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Abstract. Let T be an edge weighted tree and let dmin, dmax be two
non-negative real numbers where dmin ≤ dmax. A pairwise compatibility
graph (PCG) of T for dmin, dmax is a graph G such that each vertex
of G corresponds to a distinct leaf of T and two vertices are adjacent
in G if and only if the weighted distance between their corresponding
leaves lies within the interval [dmin, dmax]. A graph G is a PCG if there
exist an edge weighted tree T and suitable dmin,dmax such that G is
a PCG of T . Knowing that all graphs are not PCGs, in this paper we
introduce a variant of pairwise compatibility graphs which we call multi-
interval PCGs. A graph G is a multi-interval PCG if there exist an edge
weighted tree T and some mutually exclusive intervals of nonnegative
real numbers such that there is an edge between two vertices in G if and
only if the distance between their corresponding leaves in T lies within
any such intervals. If the number of intervals is k, then we call the graph
a k-interval PCG. We show that every graph is a k-interval pairwise
compatibility graph for some k. We also prove that wheel graphs and a
restricted subclass of series-parallel graphs are 2-interval PCGs.

Keywords: Pairwise compatibility graphs, Phylogenetic trees, Series-
parallel graphs

1 Introduction

Let T be an edge weighted tree and let dmin, dmax be two non-negative real
numbers where dmin ≤ dmax. A pairwise compatibility graph (PCG) of T for
dmin and dmax is a graph G = (V,E) where each vertex of G corresponds to a
distinct leaf of T and two vertices are adjacent in G if and only if the weighted
distance between their corresponding leaves lies within the interval [dmin, dmax].
The tree T is called a pairwise compatibility tree (PCT) of G. We denote a
pairwise compatibility graph T for dmin, dmax by PCG (T ,dmin,dmax). A given
graph is a PCG if there exist suitable T , dmin, dmax such that G is a PCG of T .
Figure 1(b) illustrates a pairwise compatibility graph G of the edge weighted tree
in Fig. 1(a) T for dmin =3 and dmax =5. For a pairwise compatibility graph G,
pairwise compatibility tree T may not be unique. For example, Fig. 1(c) shows
another pairwise compatibility tree of the graph G in Fig. 1(b) for the same dmin
and dmax.
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Fig. 1. (a) An edge weighted tree T , (b) a pairwise compatibility graph G of T for
dmin = 3 and dmax = 5 and (c) another pairwise compaitibility tree of G.

PCGs have their application in modeling evolutionary relationship among set
of organisms from biological data which is also called phylogeny. Phylogenetic
relationships are normally represented as a tree called phylogenetic tree. While
dealing with a sampling problem from large phylogenetic tree, Kearney et al. [9]
introduced the concept of PCGs. They also showed that “the clique problem”
can be solved in polynomial time for a PCG if a pairwise compatibility tree can
be constructed in polynomial time.

Kearney et al. [9] conjectured that all graphs are PCGs, but later Yanhaona
et al. [12] refuted the conjecture showing a bipartite graph with fifteen vertices
is not a PCG. Later Calamoneri et al. proved that every graph with at most
seven vertices is a PCG [4]. It is also known that the graphs having cycles as
their maximum biconnected components, tree power graphs, Steiner k-power
graphs, phylogenetic k-power graphs, some restricted subclasses of bipartite
graphs, triangle-free maximum-degree-three outer planar graphs and some su-
perclass of threshold graphs are PCGs [13], [12], [11], [6]. Calamoneri et al. gave
some sufficient conditions for split matrogenic graph to be a PCG [5]. Recently
a graph with eight vertices and a planar graph with sixteen vertices is proved
not to be PCGs [7]. Iqbal et al. showed a necessary condition and a sufficent
condition for a graph to be PCG [8]. Howerver, the complete characterization of
PCGs is not known yet.

As not all graphs are PCGs, some researchers has tried to relax constraint on
PCGs and thus some variants of PCGs are introduced [3], [5]. One such variant
of PCG is improper PCG which allows multiple leaves corresponding to a vertex
of a graph [3]. In this paper we introduce a new variant of PCGs which we
call k-interval PCGs. The idea behind a k-interval PCG is to allow k mutually
exclusive intervals of nonnegative real numbers instead of one. A graph G is
a k-interval PCG of an edge weighted tree T for mutually exclusive intervals
I1, I2, · · · , Ik of nonnegative real numbers where each vertex in G corresponds
to a leaf in T and there is an edge between two vertices in G if the distance
between their corresponding leaves lies in I1 ∪ I2 ∪ · · · Ik. Figure 2(a) illustrates
an edge weighted tree T and Fig. 2(b) shows the corresponding 2-interval PCG
where I1 = [1, 3] and I2 = [5, 6].

In this paper we show that all graphs are k-interval PCGs for some k. We
also show that wheel graphs Wn, which are not yet proved to be PCGs for n ≥ 8



multi-interval PCGs 3

b

b b

b b b b

b b b b b b b b
u a v c b i d j

1 1

11

11 1 11111

1 1

(a)

b

b

b

b

b

b

b b
u′

v′a′ c′

b′

d′

i′

j′

(b)

Fig. 2. (a) An edge weighted tree T , (b) a 2-interval PCG G of T where I1 = [1, 3],I2 =
[5, 6].

are 2-interval PCGs. Moreover, we proved that a restricted subclass of series-
parallel graphs are 2-interval PCGs and provide an algorithm for constructing
2-interval pairwise compatibility tree for graphs of this subclass.

The remainder of the paper is organized as follows. Section 2 gives some nec-
essary definitions, previous results and preliminary results on k-interval PCGs.
In Sect. 3 we give our results on 2-interval PCGs. Finally we conclude in Sect.
4.

2 Preliminaries

In this section we define some terms which will be used throughout this paper
and present some preliminery results.

Let, G = (V,E) be a simple, undirected graph with vertex set V and edge
set E. An edge between two vertices u and v is denoted by (u, v). If (u, v) ∈ E,
then u and v are adjacent and the edge (u, v) is incident to u and v. The degree
of a vertex is the number of edges incident to it. A path Puv in G is a sequence
of distinct vertices w1, w2, w3, · · · , wn in V such that u = w1 and v = wn and
(wi, wi+1) ∈ E for 1 ≤ i < n. The vertices u and v are called end-vertices of path
Puv. If the end-vertices are same then the path is called a cycle. A tree T is a
graph with no cycle. A vertex with degree one in a tree is called leaf of the tree.
All the vertices other than leaves are called internal nodes. An weighted tree is a
tree where each edge is assigned a number as the weight of the edge. The weight
of an edge (u, v) is denoted as w(u, v). The distance between two nodes u, v in
T is the sum of the weights of the edges on path Puv and denoted by dT (u, v).
A star graph Sn is a tree on n nodes with one node having degree n− 1 and all
other nodes having degree 1. A caterpillar is a tree for which deletion of leaves
together with their incident edges produces a path. The spine of a caterpillar
is the longest path to which all other vertices of the caterpillar are adjacent.
A wheel graph with n vertices, denoted by Wn, is obtained from a cycle graph
Cn−1 with n − 1 vertices by adding a new vertex p and joining an edge from
p to each vertex of Cn−1. The vertex p is called hub. A graph G = (V,E) is
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called a series-parallel (SP ) graph with source s and sink t if either G consists
of a pair of vertices connected by a single edge or there exists two series-parallel
graphs Gi(Vi, Ei) with source si and sink ti for i = 1, 2 such that V = V1 ∪ V2,
E = E1∪E2 and either s = s1, t1 = s2 and t = t2 or s = s1 = s2 and t = t1 = t2
[10].

We now review a previous result on cycles [13], [11] and show a construction
process of a pairwise compatibility tree of a cycle which will be used later in
this paper. Let Cn be a cycle with n vertices v′1, v

′
2, v
′
3 · · · , v′n where (v′i, v

′
i+1)

are adjacent for 1 ≤ i < n and (v′1, v
′
n) are also adjacent. We construct an edge

weighted caterpillar T as follows. Let v1, v2, v3 · · · , vn−1 be the leaves of T and
u1, u2, u3, · · · , un−1 be the vertices on the spine of T such that ui is adjacent to
vi for 1 ≤ i < n. We assign weight d to edge (ui, ui+1) for 1 ≤ i < n − 1 and
weight w to the edges incident to a leaf where w > (n + 1)d2 . If n is odd then
we put a vertex un in the middle of the path Pu1un−1

as illustrated in Fig. 3(a).
If n is even then we use un

2
as un which is shown in Fig. 3(b). Then we place

the last vertex vn as a leaf adjacent to un. We assign weight w− (n− 3)d2 to the
edge (un, vn). This concludes the construction of T and we call this construction
process Algorithm ConstructCyclePCT. The leaf vi of T corresponds to the
vertex v′i of Cn. The constructed tree in this way is a PCT of Cn for dmin = 2w+d
and dmax = 2w+ d. It is easy to observe that max{dT (vi, vj)} = 2w+ (n− 1)d.

b b b

b b b

b b b b

b

b

b

b

b b b

bbbbb b b b b b

v1 v2 v3 vn−1
2

vn

vn+1
2

vn−3

un−2 dddd

(n− 1)d2w − (n− 3)d2
u1 u2 u3 un−1

2

un

un+1
2

un−3 un−1

w w

vn−1vn−2

w w wwww

b

(a)

b b b

b

b b

b

b

b

b

b

bb

bbbbb b b b

v1 v2 v3

vn

vn−3 vn−2 vn−1

w w w w w w w

dddd

w − (n− 3)d2

vn
2

b b

(n− 1)d2

b

un−1un−2un−3unu3u2u1

b

(b)

Fig. 3. (a) A pairwise compatibility tree of a cycle with odd number of vertices and
(b) a pairwise compatibility tree of a cycle with even number of vertices.

We now introduce a new concept called k-interval PCG. Let T be an edge
weighted tree and I1, I2, I3, · · · , Ik be k non-negative intervals such that Ii∩Ij =
∅ for i 6= j. A k-interval PCG of T for I1, I2, I2, · · · , Ik is a graph G = (V,E)
where each vertex u′ ∈ V represent a leaf u in T and there is an edge (u′, v′) ∈ E
if and only if dT (u, v) ∈ I1 ∪ I2 ∪ I3 ∪ · · · ∪ Ik. Obviously, a PCG is a k-interval
PCG for k = 1, but a k-interval PCG may not be a PCG. The graph shown in
Fig. 2 is not a PCG [7] but a 2-interval PCG.

The following theorem describes a preliminary result on k-interval PCGs.

Theorem 1. Every graph is an |E|-interval PCG.

Outline of the Proof: We give a constructive proof. Let G = (V,E) be a graph
with n vertices v′1, v

′
2, v
′
3, · · · , v′n. We construct a star T with n leaves v1, v2, v3,
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· · · , vn where vi corresponds to v′i of G as illustrated in Fig. 4. Let w(i) be the
weight of the edge incident to vi in T . We take w(i) as follows.

w(i) =

 1 if i = 1
2 if i = 2

w(i− 1) + w(i− 2) if i > 2

b

b b b b b
1 2 3 5

w(n− 2) + w(n− 1))

v1 v2 v3 v4 vn

Fig. 4. An |E|-interval pairwise compatibility tree for any graph with n vertices.

For each edge (vi, vj) in E we take an interval Iij = [dT (vi, vj), dT (vi, vj)].
Thus we have total |E| number of intervals. Then for every edge (vi, vj) ∈ E,
dT (vi, vj) ∈ Iij . Similarly, if (vi, vj) /∈ E, then there is no such interval Iij such
that dT (vi, vj) ∈ Iij . Thus T is an |E|-interval PCT of G. ut

3 2-interval PCGs

In this section we give some results on 2-interval PCGs.

3.1 Wheel graphs

In this section we prove that wheel graphs are 2-interval PCGs as in the following
theorem.

Theorem 2. Every wheel graph is a 2-interval PCG.

Proof. Let Wn+1 be a wheel graph with n+ 1 vertices v′1, v
′
2, v
′
3 · · · , v′n, p′ where

p′ is the hub and v′1, v
′
2, v
′
3 · · · , v′n forms the outer cycle C. We first construct a

pairwise compatibility tree T for C by Algorithm ConstructCyclePCT. Note
that the maximum distance between any pair of leaves in T is 2w+ (n−1)d. We
then place a vertex p representing the vertex p′ in Wn+1 such that it is adjacent
to un in T and assign weight wp to the edge (p, un) as illustrated in Fig. 5. We
choose wp such that wp > 2w + (n− 1)d.

Clearly dT (p, vi) > 2w + (n − 1)d = max{vi, vj} for i, j ≤ n. Then T is
a 2-interval pairwise compatibility tree of Wn for I1 = [2w + d, 2w + d] and
I2 = (2w + (n− 1)d,∞). �
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3.2 Series-parallel graphs

In this section we define a restricted subclass of series-parallel graphs which we
call SQQ series-parallel graphs and show that this class of graphs are 2-interval
PCGs.

Let G = (V,E) be a series-parallel graph with source s and sink t. A pair of
vertices {u, v} of a connected graph is a split pair if there exist two subgraphs
G1(V1, E1) and G2(V2, E2) satisfying following two conditions: 1. V = V1 ∪ V2,
V1 ∩ V2 = {u, v}; and 2. E = E1 ∪ E2, E1 ∩ E2 = ∅, |E1| ≥ 1, |E2| ≥ 1. The
SPQ-tree T of a series-parallel graph G with respect to a reference edge (u, v)
describes a recursive decomposition of G induced by its split pairs [2, 1]. Figure
6(a) illustrates a series-parallel graph G and Fig. 6(b) shows the SPQ-tree of
G with respect to s, t. T is a rooted ordered tree and it contains three types
of nodes: S, P and Q. Subtrees rooted at each node x of T corresponds to a
subgraph of G called its pertinent graph G(x). In this paper we use a modified
definition of G(x): G(x) contains the leftmost and rightmost children of x in T
in order from source to sink if x is a P -node or Q-node; if x is an S-node G(x)
does not contain the leftmost and rightmost children. Figure 6(c) illustrates the
pertinent graph of the P -node at height 2 in T . Let x be an S-node in T other
than the root and let y1, y2, y3, · · · , yn be the children of x in order from source
to sink. If both y1 and yn are Q-nodes then we call G an SQQ series-parallel
graph. We now give the following theorem.
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Fig. 6. (a) A series-parallel graph G, (b) An SPQ-tree of G with respect to s and t
and (c) pertinent graph of the non-root P -node.
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Theorem 3. Every SQQ series-parallel graph is a 2-interval PCG.

Proof. We give a constructive proof. Let G = (V,E) be an SQQ series-parallel
graph with source s′ and sink t′ and T be an SPQ-tree of G with respect to s′

and t′. Note that if T consists of a single Q-node then G is trivially a 2-interval
PCG. We thus assume that T has at least one S-node or P -node. We construct
a 2-interval pairwise compatibility tree of G using a bottom up computation on
T . For each internal node x of T we first compute 2-interval PCT for each of
it’s child node and then we add additional component and combine them to get
a 2-interval PCT Tx of G(x). Let s′x and t′x be the source and sink of G(x) and
sx, tx be the leaves of Tx representing s′x and t′x respectively. Depending on the
type of the current node we have to consider two cases.

Case 1: The current node x is an S-node. Let y1, y2, y3, · · · , yn be the chil-
dren of x in order from s′x to t′x. This is illustrated in Fig. 8(a). According to
the property of an SQQ series-parallel graph y1 and yn are Q-nodes. If n = 2,
then we have only one node between s′x and t′x in G. In this case we construct
a tree Tx with two leaves and one edge between them. One of the two leaves of
Tx represents the only node between s′x and t′x. We assign weight w+ d

2 to that
edge. This is illustrated in Fig. 7(a),(b). If x is root node then we also place
two leaves representing s′x, t′x and make them adjacent to a leaf in Tx. We then
assign weight w + d

2 to the newly added edges.

S

Q Q

S

Q Q

y1 y2

(a)

bc

bc

w + d
2

(b)

Fig. 7. (a) An S-node x with 2 children and (b) constructed tree Tx for x.

We now consider the case where n > 2. In this case we have two subcases.

Case 1(a): yi be a Q-node. At first we consider yi for i 6= 1, n. In this case
we construct a caterpillar Γyi with two leaves syi , tyi and two internal nodes uyi ,
vyi where uyi , vyi are adjacent to syi , tyi respectively. Here syi , tyi represent s′yi ,
t′yi of G respectively. Let gx be an indicator variable which is 1 if depth of x
modulo 4 is equal to 0 or 1 in T and -1 otherwise. We now assign weight w− gxl
to each edge incident to a leaf and weight d + 2gxl to the edge (uyi , vyi) where
l << d at least as small as d

100|V | as is illustrated in Fig. 8(b). Then for i = 1, n

we also construct trees in the way mentioned above if x is the root node of T ,
otherwise trees will be constructed for y1 and yn while processing the parent
P -node of x.

Case 1(b): yi be a P -node. In this case we have a caterpillar Γyi induced by
two leaves syi and tyi of Tyi according to the construction process described in
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case 2 as shown in Fig. 8(c). Let uyi , vyi be the vertices on spine of Γyi that are
adjacent to the leaves syi and tyi .

We thus have a caterpillar Γyi for each i 6= 1, n. We next merge all this
caterpillars such that tyi and vyi lie on syi+1

and uyi+1
and get a single caterpillar

Γx with n− 1 leaves induced by s2, s3, · · · , sn as illustrated in Fig. 8(d).
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Q P Q P Q
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Q P Q P Q
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bc bc

bc bc
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= tyn−2
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(d)

Fig. 8. (a) An S-node with more than 2 children, (b) constructed tree Γyi for a child
Q-node yi, (c) constructed tree Tyi for a child P -node yi and (d) merged tree Tx for S
node x.

Case 2: The current node x is a P -node. In this case x can have at most
one Q-node as its child and if it has one then it represents an (s′x, t

′
x) edge. We

first construct a caterpillar Γx with two leaves sx,tx representing s′x and t′x, and
two internal nodes ux, vx where ux is adjacent to sx and vx is adjacent to tx. We
now assign weight w+ gyi l to each edge incident to a leaf in Γx where gyi is the
indicator variable of any child S-node yi of x in T . If x has a child Q-node in T
we assign weight d−2gyi l to the edge (ux, vx), otherwise we assign d−2gyi l+2δ
where δ << l. We now replace the edge (ux, vx) by a path ux, ax, bx, vx where
ax and bx are two degree 2 vertices. We call ax, bx the port nodes of Γx. Then we
reassign weight such that w(ux, ax) = 1

2dTx
(ux, vx) and w(ax, bx) = δ. Let zx be

an indicator variable which is 1 if there is a child Q-node of x and 0 otherwise.
Then w(ux, ax) = d

2−gyi l+zxδ, w(ax, bx) = δ and w(bx, vx) = d
2−gyi l+(zx−1)δ.

See Fig. 9(a).

Let y1, y2, y3, · · · , yn be the children of x where yi is an S-nodes for 1 ≤ i ≤ n.
At first we construct 2-interval PCT Tyi of G(yi) for 1 ≤ i ≤ n according to case
1. Let yi be an S-node with ni children where ni > 2. Then we have a caterpillar
Γyi with ni − 1 leaves induced by the sources and sinks of some children of yi
in Tyi , which is merged while processing the S-node according to case 1. Let
ui1, ui2, ui3, · · · , ui(ni−1) be the leaves of Γyi and let u′i1, u

′
i2, u

′
i3 · · · , u′i(ni−1) be

the vertices on spine where uij is adjacent to u′ij for 1 ≤ j ≤ n. Note that any
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edge (uij , u
′
ij) has weight w and (u′ij , u

′
i(j+1)) has weight d+2gyi l or d+2gyi l+2δ.

Let mi be the number of edges of weight d + 2gyi l + 2δ on the spine where
mi ≤ (ni − 2). Thus the spine has length of (ni − 2)(d+ 2gyi l) + 2miδ. We now

put a vertex vi on the spine such that dΓi
(u′i1, vi) =

(ni−2)(d+2gyi l)+2miδ

2 − δ and

we add an edge between vi and port node bx. We assign weight c− (ni − 1)d2 −
(ni− 3)gyi l− (mi + zx)δ to the edge (vi, b) as illustrated in Fig. 9(b). We choose
a very large value for c such that c > 2(d+ 2δ + 2l)|V | where |V | is the number
of vertices in G.

bc bc

d
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sx tx
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Fig. 9. (a) Constructed tree Γx with souce and sink for P -node, (b) merged tree with
2-interval PCT of a children S-node having than 2 children, (c) merged tree with 2-
interval PCT of a children S-node having 2 children and (d) final 2-interval PCT Tx

of G(x) where x is a P -node.

Let yj be an S-node with exactly 2 children. Then we have 2-interval PCT
Tyj consists of two nodes and the edge between them has weight w + d

2 . In this
case we add an edge between port node ax and one of the leaves. We assign
weight c − d − zxδ to the newly added edge as illustrated in Fig. 9(c). We call
any edge joining Γx with Tyi for i ≤ n a caterpillar-connecting edge. An example
of the construction process is illustrated in Fig. 10.

We now proof that the tree T constructed by above algorithm is a 2-interval
PCT of G for intervals I1 = [2w+ d, 2w+ d] and I2 = [c+ 2w, c+ 2w]. We prove
this by an induction on the height h(T ) of the SPQ-tree T of G. Let x be the
root of T having n children y1, y2, · · · , yn and ni be the number of children of
yi.
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Fig. 10. (a) An SQQ series-parallel graph G, (b) an SPQ-tree of G (c) construction of
2-interval PCT of pertinant graph of the leftmost child of the root which is an S-node
and (d) constructed 2-interval PCT of G.
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Assume that G is an SQQ series-parallel graph with h(T ) =1. Then T con-
sists of an S-node x as its root and all the children of the root are Q-nodes.
In this case the algorithm produces a caterpillar with n leaves where each edge
incident to a leaf has weight w − gxl and each edge on the spine has weight
d + 2gxl. Thus if (u, v) is a Q-node in T then dT (u, v) = 2w + d and otherwise
2w+d < dT (u, v) < c+ 2w because of our choice of c being very large. Thus the
basis is true.

Assume that h(T ) >1 and the claim is true for every SQQ series-parallel
graph with h(T ) < h. Let G be an SQQ series-parallel graph with h(T ) =
h and let x be the root of T . Let y1, y2, y3, · · · , yn be the children of x and
pertinent graphs of y1, y2, · · · , yn are 2-interval PCGs for I1 and I2 by the in-
duction hypothesis. Let Ty1 , Ty2 , · · · , Tyn be the 2-interval PCTs constructed by
the algorithm for y1, y2, · · · , yn.

We first consider the case where x is a P -node. Then according to case 2
we have dT (sx, tx) = 2w + d, if there is an edge (sx, tx). Otherwise, we have
2w + d < dT (sx, tx) = 2w + d + 2δ < c + 2w. Let yi be an S-node. If yi has 2
children, then there is only one node u′i1 between sx and tx in G(yi) and ui1 is its
corresponding leaf in Tyi . In this case dT (sx, ui1) = dT (tx, ui2) = 2w + c which
lies in interval I2. If yi has more than 2 children then the distance dT (sx, ui1) is
computed as follows.

dT (sx, ui1) = dΓx
(sx, b) + w(b, vi) + dΓyi

(vi, ui1)

= w + gyi l +
d

2
− gyi l + zxδ + δ + c− (ni − 1)

d

2
− (ni − 3)gyi l

−(mi + zx)δ + w − gyi l + (ni − 2)(
d

2
+ gyi l) +miδ − δ

= 2w + c

Similarly the distance dT (sx, uni
) is computed as follows.

dT (sx, uini
) = dΓx

(sx, b) +W (b, vi) + dΓi
(vi, uin)

= w + gyi l +
d

2
− gyi l + zxδ + δ + c− (ni − 1)

d

2
− (ni − 3)gyi l

−(mi + zx)δ + w − gyi l + (ni − 2)(
d

2
+ gyi l) +miδ + δ

= 2w + c+ 2δ

Thus dT (sx, uini) > c + 2w. Now clearly dT (sx, uij) < 2w + c for j 6= 1, ni;
as they are at least d+ 2gyi l less than 2w + c+ 2δ. Again dT (sx, uij) > 2w + d
because we choose c > 2(d+ 2δ+ 2l)|V |. Doing similar calculation for tx we get,
dT (tx, uini

) = 2w+c, dT (tx, ui1) = 2w+c−2δ and 2w+d < dT (tx, uij) < 2w+c
for j 6= 1, ni. Now the path from uij and ukl where i 6= k consists of 2 caterpillar-
connecting edge, 2 edge from leaf to spine for each leaf and some additional edges
on the spines. Thus we get,
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dT (uij , ukl) ≥ 2(w − gyi l) + c− (ni − 1)
d

2
− (ni − 3)gyi l − (mi + zx)δ

+c− (nk − 1)
d

2
− (nk − 3)gyi l − (mk + zx)δ

≥ 2w + 2c− (ni + nk − 2)
d

2
− (mi +mk + 2zx)δ

−(ni + nk − 4)gyi l

> 2w + 2c− c
= 2w + c

The above calculation implies that for any two leaves (u, v) who have more
than two caterpillar- connecting edges on path Puv we get dT (u, v) > 2w + c.
Thus if x is a P -node then only the distance between sx,ui1 and tx,uini

are equal
to 2w + c, distance between sx,uij and tx,uij are less than 2w + c but greater
than 2w + d, any distance between two leaves having two or more caterpillar-
connecting edge between them is greater than 2w + c.

On the other hand if x is an S-node then Γx is a caterpillar with n − 1
leaves sy2 = ty1 , sy3 = ty2 , · · · , syn = tyn−1

. If yi is a child Q-node of x then
dT (syi , tyi) = 2w + d for i 6= 1, n. Also 2w + d < dT (syi , syj ), dT (tyi , tyj ) ,
dT (syi , tyj ) < 2w + c for i 6= j as the path between any of the mentioned
pair of leaves contains at least two edge with weight d + 2gl or larger and c >
2(d+ 2δ + 2l)|V |.

Let yi be a child P -node of x and rj be any child S-node of yi in T . Clearly
Γx and Γrj is connected by a caterpillar connecting edge. Let rj has nrj children
which implies Γrj has nrj − 1 leaves. Let u1, u2 be two leaves in Γrj where
dΓrj

(u1, u2) = max{dΓrj
(ui, uj)}. From the proof of processing at P -node we

know dT (syi , u1) = 2w+ c and dT (tyi , u2) = 2w+ c. Let v be a leaf in Γrj where
dΓrj

(u1, v) < dΓrj
(u2, v) and the path Pu1v contains erj edges on the spine. We

also assume that frj edges among those erj edges are of weight d + 2grj + 2δ.
Thus dT (v, syi) = 2w + c− erj (d+ 2grj l)− 2frjδ. Let syk be a leaf in Γx where
dΓx

(syk , syi) < dΓx
(syk , tyi). We also assume that the path Psyisyk contains ex

edges on the spine of Γx and fx edges among them are of weight d + 2gx + 2δ.
Then dT (v, syk) = 2w+c−erj (d+2grj l)−2frjδ+ex(d+2gxl)+2fxδ = 2w+c+
(ex − erj )d+ 2(exgx − erjgrj )l+ 2(fx − frj )δ. Now as rj is a grandchild of x we
get gx = −grj . So, dT (v, syk) > c+2w if ex > wrj , 2w+d < dT (v, syk) < c+2w
if ex < wrj . On the other hand if ex = erj then dT (v, syk) > c+2w if gx = 1 and
2w+d < dT (v, syk) < c+2w if gx = −1. Similarly if dΓx(syk , syi) > dΓx(syk , tyi),
we get dT (v, syk) = 2w+c+(ex−erj )d+2(exgx−erjgrj )l+2(fx−frj−2)δ. This
also implies that dT (c, syk) /∈ I2. By doing similar calculation it can be shown
that dT (v, syk) /∈ I2 if dΓrj

(u1, v) ≥ dΓrj
(u2, v). Also the distance between any

pair of leaves that have more than two caterpillar-connecting edge in the path
between them is greater than 2w + c. Thus T is a 2-interval PCT of G for
I1 = [2w + d, 2w + d] and I2 = [c+ 2w, c+ 2w]. �



multi-interval PCGs 13

4 Conclusion

In this paper, we have introduced a new notion named k-interval pairwise com-
patibility graphs. We have proved that every graph is a k-interval PCGs for
some k. We have also showed that wheel graphs and a restricted subclass of
series-parallel graphs are 2-interval PCGs. Inception of k-interval PCGs brings
in some interesting open problems. It is not known whether some constant num-
ber of intervals are sufficient for every graph to be a k-interval PCG. Whether
all series-parallel graphs are 2-interval PCGs or not is also unknown.
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