ℓ of
(n − i + 1) − ℓ tasks with pending jobs (i.e., exactly ℓ
tasks with no pending jobs) in {τi, τi+1, · · · , τn} such that
(∃ Γe

i,ℓ ⊆ Γi,ℓ :
∑

τk∈Γe
i,ℓ
mk = m) holds, and false otherwise.

Informally, if B[i, ℓ,m] is true and if there are exactly ℓ tasks
in {τi, τi+1, · · · , τn} that have no pending job at time t, then
there is a way to select jobs from the remaining (n− i+1)−ℓ
tasks to occupy exactly m processors.

We can compute the array B in O(n2M) time via dynamic
programming using the following recurrence.

B[i, ℓ,m] =



true if i = n ∧
((m = mn ∧ ℓ = 0)

∨(m = 0 ∧ ℓ ≤ 1))

false if ℓ < 0 ∨ (i = n ∧
((m = mn ∧ ℓ ̸= 0)

∨(m = 0 ∧ ℓ > 1)

∨(m /∈ {0,mn})))
B[i+ 1, ℓ,m−mi]

∨B[i+ 1, ℓ,m] otherwise
∨B[i+ 1, ℓ− 1,m]

(12)
The first two cases in (12) cover the base cases. For i =

n, B[n, ℓ,m] is only true if ℓ = 0 (τn has a pending job)
and m = mn, or ℓ ≤ 1 and m = 0. For i < n, B[i, ℓ,m]
is computed via the third case in (12). B[i + 1, ℓ,m − mi]
(resp., B[i + 1, ℓ,m]) holds when τi has a pending job that
executes on mi processors (resp., does not execute), ℓ tasks
in {τi+1, · · · , τn} have no pending jobs, and those tasks with
pending jobs occupy m − mi (resp., m) processors. B[i +
1, ℓ − 1,m] holds when τi has no pending job, ℓ − 1 tasks
in {τi+1, · · · , τn} have no pending jobs, and the tasks with
pending jobs occupy m processors.

Using the array B, procedure FIND Mp(i, ℓ,m) in Alg. 3
determines the minimum number of busy processors when
{τi, τi+1, · · · , τn} are scheduled on m processors and ℓ tasks
among them have no pending jobs. To compute Mp, we invoke
FIND Mp(1, n − p,M). We now describe Alg. 3. Lines 2–
3 check whether the subproblem is already computed and
lines 4–12 cover the base cases. Line 13 makes a recursive call
to determine the minimum number of busy processors when
τi has no pending job (thus, ℓ−1 tasks among {τi+1, . . . , τn}
have no pending jobs). Line 14 considers the case when
τi has a pending and scheduled job (thus, ℓ tasks among
{τi+1, . . . , τn} have no pending jobs), Lines 15–18 consider
the case when τi has pending but unscheduled jobs. In this
case, at least m−mi + 1 processors must be busy. Thus, for
each x ∈ {m −mi + 1, · · · ,m}, we consult the array B to
determine the lowest possible x value for which B[i+1, ℓ, x]
is true. Note that if B[i+1, ℓ, x] is true, then any unscheduled
task τk with k > i satisfies Property 2 because mi ≤ mk.
Finally, the minimum among the three cases are returned.

Since i ≤ n, ℓ ≤ n, and m ≤ M holds, FIND Mp is
called at most O(n2M) times. In each call, lines 15–18 take

O(M) time with the precomputed B array. Thus, the total time
to compute Mp is O(n2M2). Since Mp can be computed in
polynomial time, (7) can also be checked in polynomial time.

VI. EXPERIMENTS

In this section, we provide the results of a schedulability
study we conducted to evaluate our proposed approaches.

Our task-system generation method is similar to that used
in prior gang-task-related schedulability studies [6]–[8]. We
generated task systems randomly for systems with M =
16 or M = 32 processors. Motivated by automotive use
cases, we chose task periods from {2, 5, 10, 20, 50, 100, 200,
1000}ms [13]. We considered light, medium, or heavy hor-
izontal task utilizations, which are uniformly distributed in
[0.01, 0.1], [0.1, 0.3], and [0.3, 1], respectively. We set each
task’s WCET Ci to Ti · ui rounded to the next microsecond.
We considered small, moderate, or heavy degrees of paral-
lelism, for which mi values were uniformly distributed in
[1, M4], [M4 ,

5M
8], and [5M8 , 7M8], respectively. We varied the

normalized utilization, i.e., U/M , from 0.1 to 1.0 with a
step size of 0.1. For each combination of M , horizontal task
utilization, degree of parallelism, and normalized utilization,
we generated 1,000 task systems. We generated each such
task system by creating tasks until the system’s normalized
utilization exceeds the desired value, and by then reducing the
last task’s utilization so that the normalized utilization equals
the desired value. We call each combination of M , horizontal
task utilization, and degree of parallelism a scenario.

We assessed the SRT-schedulability of each task system
under both GEDF and the server-based scheduling policies
given in Sec. IV. For scheduling servers, we considered FP
scheduling with parallelism-decreasing priorities (S-FP-M),
FP scheduling with utilization-decreasing priorities (S-FP-
U), LLF scheduling (S-LLF), and ILP-based scheduling (S-
ILP). To assess the efficacy of the schedulability tests of
servers given in Sec. IV, we also determined the schedulability
of servers under GEDF by methods in [6] (S-ILP). For
GEDF scheduling of gang tasks, we determined schedulability
by the prior method (denoted GEDF-P) from Dong et al.,
i.e., Theorem 3, and by our method (denoted GEDF-O),
i.e., Theorem 4. For each scenario, we computed acceptance
ratios, which give the percentage of task systems that were
schedulable under each approach. We present a representative
selection of our results in Fig. 7.

Observation 1. In all scenarios, S-LLF had a higher accep-
tance ratio than S-FP-M, S-FP-U, GEDF-O, and GEDF-
P. For most scenarios, S-FP-M and S-FP-U had higher
acceptance ratios than GEDF-P. The average improvement
in S-LLF, S-FP-M, S-FP-U, and GEDF-O over GEDF-P
was 37.65%, 26.37%, 28.79%, and 8.32%, respectively.

This can be seen in Fig. 7(a)–(c). Being a dynamic-priority
scheduling algorithm, LLF can schedule more task systems
than the other approaches. In most scenarios, server-based FP
scheduling outperformed GEDF, while utilization-decreasing
priority ordering outperformed parallelism-decreasing priority

(a) Acceptance ratio for M = 32, medium horizontal utiliza-
tions, and moderate degree of parallelism.

(b) Acceptance ratio for M = 32, heavy horizontal utilizations,
and small degree of parallelism.

(c) Acceptance ratio for M = 16, heavy horizontal utilizations,
and moderate degree of parallelism.

(d) Relative tardiness bounds under GEDF for M = 16, heavy
horizontal utilizations, and moderate degree of parallelism.

Fig. 7: Experimental results.

ordering. As expected, more task systems were schedulable by

Theorem 4 than by Theorem 3.

Observation 2. For scenarios with a small degree of paral-
lelism, GEDF-O and GEDF-P had higher acceptance ratios
than S-FP-M and S-FP-U.

This can be seen in Fig. 7(b). When the mi values are small,

Δmax (Def. 3) is also small. This causes more task systems

to be schedulable under GEDF by Theorem 3.

Observation 3. The average improvement in S-ILP over
S-LLF, S-FP-M, S-FP-U, GEDF-O, and GEDF-P was
0.16%, 9.10%, 7.05%, 27.29%, and 37.88%, respectively. In
all scenarios, S-GEDF-DOLI had smaller acceptance ratios
than S-ILP, S-LLF, S-FP-M, and S-FP-U.

Figs. 7(a)–(c) show this. Server-based LLF scheduling

scheduled most task systems that were schedulable under ILP-

based scheduling. In contrast, many SRT-feasible task sys-

tems were deemed unschedulable by the other considered

approaches. S-GEDF-DOLI was deemed more pessimistic

than S-ILP, S-LLF, S-FP-M, and S-FP-U, as it is applicable

to HRT-scheduling of sporadic gang tasks.

To compare the tardiness bounds derived under GEDF
(Theorem 4) with those from [8], we computed relative
tardiness bounds for all task systems that are SRT-schedulable

according to the corresponding GEDF schedulability tests. A

task’s relative tardiness is computed by dividing its tardiness

by the maximum period, i.e., Tmax. When computing relative

tardiness bounds using Theorem 4, we selected the largest

value of b for which (7) was satisfied.

Observation 4. On average, relative tardiness bounds in
GEDF-O were 47.53% smaller than GEDF-P.

Fig. 7(d) shows this. This improvement was due to fre-

quently observed large b values that contributed to a less

pessimistic accounting of carry-on workloads.

VII. CONCLUSION

In this paper, we have considered the SRT-feasibility prob-

lem for systems of gang tasks. We have presented a necessary

and a sufficient condition for the SRT-feasibility of such

systems. Based on these conditions, we have shown that the

SRT-feasibility problem for gang task systems is NP-hard.

We have also provided server-based scheduling policies for

gang tasks and corresponding SRT-schedulability tests for

gang tasks based on exact HRT-schedulability tests for the

servers. Finally, we have shown that GEDF is non-SRT-

optimal for gang tasks and provided a SRT-schedulability test

for gang tasks under GEDF. We have provided experimental

evaluations that demonstrate the benefits of our approaches.

In future work, we plan to investigate whether the SRT-

feasibility problem for gang tasks is NP-hard in the strong

sense. We also plan to devise smaller tardiness bounds under

GEDF and server-based scheduling. Furthermore, we aim to

investigate scheduling policies that may utilize both deadlines

and the degree of parallelism in determining job priorities.

Finally, we want to study the non-preemptive scheduling of

SRT gang tasks, as this is relevant to GPUs as a use case.

REFERENCES

[1] S. Ahmed and J. Anderson, “Tight tardiness bounds for pseudo-harmonic
tasks under global-EDF-like schedulers,” in ECRTS’21, 2021, pp. 11:1–
11:24.

[2] ——, “Exact response-time bounds of periodic DAG tasks under server-
based global scheduling,” in RTSS’22, 2022, pp. 447–459.

[3] W. Ali, R. Pellizzoni, and H. Yun, “Virtual gang scheduling of parallel
real-time tasks,” in DATE’21, 2021, pp. 270–275.

[4] A. Bhuiyan, K. Yang, S. Arefin, A. Saifullah, N. Guan, and Z. Guo,
“Mixed-criticality multicore scheduling of real-time gang task systems,”
in RTSS’19, 2019, pp. 469–480.

[5] U. Devi and J. Anderson, “Tardiness bounds under global EDF schedul-
ing on a multiprocessor,” in RTSS’05, 2005, pp. 330–341.

[6] Z. Dong and C. Liu, “Analysis techniques for supporting hard real-time
sporadic gang task systems,” Real Time Syst., vol. 55, no. 3, pp. 641–
666, 2019.

[7] ——, “A utilization-based test for non-preemptive gang tasks on multi-
processors,” in RTSS’22, 2022, pp. 105–117.

[8] Z. Dong, K. Yang, N. Fisher, and C. Liu, “Tardiness bounds for sporadic
gang tasks under preemptive global EDF scheduling,” IEEE Trans.
Parallel Distributed Syst., vol. 32, no. 12, pp. 2867–2879, 2021.

[9] J. Erickson, J. Anderson, and B. Ward, “Fair lateness scheduling: reduc-
ing maximum lateness in G-EDF-like scheduling,” Real-Time Systems,
vol. 50, no. 1, pp. 5–47, 2014.

[10] J. Goossens and V. Berten, “Gang FTP scheduling of periodic and
parallel rigid real-time tasks,” CoRR, vol. abs/1006.2617, 2010.

[11] J. Goossens and P. Richard, “Optimal scheduling of periodic gang tasks,”
Leibniz Trans. Embed. Syst., vol. 3, no. 1, pp. 04:1–04:18, 2016.

[12] S. Kato and Y. Ishikawa, “Gang EDF scheduling of parallel task
systems,” in RTSS’09, 2009, pp. 459–468.

[13] S. Kramer, D. Ziegenbein, and A. Hamann, “Real world automotive
benchmarks for free,” in WATERS’15, 2015.

[14] M. Kubale, “The complexity of scheduling independent two-processor
tasks on dedicated processors,” Inf. Process. Lett., vol. 24, no. 3, pp.
141–147, 1987.

[15] S. Lee, N. Guan, and J. Lee, “Design and timing guarantee for non-
preemptive gang scheduling,” in RTSS’22, 2022, pp. 132–144.

[16] S. Lee, S. Lee, and J. Lee, “Response time analysis for real-time global
gang scheduling,” in RTSS’22, 2022, pp. 92–104.

[17] H. Leontyev and J. Anderson, “Tardiness bounds for FIFO scheduling
on multiprocessors,” in ECRTS’07, 2007, p. 71.

[18] ——, “Generalized tardiness bounds for global multiprocessor schedul-
ing,” Real-Time Systems, vol. 44, no. 1-3, pp. 26–71, 2010.

[19] C. Liu and J. H. Anderson, “Supporting soft real-time DAG-based
systems on multiprocessors with no utilization loss,” in RTSS’10, 2010,
pp. 3–13.

[20] G. Nelissen, J. M. i Igual, and M. Nasri, “Response-time analysis for
non-preemptive periodic moldable gang tasks,” in ECRTS’22, 2022, pp.
12:1–12:22.

[21] P. Richard, J. Goossens, and S. Kato, “Comments on ”gang EDF
schedulability analysis”,” CoRR, vol. abs/1705.05798, 2017.

[22] S. Tang and J. Anderson, “Towards practical multiprocessor EDF with
affinities,” in RTSS’20, 2020, pp. 89–101.

[23] S. Tang, S. Voronov, and J. Anderson, “GEDF tardiness: Open problems
involving uniform multiprocessors and affinity masks resolved,” in
ECRTS’19, 2019, pp. 13:1–13:21.

[24] N. Ueter, M. Günzel, G. von der Brüggen, and J. Chen, “Hard real-time
stationary gang-scheduling,” in ECRTS’21, vol. 196, 2021, pp. 10:1–
10:19.

[25] K. Yang and J. Anderson, “On the soft real-time optimality of global
EDF on uniform multiprocessors,” in RTSS’17, 2017, pp. 319–330.

