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Abstract. Let C be a set of n customers and F be a set of m facilities.
An r-gather clustering of C is a partition of the points in clusters such
that each cluster contains at least r points. The r-gather clustering prob-
lem asks to find an r-gather clustering which minimizes the maximum
distance between any two points in a cluster. An r-gathering of C is an
assignment of each customer c ∈ C to a facility f ∈ F such that each open
facility has zero or at least r customers. The r-gathering problem asks
to find an r-gathering that minimizes the maximum distance between a
customer and its facility. In this work we consider the r-gather cluster-
ing and r-gathering problems when the customers and the facilities are
lying on a “star”. We show that the r-gather clustering problem and the
r-gathering problem with points on a star with d rays can be solved in
O(rn+(r +1)ddr) and O(n+r2m+d2r2(d+log m)+(r +1)d2d(r +d)d)
time respectively.
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1 Introduction

Let C be a set of n points. An r-gather clustering of C is a partition of the
points of C in clusters such that each cluster contains at least r points. The cost
of a cluster is the maximum distance between a pair of points in the cluster.
The cost of an r-gather clustering is the maximum cost among the costs of the
clusters. The r-gather clustering problem asks to find an r-gather clustering of
C with minimum cost [2].

Let C be a set of n customers and F be a set of m facilities, d(c, f) be the
distance between c ∈ C and f ∈ F . An r-gathering of C to F is an assignment
A of C to F such that each facility has at least r or zero customers assigned
to it. The cost of an r-gathering is maxc∈C{d(c, A(c))} which is the maximum
distance between a customer and its facility. The r-gathering problem asks to
find an assignment of C to F having the minimum cost [4]. This problem is also
known as the min-max r-gathering problem. The other version of the problem
is known as the min-sum r-gathering problem which asks to find an assignment
which minimizes

∑
c∈C d(c, A(c)) [9, 7]. In this paper we consider the min-max
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r-gathering problem and we use the term r-gathering problem to refer the min-
max version unless specified otherwise.

Both the r-gather clustering and r-gathering problems are NP-complete in
general [2, 4]. For r-gather clustering problem a 2-approximation algorithm is
known [2]. For the r-gathering problem a 3-approximation algorithm is known
and it is proved that the problem cannot be approximated within a factor less
than 3 for r > 3 unless P = NP [4]. Recently, both problems are considered in
a setting where all the points are lying on a line. An O(n log n) time algorithm
[3] based on the matrix search method [5, 1], and an O(rn) time algorithm [10]
by reduction to the min-max path problem in a weighted directed graph [6] are
known for the r-gather clustering problem when all the points are on a line. For
the r-gathering problem an O((n + m) log(n + m)) time algorithm [3] based on
the matrix search method [5, 1], an O(n + m log2 r + m log m) time algorithm
[8], and an O(n + r2m) time algorithm [10] by reduction to the min-max path
problem in a weighted directed graph [6] are known when all the customers and
facilities are on a line. Recently the r-gather clustering problem is studied on
mobile setting and a 4-approximation distributed algorithm is known [11].

In this paper, we consider both the r-gathering clustering and r-gathering
problem when the points are on a star. Consider a scenario where a number
of streets meet in a junction, and residents live by the streets. We wish to set
up emergency shelters on the streets so that each shelter can serve at least r
residents. The distance between two points are measured along the lines. We
also wish to locate shelters so that evacuation time span can be minimized.
This scenario can be modeled by the r-gather clustering problem where all input
points C are located on a star. In an r-gather clustering of C having the minimum
cost, each emergency shelters is located at the center of each cluster. On the
other hand, if the set F of possible locations of shelters on the star is also given
with the set C of residents and we wish to find an assignment of C to F with
minimizing the evacuation time so that each shelter serve at least r residents,
then the scenario can be modeled by the r-gathering problem where the points
of C and F are located on a star. In this case, an r-gathering corresponds to
an assignment of residents to shelters such that each “open” shelter serves at
least r residents and the r-gathering problem finds the r-gathering minimizing
the evacuation time.

When the points are on a line, each cluster of an optimal r-gather clustering
consists of consecutive points on the line [10]. However, when the points are on a
star, some clusters may not consists of consecutive points in the optimal r-gather
clustering. For example, see Figure 1. We can observe that at least one cluster
consists of non-consecutive points in any optimal solution. Figure 1 demonstrates
an optimal solution for this scenario.

In this paper we give an O(rn + (r + 1)ddr) time algorithm for r-gather
clustering problem on a star, and an O(n+r2m+d2r2(d+log m)+(r+1)d2d(r+
d)d) time algorithm for the r-gathering problem on a star, where d is the number
of rays that form the star.
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Fig. 1. An optimal 3-gather clustering on a star.

The rest of the paper is organized as follows. In Section 2 we define the
problems and define terms used in the paper. In Section 3 we give an algorithm
for the r-gather clustering problem on a star. In Section 4 we give an algorithm
for the r-gathering problem on a star. Finally Section 5 is a conclusion.

2 Preliminaries

In this section we define two problems and some terms used in this paper.
Let L = {l1, l2, · · · , ld} be a set of d rays where all the rays of L share a

common source point o. We call the set of rays L a star and the common source
point o the center of the star. The degree of a star is the number d of rays
which form the star. The Euclidean distance between two points p, q is denoted
by dE(p, q). We denote by d(p, q) the distance between two points p, q which
is measured along the rays. If p and q are both located on the same ray, then
d(p, q) = dE(p, q). On the other hand, if p and q are located on different rays,
then d(p, q) = dE(p, o) + dE(o, q). A cluster consists of points from two or more
rays is a multi-ray cluster, otherwise a single-ray cluster. Two points p and q are
the end-points of a cluster C if d(p, q) = cost(C). A point p in a cluster C is a far
point of C, denoted by e(C), if d(o, p) ≥ d(o, q) for each q ∈ C.

We now define the first problem. Let C = {c1, c2, · · · , cn} be n points located
on a star. An r-gather clustering of C is a partition of the points of C into clusters
such that each cluster contains at least r points. The cost of a cluster C, denoted
by cost(C), is maxp,q∈C d(p, q). The r-gather clustering problem asks to find an
r-gather clustering such that the maximum cost among the costs of clusters is
minimized, and such a clustering is called an optimal r-gather clustering. The
following result is known [10]. Note that any cluster with 2r or more points can
be divided into clusters so that each of which has at most 2r − 1 points and at
least r points.

Lemma 1 ([10]). There is an optimal r-gather clustering in which each cluster
has at most 2r − 1 points.

Let C = {c1, c2, · · · , cn} be n customers and F = {f1, f2, · · · , fm} be m
possible locations for facilities located on a star. An r-gathering of C to F is an
assignment A of C to F such that each facility has zero or at least r customers.
A facility having one or more customers is called an open facility. We denote
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by F ′ the set of open facilities. A(c) denotes the facility to which a customer
c is assigned in an assignment A. The cost of a facility f , denoted by cost(f),
is max{d(f, ci)|A(ci) = f} if f has one or more customers, and is 0 if f has
no customer. The r-gathering problem asks to find an r-gathering such that the
maximum cost among the costs of facilities is minimized.

3 r-Gather Clustering on a Star

In this section we give an algorithm for r-gather clustering problem on a star.
Let C be a set of points on a star L = {l1, l2, · · · , ld} of d rays with center o.
We consider the set C as a union of d sets C1, C2, · · · , Cd where Ci is the set of
customers on ray li. We have the following lemma.

Lemma 2. There is an optimal r-gather clustering such that, for each Ci, the
set of points in Ci assigned to multi-ray clusters is consecutive points on li in-
cluding the nearest point to o.

Proof. A pair cm, cs in Ci is called a reverse pair if cm is assigned to a multi-ray
cluster, cs is assigned to a single-ray cluster, and d(o, cs) < d(o, cm). Assume
for a contradiction that A is an optimal r-gather clustering with the minimum
number of reverse pairs but the number is not zero. Let cs and cm be a reverse
pair in Ci with maximum d(o, cm). Let Cs and Cm be the clusters containing cs

and cm, respectively. We have two cases.
Case 1: Cs has a point c in Ci with d(o, cm) < d(o, c).
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Fig. 2. (a) Illustration of Case 1 and (b) illustration of Case 2 of proof of Lemma 2.

Let c′ be the nearest point to o in Cs. Replacing Cs and Cm in the clustering by
Cs \ {c′} ∪ {cm} and Cm \ {cm} ∪ {c′} generates a new r-gather clustering with
less reverse pairs. A contradiction. Note that cost(Cs \ {c′} ∪ {cm}) ≤ cost(Cs)
and cost(Cm \ {cm} ∪ {c′}) ≤ cost(Cm) hold.
Case 2: Otherwise. (Thus d(o, c) < d(o, cm) for every point c in Cs.)
The same replacing results in a new r-gather clustering with less reverse pairs. A
contradiction. Note that cost(Cs \ {c′}∪ {cm}) ≤ cost(Cm) and cost(Cm \ {cm}∪
{c′}) ≤ cost(Cm) hold. ut
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Lemma 3. If an optimal r-gather clustering has multi-ray clusters, then at most
one multi-ray cluster contains more than r points.

Proof. Assume for a contradiction that every optimal r-gather clustering has
two or more multi-ray clusters having more than r points. Let A be an r-gather
clustering with the minimum number of multi-ray clusters having more than r
points. Let Ci and Cj be two multi-ray clusters having more than r points. Let
si, ti be the two endpoints of Ci and sj , tj be the two endpoints of Cj . Without
loss of generality, assume that tj is the closest point to o among the four end-
points. Let C′j ⊂ Cj be {c ∈ Cj |d(o, c) > d(o, tj)}. Any point c ∈ C′j must be on
the same ray as sj , otherwise tj would not be an end-point of Cj . We have two
cases.
Case 1: |C′j | < r.
Let C′′j be a set of |Cj | − r arbitrary points from Cj \ C′j . We now derive a new
r-gather clustering A′ by replacing Ci and Cj by Ci ∪ C′′j and Cj \ C′′j . Since tj is
the closest point to o among the four end-points si, ti, sj , tj and d(o, c) ≤ d(o, tj)
for any point c ∈ C′′j , we have d(o, c) ≤ d(o, si) and d(o, c) ≤ d(o, ti). Thus the
cost of Ci ∪C′′j does not exceed the cost of Ci. Hence the cost of A′ is not greater
than the cost of A. Thus A′ has less multi-ray clusters with more than r points,
a contradiction.
Case 2: Otherwise. Thus |C′j | ≥ r.
In this case we derive a new r-gather clustering A′ by replacing Ci and Cj by
Ci∪(Cj \C′j) and C′j . In this case, C′j is a single-ray cluster. By a similar argument
of Case 1, the cost of A′ does not exceed the cost of A. Thus A′ has less multi-ray
clusters having more than r points than A, a contradiction. ut

We now give the following lemma, which is used in the proof of Lemma 5
and Lemma 6.

Lemma 4. If |C| ≥ 2r and there is an optimal r-gather clustering consisting
of only multi-ray clusters, then there is an optimal r-gather clustering with the
multi-ray cluster consisting of the farthest point from o and its r − 1 nearest
points.

Proof. Let p be the farthest point from o and let N be the r − 1 nearest points
of p. Assume for a contradiction that in every optimal solution N ∪ {p} is not a
cluster. We first prove that N ∪ {p} is contained in the same cluster. Let A be
an optimal solution with cluster Cp containing p having the maximum number
of points in N . Let q be a point in N assigned to a cluster Cq 6= Cp. Since
the number of points in Cp is at least r, there is a point p′ ∈ Cp not in N .
Let q′ be the farthest point from o in Cq \ {q}. We now derive a new r-gather
clustering by replacing Cp and Cq by Cp \ {p′} ∪ {q} and Cq \ {q} ∪ {p′}. Thus
a contradiction. Note that, cost(Cp \ {p′} ∪ {q}) ≤ cost(Cp) and cost(Cq \ {q} ∪
{p′}) ≤ max{cost(Cp), cost(Cq)}, since d(o, p) ≥ d(o, q′).

We now prove that N ∪{p} form a multi-ray cluster. Assume for a contradic-
tion that in any optimal r-gather clustering N ∪ {p} is not a cluster. Let A′ be
an optimal r-gather clustering with cluster Cp containing p having the minimum
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number of points not in N . Let p′′ be the farthest point in Cp not in the ray lp con-
taining p, and Cs be a cluster in A′ other than Cp. Let s be the farthest point from
o in Cs. We now derive a new r-gathering by replacing Cp and Cs with Cp \ {p′′}
and Cs∪{p′′} without increasing cost, a contradiction. Since d(o, s) ≤ d(o, p), we
have d(s, p′′) ≤ d(p, p′′) and thus cost(Cs ∪ {p′′}) ≤ max{cost(Cp), cost(Cs)}. ut

We now have the following lemma.

Lemma 5. If an optimal r-gather clustering consists of only multi-ray clusters,
then there is an optimal r-gather clustering with at most d−1 multi-ray clusters.

Proof. We give a proof by induction on the number d of rays in the star. Clearly,
the claim holds for d = 2, since in such case only one multi-ray cluster can exist.
Assume that the claim holds for any star with less than d rays. We now prove
that the claim also holds for any star of d rays. Assume for a contradiction that
every optimal solution has at least d multi-ray clusters. Let A be an optimal
r-gather clustering with the minimum number of multi-ray clusters. Let p be
the farthest point from o. By Lemma 4, there is an optimal r-gather clustering
with the cluster Cp containing p and its r− 1 nearest points, denoted by N . Let
lp be the ray containing p. We have two cases.
Case 1: p and N are on ray lp.
In this case there is an optimal r-gather clustering with a single ray cluster
N ∪ {p}, a contradiction.
Case 2: Otherwise. There is a point q in N which is not on lp.
By Lemma 4 there is an optimal r-gathering with {p}∪N , and since N consists
of the r − 1 nearest neighbors of p, all the points on lp are contained in Cp.
Thus the points in C \ Cp are lying on other d − 1 rays except lp. By inductive
hypothesis there is an optimal r-gather clustering of C \ Cp with at most d − 2
multi-ray clusters. Thus the claim holds. ut

Corollary 1. If an optimal r-gahter clustering consists of only multi-ray clus-
ters, then C has at most (d− 2)r + 2r − 1 = dr − 1 points.

We now give an outline of our algorithm which constructs an optimal r-
gathering clustering on a star. We first choose every possible at most dr − 1
candidate points for multi-ray clusters. We find the optimal r-gather clustering
consisting of only multi-ray clusters for each candidate points, by repeatedly
searching for the farthest point from o and its r− 1 nearest point as a multi-ray
cluster of the remaining set of points, by the algorithm Multi-rayClusters.

We now have the following lemma.

Lemma 6. Let A = {C1, C2, C3, · · · , C|A|} be the clusters computed by Algorithm
Multi-rayClusters. If A has only multi-ray clusters, then A is an optimal r-
gather clustering of S.

Proof. The proof of this lemma is immediate from Lemma 4. ut
We now give an algorithm rGatherClusteringOnStar to construct an op-

timal r-gather clustering of C on a star. We have the following theorem.
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Algorithm 1: Multi-rayClusters(C)
Input : A set C of points on a star
Output: An r-gather clustering with only multi-ray clusters
if |C| < r then

return ∅;
endif
i← 1;
while |C| 6= 0 do

if |C| < 2r then
Create new cluster Ci = C;

else
p← farthest point from o in C;
Ci ← {p, p1, p2, · · · , pr−1} where pi is the i-th nearest point of p
in C;

endif
C ← C \ Ci;
i← i + 1;

end
return {C1, C2, C3, · · · , Ci−1}

Theorem 1. The algorithm rGatherClusteringOnStar constructs an opti-
mal r-gather clustering of C on star in O(rn + (r + 1)ddr) time.

Proof. We first prove the correctness of the algorithm. By Lemma 2 multi-ray
clusters in an optimal r-gathering are located near o, and by Corollary 1 the
number of customers in the multi-ray clusters is at most dr − 1. The algorithm
rGatherClusteringOnStar considers every possible choice of the set of points
for multi-ray clusters having at most dr− 1 points. The algorithm considers the
solution for each possible choice for multi-ray clusters with the solution obtained
by 1-dimensional algorithm for remaining points on each ray, and choose the
solution having minimum cost. Thus the algorithm produces an optimal r-gather
clustering.

We now prove that the algorithm runs in linear time. We consider points
in each ray are in sorted order according to the distance from o. The d nested
loops iterates

∏d
j=1(nj + 1) times. Thus the number of points involved in all

calls to Multi-rayClusters is at most (r + 1)ddr, since
∑d

j=1 nj = dr− 1. Within
each nested loop we repeatedly compute multi-ray clusters which takes linear
time in total. We also compute single-ray clusters on each of the d rays. Rather
than computing those single-ray clusters each time in the loop, we compute the
r-gather clustering for points consisting of i farthest points from o, for each i,
and for each ray in O(rn) time total [10]. Thus to compute all the required cases
for single-ray cluster we need total O(rn) time. Thus the time complexity of the
algorithm is O(rn + (r + 1)ddr). ut
If both r and d are constants then this is linear.
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Algorithm 2: rGatherClusteringOnStar(C)
Input : A set C of points on star L = {l1, l2, l3, · · · , ld}
Output: An optimal r-gather clustering of C
if |C| < r then

return ∅;
endif
Best← ∅;
Let n1, n2, · · · , nd be the number of points of C in each ray l1, l2, · · · , ld;
for i1 ← 0 to n1 do

for i2 ← 0 to n2 do
for i3 ← 0 to n3 do
· · · ;
for id ← 0 to nd do

if i1 + i2 + · · ·+ id < dr then
S be the set of points consisting of i1, i2, · · · , id closest
points from o for ray l1, l2, · · · , ld;

Rm ← Multi-rayClusters(S);
Ri ← r-gather clustering of remaining points of ray li
by 1D algorithm;

R← Rm ∪R1 ∪R2 ∪ · · · ∪Rd;
if R is the best r-gather clustering so far then

Best← R;
endif

endif
end
· · · ;

end
if i1 + i2 ≥ dr then

break;
endif

end
if i1 ≥ dr then

break;
endif

end
return Best;

4 r-Gathering on a Star

In this section we give an algorithm for the r-gathering problem on a star.
Let C be a set of customers and F be a set of facilities on a star L =

{l1, l2, · · · , ld} of d rays with center o. We regard the set C as the union of d
sets C1, C2, · · · , Cd where Ci is the set of customers on ray li. Similarly, F is the
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union of F1, F2, · · · , Fd where Fi is the set of facilities on ray li. In any optimal
r-gathering each open facility serves at least r customers. However the number
of customers assigned to an open facility can be more than 2r − 1. In such
case we regard the set of customers assigned to a facility as the union of clusters
C1, C2, · · · , Ck sharing a facility and each of which satisfies r ≤ |Ci| < 2r. Thus we
can think of the r-gathering problem in a similar way to the r-gather clustering
problem in Section 3, and Lemma 1 holds for the clusters of r-gathering. We
denote by A(C) the facility to which the customers in C is assigned in r-gathering
A. We define the cost of a cluster C, denoted by cost(C), in r-gathering A as
maxc∈C{d(c, A(c))}. It is easy to observe that Lemma 2 also holds for the clusters
of r-gatherings. We now prove that Lemma 3 also holds for the r-gathering
problem.

Lemma 7. There is an optimal r-gathering including at most one multi-ray
cluster having more than r customers.

Proof. Omitted. ut
A customer on a ray l ∈ L is the boundary customer of l if it is the farthest

customer on l from o. We now give the following lemma.

Lemma 8. If |C| ≥ 2r and there is an optimal r-gathering A with only multi-
ray clusters, then there is an optimal r-gathering with only multi-ray clusters
satisfying the following (a) and (b). Let f be the farthest open facility from o in
A and l be the ray containing f .
(a) The boundary customer p of l and its r− 1 nearest customers form a multi-
ray cluster, if l has a customer,
(b) All customers are assigned to f and the farthest boundary customer p from
o and its r− 1 nearest customers form a multi-ray cluster, if l has no customer.

Proof. (a) We denote by N the set of the r − 1 nearest customers of p. We
first prove that there is an optimal solution with the customers in N ∪ {p} are
assigned to f . Assume for a contradiction that in any optimal solution N ∪ {p}
are not assigned to f . Let A be an optimal solution with the maximum number
of customers in N ∪ {p} are assigned to f . Let Cp be the multi-ray cluster
assigned to f , and q be a customer in N ∪ {p} but q /∈ Cp. Let q is assigned
to f ′. Since Cp has at least r customers, there is a customer p′ ∈ Cp not in
N ∪ {p} and lying on a ray except l. We now derive a new r-gathering A′ by
reassigning q to f and p′ to f ′. Since d(o, f ′) ≤ d(o, f), we have d(f ′, p′) ≤
d(o, f ′) + d(o, p′) ≤ d(o, f) + d(o, p′) = d(f, p′). Now if q is (1) not on l or (2)
q is on l with d(o, q) ≤ d(o, f) then d(f, q) ≤ d(f, p′). Otherwise, q is on l with
d(o, q) > d(o, f) holds, then we have d(f, q) ≤ d(f, p). Thus the cost of A′ does
not exceed the cost of A, and A′ has more customers in N ∪ {p} assigned to f .
A contradiction. Thus the customers in N ∪ {p} are contained in Cp.

We now prove that N ∪{p} form a multi-ray cluster. Assume for a contradic-
tion that in any optimal r-gathering N ∪p is not a cluster. Let A′ be an optimal
r-gathering with the cluster Cp containing p having the minimum number of
customers not in N ∪ {p}. Since Cp is a multi-ray cluster, Cp has a customer s
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not in N ∪ {p} and lying on a ray except l. We can reassign s to some open
facility f ′ 6= f without increasing the cost, since d(o, f ′) ≤ d(o, f), d(s, f ′) does
not exceed d(s, f). A contradiction.

(b) We first prove that all customers are assigned to f . Assume for a con-
tradiction that there is an open facility f ′ 6= f to which some customers are
assigned. Since f is the farthest open facility from o and there is no customer
on l, we can reassign all customers to f ′ without increasing the cost of the
r-gathering. A contradiction.

The proof of the 2nd part of Lemma 8(b) is similar to the proof of Lemma
8(a). ut

We now prove that Lemma 5 also holds for r-gathering.

Lemma 9. If an optimal r-gathering consists of only multi-ray clusters, then
there is an optimal r-gathering consisting of at most d − 1 multi-ray clusters,
where d is the number of rays containing a customer.

Proof. Omitted. ut
We now give algorithm Multi-rayClusters2. If there is an optimal r-gathering

with only multi-ray clusters, then the algorithm finds such an r-gathering, by
repeatedly removing a cluster ensured by Lemma 8.

Lemma 10. If there is an optimal r-gathering consisting of only multi-ray clus-
ters, then Algorithm Multi-rayClusters2 finds an optimal r-gathering. The
running time of the algorithm is O(2d(r + d)d + (d + log m)d).

Proof. If there is an optimal r-gathering with only multi-ray clusters, then, by
repeatedly removing a cluster ensured by Lemma 8, we can find a sequence
C1, C2, · · · , Ck of multi-ray clusters such that Ci consists of exactly r customers
in C \ (C1 ∪ C2 ∪ · · · Ci−1) except the last cluster Ck with r ≤ |Ck| ≤ 2r − 1.
The algorithm checks every possible sequence of the rays containing the farthest
open facility and chooses the best one as an optimal r-gathering. Note that if a
cluster is a single-ray cluster, then the algorithm skips recursive call, since it try
to find an r-gathering consisting of only multi-ray clusters.

We now estimate the running time of the algorithm.
By Lemma 9 the depth of the recursive calls is at most d−1. Thus, by the tree

structure of the calls, the number of calls is at most d!. The algorithm repeatedly
constructs a multi-ray cluster with exactly r customers by Lemma 8, which takes
O(r + d) time for each and O(r + d)d time in total. The cluster is assigned to its
best facility of the cluster. The best facility of a multi-ray cluster is the nearest
facility to the mid-point of the farthest two customers on two different rays in
the cluster. The best facility can be found in O(d + log m) time for each cluster.
Thus the algorithm runs in O(d!((r + d)d + (d + log m))d) time.

We can improve the running time by modifying the algorithm to save the
solution of each subproblem in a table. The number of distinct subproblems
is the number of the combinations of the lines checked. Thus the number of
distinct subproblem is

∑d−1
j=1

(
d
i

)
= O(2d). Then the runtime is O(2d(r + d)d +

(d + log m)d). ut
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Algorithm 3: Multi-rayClusters2(C, F )
Input : A set C of customers and a set of F of facilities on a star
Output: An r-gathering with only multi-ray clusters
if |C| < r or the number of rays containing customers is at most one
then

return ∅;
endif
if |C| < 2r or the number of rays containing customers is two then

Assign C to its best facility; /* Lemma 8(b) */
return {C};

endif
Ans← ∅;
Best←∞;
for each ray li containing a customer do

Ci ← pi and its r − 1 nearest customers in C; /* Lemma 8(a) */
if Ci is a multi-ray cluster then

Assign Ci to its best facility;
A← {Ci}∪ Multi-rayClusters2(C \ Ci, F );
if cost(A) < Best then

Best← cost(A);
Ans← A;

endif
endif

end
return Ans

Theorem 2. An optimal r-gathering of C to F can be computed in O(n+r2m+
d2r2(d + log m) + (r + 1)d2d(r + d)d) time.

Proof. Similar to Theorem 1 we can prove the number of possible choices of
the customers for multi-ray clusters is at most (r + 1)ddr. For each choice we
compute an r-gathering with Multi-rayClusters2 and compute r-gatherings of the
remaining one-dimensional problems, then combine them to form an r-gathering
of C to F . Then output the best one. This construction of multi-ray clusters
needs O(2d(r+d)d+(d+log m)d) for each. To eliminate redundant computation
we precompute the best facilities of each pair in the dr customers which are
candidate for the farthest two customers in possible multi-ray clusters. Such
precomputation takes O(d2r2(d + log m)) time. We can solve all possible one
dimensional r-gathering problem in O(n + r2m) time in total [10] and we store
the solutions in a table. Note that when we solve one dimensional r-gathering
problem of ray l, we may assign a cluster to the nearest facility to o located on
other ray, however one can compute such f quickly. Thus the time complexity of
finding an optimal r-gathering is O(n+r2m+d2r2(d+log m)+(r+1)d2d(r+d)d).

ut
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If both r and d are constant, then this is linear.

5 Conclusion

In this paper we presented an O(rn + (r + 1)ddr) time algorithm to solve rhe
r-gather clustering problem when all points are lying on a star with d rays. We
also gave an O(n + r2m + d2r2(d + log m) + (r + 1)d2d(r + d)d) time algorithm
to solve the r-gathering problem when all customers and facilities are lying on
a star with d rays.
Can we solve the problems more efficiently or can we solve the problems on more
general input like on a tree?
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