
COMP 550.002: Fall 2023

Assignment 2

Announced: September 20, 2023

Due Date: October 4, 2023

All problems are collaborative. You can form a group of at most four students to collaborate. You MUST
mention the names of your collaborators, and cite any material you took help from (including discussions on canvas
by other students) except the textbook.

CLRS refers Cormen et al. textbook.

Problem 1 (30 Points)

For each of the following pair of functions f(n) and g(n), determine whether f(n) = O(g(n)), f(n) = Ω(g(n)),
f(n) = Θ(n), f(n) = o(g(n)), or f(n) = ω(g(n)). You should indicate all asymptotic notations that apply.

f(n) g(n)

(a) 1010n2 + 5n n3 + 1

(b) 3n n · 2n

(c) n lg n 10n lg 10n

(d) n2 lg n n(log10 n)
2

Problem 2 (24 points)

[This problem is based on CLRS problem 3-3(a)] Order the following list of functions by O-notation. Thus,
determine an arrangement g1(n), g2(n), . . . of these functions so that g1(n) = Ω(g2(n)), g2(n) = Ω(g3(n)), . . . (In
other words, g2(n) = O(g1(n)), g3(n) = O(g2(n)), . . .). Partition your list into equivalence classes such that functions
f(n) and g(n) are in the same class if and only of f(n) = Θ(g(n)).

n2 n! n lg n (3/2)n

22
n

n1/ lgn 1 n lg n

4lgn n (lg n)2 2n

To get partial credit, include your justification for each relation between and within equivalence classes, i.e., state
why g1(n) = Ω(g2(n)), g2(n) = Ω(g3(n)), etc. Your justification is not required to be formal/rigorous, e.g., you may
state sentences like “since base of log does not matter in asymptotic notations. . . ”, etc.

1



Problem 3 (6 + 25 = 31 points)

[This problem is based on CLRS problem 2-4] Let A[1 : n] be an array of n distinct numbers. If i < j and
A[i] > A[j], then the pair (i, j) is called an inversion of A.

(a) List the five inversions of the array ⟨2, 3, 8, 6, 1⟩.
(b) Give an algorithm that determines the number of inversions in an array in O(n lg n) time. (Hint: modify

merge sort) Using recursion trees, justify the running time of your algorithm.

Problem 4 (15 points)

The following algorithm computes the nth power of a number. More precisely, given a non-negative integer n and a
number a, the algorithm returns an.

Algorithm 1 Fast-Exponentiation(a, n)

Input: A number a and a non-negative integer n
Output: The value of an

1: if n = 0 then
2: return 1
3: if n = 1 then
4: return a
5: x = Fast-Exponentiation(a, ⌊n/2⌋)
6: if n is even then
7: return x · x
8: else
9: return a · x · x

Prove the correctness of Fast-Exponentiation procedure, i.e., show that Fast-Exponentiation correctly
returns the value of an. (Hint: use strong/complete induction, and example is given in:
https://uncch.instructure.com/courses/34716/files/folder/Notes?preview=5058899)

2

https://uncch.instructure.com/courses/34716/files/folder/Notes?preview=5058899

