

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

COMP 550 Algorithm and Analysis

Asymptotic Complexity

Based on CLRS Sec 3

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Asymptotic Complexity

- Order of growth: how an algorithm's running time increases w.r.t input size
 - Asymptotic behavior (<u>Asymptotic complexity</u>) of the algorithm
 - Running time increase as input size increases without bound
- Expressed using <u>Asymptotic Notations</u>
 - Example: O (Big-Oh), Ω (Big-Omega), Θ (Big-Theta)

0-Notation (Big-Oh)

- O-notation characterizes an <u>upper bound</u> on the asymptotic behavior of a function
 - A function grows <u>no faster</u> than a certain rate (based on higher order terms)
 - A function is O(g(n)) if it grows no faster than $c \cdot g(n)$ for constant c

0-Notation (Big-Oh)

- A function is O(g(n)) if it grows no faster than $c \cdot g(n)$ for constant c
- **Example:** $f(n) = 7n^3 + 100n^2 20n + 6$
 - f(n) is $O(n^3)$
 - f(n) is also $O(n^5)$, $O(2^n)$, and O(n!). Why?

Ω -Notation (Big-Omega)

- $\Omega\text{-notation}$ characterizes a $\underline{\text{lower bound}}$ on the asymptotic behavior of a function
 - A function grows <u>no slower</u> than a certain rate (based on higher order terms)
 - A function is $\Omega(g(n))$ if it grows no slower than $c \cdot g(n)$ for constant c

Ω -Notation (Big-Omega)

COMP550@UNC

- A function is $\Omega(g(n))$ if it grows no slower than $c \cdot g(n)$ for constant c
- **Example:** $f(n) = 7n^3 + 100n^2 20n + 6$
 - f(n) is $\Omega(n^3)$
 - f(n) is also $\Omega(n^2)$, $\Omega(n)$, and $\Omega(\log n)$. Why?

7n^3+100n^2-20n+6 and n^2

6

O-Notation (Big-Theta)

- $\Omega\text{-notation}$ characterizes a <u>tight bound</u> on the asymptotic behavior of a function
 - A function grows precisely a certain rate (based on higher order terms)
 - A function is $\Theta(g(n))$ if it is both O(g(n)) and $\Omega(g(n))$
- **Example:** $f(n) = 7n^3 + 100n^2 20n + 6$
 - f(n) is $\Theta(n^3)$
 - f(n) is NOT $\Theta(n^2)$, $\Theta(n^4)$, and $\Theta(\log n)$. Why?

Why Functions?

- Recall that our derived running times for FindMax, Linear Search, and Insertion Sort are functions of input size n
- We will represent these running times in asymptotic notations
 - Simplicity
 - Enable comparison

- Worst-case running time, T(n) = Longest running time for anyinput of size n.
- Worst-case running time of Insertion Sort is $\Theta(n^2)$. <u>How?</u>

In the worst case,

$$T(n) = a \cdot n + c_5 \cdot \sum_{i=2}^{n} t_i + (c_6 + c_7) \sum_{i=2}^{n} (t_i - 1) + b$$

$$= a \cdot n + c_5 \left(\frac{n(n+1)}{2} - 1\right) + (c_6 + c_7) \left(\frac{n(n-1)}{2}\right) + b$$

$$= \left(\frac{c_5 + c_6 + c_7}{2}\right)n^2 + \left(a + \frac{c_5 - c_6 - c_7}{2}\right)n + b - c_5$$

$$= a'n^2 + b'n + c'$$

- Can we determine this asymptotic complexity w/o evaluating sums?
- Show that the worst-case running time is both $O(n^2)$ and $\Omega(n^2)$.
- Worst-case running time of Insertion Sort is $O(n^2)$.
 - Outer loop runs n-1 times
 - For each iteration of outer loop
 - Inner loop runs at most i 1 times
 - $i \le n \implies i-1 \le n-1$
 - Total inner loop iteration $\leq (n-1)(n-1)$
 - Each line takes constant time
 - Worst-case running time = $O(n^2)$

INSERTION-SORT (A, n)1 for i = 2 to n2 key = A[i]3 // Insert A[i] into the sorted subarray A[1:i-1]. 4 j = i - 15 while j > 0 and A[j] > key6 A[j+1] = A[j]7 j = j - 18 A[j+1] = key

- Worst-case running time of Insertion Sort is $\Omega(n^2)$,
 - For every n, there exists an input that takes at least $c\cdot n^2$ time for some constant c
 - For a reverse-sorted array,
 - A[1] moves through at least n-1 positions
 - A[2] moves through at least n-2 positions
 - ...
 - Total steps $\ge (n-1) + (n-2) + \dots + 0 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$
 - Worst-case running time is at least $\frac{(n-1)n}{2}$, meaning $\Omega(n^2)$
 - * The textbook has a different example

- The worst-case running time of Insertion Sort is $\Theta(n^2)$
- Can we say that running time of Insertion Sort is $\Theta(n^2)$?
 - No. Why?
 - No "worst-case" in the statement $\Rightarrow \Theta(n^2)$ for all cases!
 - Running time is an + b for some input (best-case running time)
 - Running time of Insertion Sort is $O(n^2)$ and $\Omega(n)$

• Worst-case running time is both $O(n^2)$ and $\Omega(n^2)$

 $\Rightarrow \Theta(n^2)$

• Best-case running time is both O(n) and $\Omega(n)$

 $\Rightarrow \Theta(n)$

• Running time is $O(n^2)$ and $\Omega(n)$

- Running time is $O(g(n)) \Rightarrow$ Worst-case running time is O(g(n))
- O(g(n)) bound on the worst-case running time $\Rightarrow O(g(n))$ bound on the running time of every input.
- $\Theta(g(n))$ bound on the worst-case running time $\Rightarrow \Theta(g(n))$ bound on the running time of every input.
- Running time is $\Omega(g(n)) \Rightarrow$ Best case is $\Omega(g(n))$
- Can still say "Worst-case running time is $\Omega(g(n))$ "
 - The worst-case running time is given by some unspecified function $f(n) \in \Omega(g(n))$.

- Insertion sort takes $\Theta(n^2)$ in the worst case, so sorting (as a problem) is $O(n^2)$. Why?
- Any sorting algorithm must look at each item, so sorting is $\Omega(n)$.

16

O-Notation Definition

 For a given function g(n), O(g(n)) is the set of functions

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0 \text{ such}$ that $0 \le f(n) \le cg(n)$ holds for all $n \ge n_0\}$

- Pronounced as big-oh of g of n
- O(g(n)) is the set of all functions whose rate of growth is the same as or lower than that of g(n).

 For a given function g(n), O(g(n)) is the set of functions

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0 \text{ such}$ that $0 \le f(n) \le cg(n)$ holds for all $n \ge n_0\}$

- We should write $f(n) \in O(g(n))$
- Common notational abuse, f(n) = O(g(n))

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0 \text{ such}$ that $0 \le f(n) \le cg(n)$ holds for all $n \ge n_0\}$

- Show that $4n^2 + 100n + 500 \in O(n^2)$
- Need to find appropriate c and n_0 such that $4n^2 + 100n + 500 \leq cn^2$

- So, $c \ge 4 + \frac{100}{n} + \frac{500}{n^2}$
- One choice $n_0 = 1$ and any $c \ge 604$

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0 \text{ such}$ that $0 \le f(n) \le cg(n)$ holds for all $n \ge n_0\}$

- Show that $n^3 100n^2 \notin O(n^2)$
- Assume that

$$n^3 - 100n^2 \le cn^2$$

• So, $c \ge n - 100$, which is impossible

 $O(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0 \text{ such}$ that $0 \le f(n) \le cg(n)$ holds for all $n \ge n_0\}$

• Note that this definition requires f(n) and g(n)

to be <u>asymptotically non-negative</u>

•
$$f(n) \ge 0$$
 , as $n \to \infty$

$\Omega\text{-Notation}$ Definition

• For a given function $g(n), \Omega(g(n))$ is the set of functions

 $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0 \text{ such} \\ \text{that } 0 \le cg(n) \le f(n) \text{ holds for all } n \ge n_0 \}$

Pronounced as big-omega of g of n

• $\Omega(g(n))$ is the set of all functions whose rate of growth is the same as or higher than that of g(n).

$\Omega\text{-Notation}$ Definition

 $\Omega(g(n)) = \{f(n) : \exists \text{ positive constants } c, n_0 \text{ such} \\ \text{that } 0 \le cg(n) \le f(n) \text{ holds for all } n \ge n_0 \}$

- Show that $4n^2 + 100n + 500 \in \Omega(n^2)$
- Need to find appropriate c and n_0 such that $4n^2 + 100n + 500 \geq cn^2$

- So, $c \le 4 + \frac{100}{n} + \frac{500}{n^2}$
- One choice $n_0 = 1$ and any $c \le 604$

• For a given function $g(n), \Theta(g(n))$ is the set of functions

 $\Theta(g(n)) = \{f(n) : \exists \text{ positive constants } c_1, c_2, n_0 \text{ such}$ that $0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ holds for all } n \ge n_0\}$

- Pronounced as big-theta of g of n
- $\Theta(g(n))$ is the set of all functions whose rate of growth is the same as g(n).

Thm. 3.1. $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

- Question: How to prove statement "P if and only if Q"?
 - If P, then Q (Q is a <u>necessary condition</u> for P)
 - If Q, then P (Q is a <u>sufficient condition</u> for P)

Proof Obligation:

- If $f(n) = \Theta(g(n))$, then f(n) = O(g(n)) and $f(n) = \Omega(g(n))$
- If f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, then $f(n) = \Theta(g(n))$

Thm. 3.1. $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ If $f(n) = \Theta(g(n))$, then f(n) = O(g(n)) and $f(n) = \Omega(g(n))$: $f(n) = \Theta(g(n)) \Longrightarrow \exists c_1, c_2, n_0 > 0 : \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ So, $\exists c_1, n_0 > 0 : \forall n \ge n_0, 0 \le c_1 g(n) \le f(n)$ $\Rightarrow f(n) = \Omega(g(n))$ Also, $\exists c_2, n_0 > 0 : \forall n \ge n_0, 0 \le f(n) \le c_2 g(n)$

 $\Rightarrow f(n) = O(g(n))$

Thm. 3.1. $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

$$\begin{split} \mathbf{If} f(n) &= O(g(n)) \text{ and } f(n) = \Omega(g(n)), \text{ then } f(n) = \Theta(g(n)):\\ f(n) &= \Omega(g(n)) \Longrightarrow \exists c_1, n'_0 > 0: \forall n \ge n'_0, 0 \le c_1 g(n) \le f(n)\\ f(n) &= O(g(n)) \Longrightarrow \exists c_2, n''_0 > 0: \forall n \ge n''_0, 0 \le f(n) \le c_2 g(n) \end{split}$$

Let $n_0 = \max\{n'_0, n''_0\}$

So, $\exists c_1, c_2, n_0 > 0 : \forall n \ge n_0, 0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ $\Rightarrow f(n) = \Theta(g(n))$

Asymptotic Notations

- Be as precise as possible
 - If $f(n) = \Theta(n)$, then try to write so (not f(n) = O(n))
- Algorithm A runs in $3n^2 + 20n$ time in all cases
 - Running time (or <u>Time Complexity</u>) is $\Theta(n^2)$
 - Running time is $O(n^3)$, this is imprecise
 - Running time is $\Theta(3n^2 + 20n)$, this has unnecessary details

Asymptotic Notations

- Common mistakes (but kind of accepted)
 - An $O(n \log n)$ time algorithm is faster than $O(n^2)$ time algorithm
- O-notation is the earliest (Bachman 1892)
- $\Theta\text{-}$ and $\Omega\text{-}notations$ were advocated by Knuth

Asymptotic Notations in Expressions

- $2n^2 + 3n + 1 = \Theta(n^2)$
 - Equality means set membership
- $2n^2 + \Theta(n)$
 - $\Theta(n)$ is standing for an anonymous function $f(n) \in \Theta(n)$
- $2n^2 + \Theta(n) = \Theta(n^2)$
 - No matter what anonymous function $\Theta(n)$ represents, there is always a way to choose an anonymous function for $\Theta(n^2)$ so that the equation is valid.

Asymptotic Notations in Expressions

- O(g(n)) means order of growth as n goes to ∞
- What about O(1)?
 - Infer from context
 - If f(n) = O(1), n goes to ∞
- T(n) = O(1) for n < 3
 - $\exists c > 0 : T(n) \le c \text{ for } n < 3$

o-Notation

• Non-tight upper bound

 $o(g(n)) = \{f(n) : \forall \text{ positive constants } c, \exists n_0 > 0$ such that $0 \leq f(n) < cg(n)$ holds for all $n \geq n_0\}$

- Compare the definition with O-notation
- $2n^2 + n$ is $O(n^2)$, but not $o(n^2)$
- $2n^{2-\epsilon} + n$ for any $\epsilon > 0$ is $o(n^2)$

o-Notation

• Non-tight upper bound

 $o(g(n)) = \{f(n) : \forall \text{ positive constants } c, \exists n_0 > 0$ such that $0 \leq f(n) < cg(n)$ holds for all $n \geq n_0\}$

• Intuitively, f(n) becomes insignificant w.r.t g(n) as $n \to \infty$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

ω -Notation

Non-tight upper bound

 $\omega(g(n)) = \{f(n) \mid \forall \text{ positive constants } c, \exists n_0 > 0 \\ \text{such that } 0 \le cg(n) < f(n) \text{ holds for all } n \ge n_0 \}$

- Compare the definition with $\Omega\text{-notation}$
- $2n^2 + n$ is $\Omega(n^2)$, but not $\omega(n^2)$
- $2n^{2+\epsilon} + n$ for any $\epsilon > 0$ is $\omega(n^2)$

ω -Notation

• Non-tight upper bound

 $o(g(n)) = \{f(n) : \forall \text{ positive constants } c, \exists n_0 > 0$ such that $0 \leq f(n) < cg(n)$ holds for all $n \geq n_0\}$

• Intuitively, f(n) becomes arbitrarily large w.r.t g(n) as $n \to \infty$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$

- <u>Transitivity</u>:
 - $f(n) = X(g(n)) \land g(n) = X(h(n)) \Rightarrow f(n) = X(h(n))$
 - X can be any one of $\mathcal{O}, \Omega, \Theta, o, \omega$
- <u>Reflexivity</u>:
 - f(n) = X(f(n)), where X is one of O, Ω, Θ
 - Why not applicable to o and ω ?

• <u>Symmetry</u>:

- $f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n))$
- Transpose symmetry:
 - $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$

•
$$f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$$

- Prove that $o(g(n)) \cap \omega(g(n)) = \emptyset$.
 - Assume that $f(n) \in o(g(n)) \cap \omega(g(n))$
 - From $f(n) \in o(g(n)), \forall c > 0, \exists n'_0 > 0: \forall n \ge n'_0, 0 \le f(n) < cg(n)$
 - From $f(n) \in \omega(g(n)), \forall c > 0, \exists n_0'' > 0: \forall n \ge n_0'', 0 \le cg(n) < f(n)$
 - Let $n_0 = \max\{n'_0, n''_0\}$
 - Then, $\forall n \ge n_0$: $f(n) < cg(n) \land cg(n) < f(n)$
 - This is impossible, a contradiction

Useful but Incorrect Analogies

Asymptotic Notation	Is Like
f(n) = O(g(n))	$f(n) \leq g(n)$
$f(n) = \Theta(g(n))$	f(n) = g(n)
$f(n) = \Omega(g(n))$	$f(n) \ge g(n)$
f(n) = o(g(n))	f(n) < g(n)
$f(n) = \omega(g(n))$	f(n) > g(n)

Warning: DO NOT formally use them in HWs/Exams/Interviews

Exercise

Express functions in A in asymptotic notation using functions in B.

B A $5n^2 + 100n$ $3n^2 + 2$ $A \in \Theta(B)$ $A \in \Theta(n^2), n^2 \in \Theta(B) \Rightarrow A \in \Theta(B)$ $\log_2(n^3)$ $A \in \Theta(B)$ $\log_3(n^2)$ $\log_{b}a = \log_{c}a / \log_{c}b$; A = 2lgn / lg3, B = 3lgn, A/B = 2/(3lg3) $n^{1/2}$ $A \in o(B)$ lg²n $\lim_{n\to\infty} (\lg^a n / n^b) = 0 \text{ (here } a = 2 \text{ and } b = 1/2) \Rightarrow A \in o(B)$

Common Functions

Motonocity

- A function f(n) is
 - <u>Monotonically increasing</u> if $m \le n \implies f(m) \le f(n)$
 - Monotonically decreasing if $m \le n \implies f(m) \ge f(n)$
 - <u>Strictly increasing</u> if $m < n \implies f(m) < f(n)$
 - <u>Strictly decreasing</u> if $m < n \implies f(m) > f(n)$
- Question: Which of the above is true for $f(n) = n^2$ where $n \ge 0$?

Polynomials

- p(n) is a <u>polynomial</u> in n of degree d if
 - $p(n) = a_d p^d + a_{d-1} p^{d-1} + \dots + a_0$ AND $a_d \neq 0$ ($d \ge 0$ is an integer constant)
 - a_d, a_{d-1}, \dots are co-efficients
 - $p(n) = \Theta(n^d)$
- A function $f(n) = O(n^k)$ for a constant k is called <u>polynomially bounded</u>
- Common polynomials:
 - O(n): Linear running time, $O(n^2)$: Quadratic running time, $O(n^3)$: Cubic running time

Exponentials

- Functions that have a^n terms (a is a constant)
 - Polynomials: variable base, constant exponent
 - Exponentials: constant base, variable exponent
- For any real constants a, b with a > 1

•
$$n^b = o(a^b)$$
, because $\lim_{n \to \infty} \frac{n^b}{a^b} = 0$

• See book for some (in)equalities regarding e^x

Identities

 $a^{0} = 1,$ $a^{1} = a,$ $a^{-1} = 1/a,$ $(a^{m})^{n} = a^{mn},$ $(a^{m})^{n} = (a^{n})^{m},$ $a^{m}a^{n} = a^{m+n}.$

Logarithms

,

•
$$x = \log_b a \iff a = bx$$

Identities					
а	=	$b^{\log_b a}$,			
$\log_c(ab)$	=	$\log_c a + \log_c b$			
$\log_b a^n$	=	$n\log_b a$,			
$\log_b a$	=	$\frac{\log_c a}{\log_c b},$			
$\log_b(1/a)$	=	$-\log_b a$,			
$\log_b a$	=	$\frac{1}{\log_a b},$			
$a^{\log_b c}$	=	$c^{\log_b a}$,			
	a $\log_{c}(ab)$ $\log_{b} a^{n}$ $\log_{b} a$ $\log_{b} a$ $\log_{b} (1/a)$ $\log_{b} a$	$a =$ $\log_{c}(ab) =$ $\log_{b} a^{n} =$ $\log_{b} a =$ $\log_{b}(1/a) =$ $\log_{b} a =$ $a^{\log_{b} c} =$			

CLRS Notations

lg <i>n</i>	=	$\log_2 n$	(binary logarithm),
ln <i>n</i>	=	$\log_e n$	(natural logarithm),
$\lg^k n$	=	$(\lg n)^k$	(exponentiation),
lg lg n	=	$\lg(\lg n)$	(composition) .

Logarithms

- Log bases do not matter in asymptotic notations
 - $\log_a n = \Theta(\log_b n)$. Why?
- A function f(n) = O(lg^kn) for a constant k is called polylogarithmically bounded

•
$$\lg^b n = o(n^a)$$
 for any $a > 0$

Identities $a = b^{\log_b a}$, $\log_c(ab) = \log_c a + \log_c b ,$ $\log_h a^n = n \log_h a ,$ $\log_b a = \frac{\log_c a}{\log_c b},$ $\log_b(1/a) = -\log_b a ,$ $\log_b a = \frac{1}{\log_a b} \,,$ $a^{\log_b c} = c^{\log_b a}.$

Factorials

• How many ways can you arrange n items?

1

$$n! = \begin{cases} 1 & \text{if } n = 0, \\ n \cdot (n-1)! & \text{if } n > 0. \end{cases}$$

• Stirling's approximation $n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$

• Using the above:

$$n! = o(n^{n}),$$

$$n! = \omega(2^{n}),$$

$$g(n!) = \Theta(n \lg n),$$

Growth Rates

n	lg n	$\lg^2 n$	\sqrt{n}	n lg n	n^2	n^3	2 ⁿ
4	2	4	2	8	16	64	16
16	4	16	4	64	256	4096	65536
64	6	36	8	384	4096	2.62E+05	1.84E+19
256	8	64	16	2048	65536	1.68E+07	1.16E+77
1024	10	100	32	10240	1.05E+06	1.07E+09	1.79E+308
4096	12	144	64	4.92E+04	1.68E+07	6.87E+10	E+1233
16384	14	196	128	2.29E+05	2.68E+08	4.40E+12	E+4932
65536	16	256	256	1.05E+06	4.29E+09	2.81E+14	E+19728
262144	18	324	512	4.72E+06	6.87E+10	1.80E+16	E+78913

Growth Rates

Running times on a million instruction/sec machine

n	lg n	lg ² <i>n</i>	\sqrt{n}	n lg n	n^2	n^3	2^n
4	<1 sec	<1 sec	<1 sec	< 1 sec	<1 sec	<1 sec	<1 sec
16	<1 sec	<1 sec	<1 sec	< 1 sec	<1 sec	<1 sec	<1 sec
							2*10^8
64	<1 sec	<1 sec	<1 sec	< 1 sec	<1 sec	<1 sec	years
256	<1 sec	<1 sec	<1 sec	< 1 sec	<1 sec	16 sec	very long
1024	<1 sec	<1 sec	<1 sec	< 1 sec	1 sec	18 min	very long
4096	<1 sec	<1 sec	<1 sec	< 1 sec	16 sec	19 hours	very long
16384	<1 sec	<1 sec	<1 sec	< 1 sec	5 min	51 years	very long
65536	<1 sec	<1 sec	<1 sec	1 sec	1 hour	3257 years	very long
262144	<1 sec	<1 sec	<1 sec	5 sec	19 hours	2*10^5 years	very long

Growth Rate	Name	Examples and Notes
Θ(1)	Constant	Add to linked list (unsorted) Assign value to variable
$\Theta(\lg n)$	Logarithmic	Binary Search
$\Theta(\sqrt{n})$	Square Root	Primality Testing;
$\Theta(n)$	Linear	Find item in unsorted lists, String comparison, Special- purpose sorts
$\Theta(n \lg n)$	Log-Linear	Good sorting algorithms (merge sort, heapsort)
$\Theta(n^2)$	Quadratic	Naive sorting algorithms (Bubble, Insertion, Selection)
$\Theta(n^3)$	Cubic	Naive Matrix Multiplication Floyd-Warshall (All-pairs shortest paths)
$\Theta(n^p), p > 3$	High-Order Polynomial	Perfect graph recognition, O(n ⁹). <u>https://cstheory.stackexchange.com/questions/6660/polyn</u> <u>omial-time-algorithms-with-huge-exponent-constant/</u>
$\Theta(c^n), c > 1$	Exponential	Find all subsets. Algorithm is inefficient, if can't do better, then the problem is hard.
$\Theta(n!)$	Factorial	Find all permutations.

Thank You!