
COMP 550
Algorithm and Analysis

Asymptotic Complexity

Based on CLRS Sec 3

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Asymptotic Complexity

• Order of growth: how an algorithm’s running time increases w.r.t

input size

• Asymptotic behavior (Asymptotic complexity) of the algorithm

• Running time increase as input size increases without bound

• Expressed using Asymptotic Notations

• Example: 𝑂 (Big-Oh), Ω (Big-Omega), Θ (Big-Theta)

COMP550@UNC 2

3

𝑂-Notation (Big-Oh)

COMP550@UNC

• 𝑂-notation characterizes an upper bound on the asymptotic behavior

of a function

• A function grows no faster than a certain rate (based on higher order terms)

• A function is O(𝑔 𝑛) if it grows no faster than 𝑐 ⋅ 𝑔 𝑛 for constant 𝑐

4

𝑂-Notation (Big-Oh)

COMP550@UNC

• A function is O(𝑔 𝑛) if it grows no faster

than 𝑐 ⋅ 𝑔 𝑛 for constant 𝑐

• Example: 𝑓(𝑛) = 7𝑛3 + 100𝑛2 − 20𝑛 + 6

• 𝑓 𝑛 is 𝑂(𝑛3)

• 𝑓(𝑛) is also 𝑂(𝑛5), 𝑂(2𝑛), and 𝑂 𝑛! . Why?

5

Ω-Notation (Big-Omega)

COMP550@UNC

• Ω-notation characterizes a lower bound on the asymptotic behavior of

a function

• A function grows no slower than a certain rate (based on higher order terms)

• A function is Ω(𝑔 𝑛) if it grows no slower than 𝑐 ⋅ 𝑔 𝑛 for constant 𝑐

6

Ω-Notation (Big-Omega)

COMP550@UNC

• A function is Ω(𝑔 𝑛) if it grows no slower

than 𝑐 ⋅ 𝑔 𝑛 for constant 𝑐

• Example: 𝑓(𝑛) = 7𝑛3 + 100𝑛2 − 20𝑛 + 6

• 𝑓 𝑛 is Ω(𝑛3)

• 𝑓(𝑛) is also Ω(𝑛2), Ω(𝑛), and Ω log 𝑛 . Why?

7

Θ-Notation (Big-Theta)

COMP550@UNC

• Ω-notation characterizes a tight bound on the asymptotic behavior of

a function

• A function grows precisely a certain rate (based on higher order terms)

• A function is Θ(𝑔 𝑛) if it is both 𝑂(𝑔 𝑛) and Ω(𝑔 𝑛)

• Example: 𝑓(𝑛) = 7𝑛3 + 100𝑛2 − 20𝑛 + 6

• 𝑓 𝑛 is Θ(𝑛3)

• 𝑓(𝑛) is NOT Θ(𝑛2), Θ(𝑛4), and Θ log 𝑛 . Why?

Why Functions?

• Recall that our derived running times for FindMax, Linear

Search, and Insertion Sort are functions of input size 𝑛

• We will represent these running times in asymptotic notations

• Simplicity

• Enable comparison

COMP550@UNC 8

Insertion Sort Asymptotic Complexity

• Worst-case running time, 𝑇 𝑛 = Longest running time for any

input of size 𝑛.

• Worst-case running time of Insertion Sort is Θ(𝑛2). How?

COMP550@UNC 9

Insertion Sort Asymptotic Complexity

• Can we determine this asymptotic complexity w/o evaluating sums?

• Show that the worst-case running time is both 𝑂 𝑛2 and Ω 𝑛2 .

• Worst-case running time of Insertion Sort is 𝑂(𝑛2).

• Outer loop runs 𝑛 − 1 times

• For each iteration of outer loop

• Inner loop runs at most 𝑖 − 1 times

• 𝑖 ≤ 𝑛 ⟹ 𝑖 − 1 ≤ 𝑛 − 1

• Total inner loop iteration ≤ (𝑛 − 1)(𝑛 − 1)

• Each line takes constant time

• Worst-case running time = 𝑂(𝑛2)

COMP550@UNC 10

Insertion Sort Asymptotic Complexity

COMP550@UNC 11

• Worst-case running time of Insertion Sort is Ω(𝑛2),

• For every 𝑛, there exists an input that takes at least 𝑐 ⋅ 𝑛2 time for some

constant 𝑐

• For a reverse-sorted array,

• A[1] moves through at least 𝑛 − 1 positions

• A[2] moves through at least 𝑛 − 2 positions

• …

• Total steps ≥ 𝑛 − 1 + 𝑛 − 2 + ⋯ + 0 = σ𝑖=1
𝑛−1 𝑖 =

𝑛−1 𝑛

2

• Worst-case running time is at least
𝑛−1 𝑛

2
, meaning Ω(𝑛2)

* The textbook has a different example

Insertion Sort Asymptotic Complexity

COMP550@UNC 12

• The worst-case running time of Insertion Sort is Θ 𝑛2

• Can we say that running time of Insertion Sort is Θ 𝑛2 ?

• No. Why?

• No “worst-case” in the statement ⟹ Θ(𝑛2) for all cases!

• Running time is 𝑎𝑛 + 𝑏 for some input (best-case running time)

• Running time of Insertion Sort is 𝑂(𝑛2) and Ω(𝑛)

Insertion Sort Asymptotic Complexity

COMP550@UNC 13

• Worst-case running time is both 𝑂(𝑛2) and Ω 𝑛2

⇒ Θ(𝑛2)

• Best-case running time is both 𝑂(𝑛) and Ω(𝑛)

⇒ Θ 𝑛

• Running time is 𝑂(𝑛2) and Ω(𝑛)

Insertion Sort Asymptotic Complexity

COMP550@UNC 14

• Running time is 𝑂(𝑔(𝑛)) ⇒ Worst-case running time is 𝑂(𝑔(𝑛))

• 𝑂(𝑔(𝑛)) bound on the worst-case running time ⇒ 𝑂(𝑔(𝑛)) bound on the

running time of every input.

• Θ(𝑔(𝑛)) bound on the worst-case running time ⇏ Θ(𝑔(𝑛)) bound on the

running time of every input.

• Running time is Ω(𝑔(𝑛)) ⇒ Best case is Ω(𝑔(𝑛))

• Can still say “Worst-case running time is Ω(𝑔(𝑛))”

• The worst-case running time is given by some unspecified function 𝑓 𝑛 ∈

Ω 𝑔 𝑛 .

Insertion Sort Asymptotic Complexity

COMP550@UNC 15

• Insertion sort takes Q(n2) in the worst case, so sorting (as a

problem) is O(n2). Why?

• Any sorting algorithm must look at each item, so sorting is

W(n).

𝑂-Notation Definition

COMP550@UNC 16

• For a given function 𝑔 𝑛 , 𝑂(𝑔 𝑛) is the set of

functions

• Pronounced as big-oh of g of n

• 𝑂 𝑔 𝑛 is the set of all functions whose rate of

growth is the same as or lower than that of g(n).

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}

𝑂-Notation Definition

COMP550@UNC 17

• For a given function 𝑔 𝑛 , 𝑂(𝑔 𝑛) is the set of

functions

• We should write 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛)

• Common notational abuse, 𝑓 𝑛 = 𝑂(𝑔 𝑛)

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}

𝑂-Notation Definition

COMP550@UNC 18

• Show that 4𝑛2 + 100𝑛 + 500 ∈ 𝑂(𝑛2)

• Need to find appropriate 𝑐 and 𝑛0 such that

4𝑛2 + 100𝑛 + 500 ≤ 𝑐𝑛2

• So, 𝑐 ≥ 4 +
100

𝑛
+

500

𝑛2

• One choice 𝑛0 = 1 and any 𝑐 ≥ 604

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}

𝑂-Notation Definition

COMP550@UNC 19

• Show that 𝑛3 − 100𝑛2 ∉ 𝑂(𝑛2)

• Assume that

𝑛3 − 100𝑛2 ≤ 𝑐𝑛2

• So, 𝑐 ≥ 𝑛 − 100, which is impossible

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}

𝑂-Notation Definition

COMP550@UNC 20

• Note that this definition requires 𝑓 𝑛 and 𝑔(𝑛)

to be asymptotically non-negative

• 𝑓 𝑛 ≥ 0, as 𝑛 → ∞

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}

Ω-Notation Definition

COMP550@UNC 21

• For a given function 𝑔 𝑛 , Ω(𝑔 𝑛) is the set of

functions

• Pronounced as big-omega of g of n

• Ω 𝑔 𝑛 is the set of all functions whose rate of

growth is the same as or higher than that of 𝑔(𝑛).

Ω 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such

that 0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓(𝑛) holds for all 𝑛 ≥ 𝑛0}

Ω-Notation Definition

COMP550@UNC 22

• Show that 4𝑛2 + 100𝑛 + 500 ∈ Ω(𝑛2)

• Need to find appropriate 𝑐 and 𝑛0 such that

4𝑛2 + 100𝑛 + 500 ≥ 𝑐𝑛2

• So, 𝑐 ≤ 4 +
100

𝑛
+

500

𝑛2

• One choice 𝑛0 = 1 and any 𝑐 ≤ 604

Ω 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such

that 0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓(𝑛) holds for all 𝑛 ≥ 𝑛0}

Θ-Notation Definition

COMP550@UNC 23

• For a given function 𝑔 𝑛 , Θ(𝑔 𝑛) is the set of

functions

• Pronounced as big-theta of g of n

• Θ 𝑔 𝑛 is the set of all functions whose rate of

growth is the same as 𝑔(𝑛).

Θ 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐1, 𝑐2, 𝑛0 such

that 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}

Θ-Notation Definition

COMP550@UNC 24

• Question: How to prove statement “P if and only if Q”?

• If P, then Q (Q is a necessary condition for P)

• If Q, then P (Q is a sufficient condition for P)

Proof Obligation:

• If 𝑓 𝑛 = Θ 𝑔(𝑛) , then 𝑓 𝑛 = 𝑂 𝑔(𝑛) and 𝑓 𝑛 = Ω 𝑔(𝑛)

• If 𝑓 𝑛 = 𝑂 𝑔(𝑛) and 𝑓 𝑛 = Ω 𝑔(𝑛) , then𝑓 𝑛 = Θ 𝑔(𝑛)

Thm. 3.1. 𝑓 𝑛 = Θ 𝑔(𝑛) if and only if 𝑓 𝑛 = 𝑂 𝑔(𝑛) and 𝑓 𝑛 = Ω 𝑔(𝑛)

Θ-Notation Definition

COMP550@UNC 25

If 𝑓 𝑛 = Θ 𝑔(𝑛) , then 𝑓 𝑛 = 𝑂 𝑔(𝑛) and 𝑓 𝑛 = Ω 𝑔(𝑛) :

𝑓 𝑛 = Θ 𝑔(𝑛) ⟹ ∃𝑐1, 𝑐2, 𝑛0 > 0 ∶ ∀𝑛 ≥ 𝑛𝑜, 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔(𝑛)

So, ∃𝑐1, 𝑛0 > 0 ∶ ∀𝑛 ≥ 𝑛𝑜, 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛

⇒ 𝒇 𝒏 = 𝛀(𝒈 𝒏)

Also, ∃𝑐2, 𝑛0 > 0 ∶ ∀𝑛 ≥ 𝑛𝑜, 0 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛

⇒ 𝒇 𝒏 = 𝑶(𝒈 𝒏)

Thm. 3.1. 𝑓 𝑛 = Θ 𝑔(𝑛) if and only if 𝑓 𝑛 = 𝑂 𝑔(𝑛) and 𝑓 𝑛 = Ω 𝑔(𝑛)

Θ-Notation Definition

COMP550@UNC 26

If𝑓 𝑛 = 𝑂 𝑔(𝑛) and 𝑓 𝑛 = Ω 𝑔(𝑛) , then 𝑓 𝑛 = Θ 𝑔(𝑛) :

𝑓 𝑛 = Ω 𝑔(𝑛) ⟹ ∃𝑐1, 𝑛0
′ > 0 ∶ ∀𝑛 ≥ 𝑛0

′ , 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛

𝑓 𝑛 = 𝑂 𝑔(𝑛) ⟹ ∃𝑐2, 𝑛0
′′ > 0 ∶ ∀𝑛 ≥ 𝑛0

′′, 0 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔(𝑛)

Let 𝑛0 = max {𝑛0
′ , 𝑛0

′′}

So, ∃𝑐1, 𝑐2, 𝑛0 > 0 ∶ ∀𝑛 ≥ 𝑛𝑜, 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛

⇒ 𝒇 𝒏 = 𝚯(𝒈 𝒏)

Thm. 3.1. 𝑓 𝑛 = Θ 𝑔(𝑛) if and only if 𝑓 𝑛 = 𝑂 𝑔(𝑛) and 𝑓 𝑛 = Ω 𝑔(𝑛)

27

Asymptotic Notations

COMP550@UNC

• Be as precise as possible

• If 𝑓 𝑛 = Θ 𝑛 , then try to write so (not 𝑓 𝑛 = 𝑂(𝑛))

• Algorithm A runs in 3𝑛2 + 20𝑛 time in all cases

• Running time (or Time Complexity) is Θ(𝑛2)

• Running time is O 𝑛3 , this is imprecise

• Running time is Θ 3𝑛2 + 20𝑛 , this has unnecessary details

28

Asymptotic Notations

COMP550@UNC

• Common mistakes (but kind of accepted)

• An 𝑂(𝑛 log 𝑛) time algorithm is faster than 𝑂(𝑛2) time algorithm

• 𝑂-notation is the earliest (Bachman 1892)

• Θ- and Ω-notations were advocated by Knuth

29

Asymptotic Notations in Expressions

COMP550@UNC

• 2𝑛2 + 3𝑛 + 1 = Θ 𝑛2

• Equality means set membership

• 2𝑛2 + Θ(𝑛)

• Θ 𝑛 is standing for an anonymous function 𝑓 𝑛 ∈ Θ(𝑛)

• 2𝑛2 + Θ 𝑛 = Θ(𝑛2)

• No matter what anonymous function Θ 𝑛 represents, there is always

a way to choose an anonymous function for Θ 𝑛2 so that the equation

is valid.

30

Asymptotic Notations in Expressions

COMP550@UNC

• O(g(n)) means order of growth as 𝑛 goes to ∞

• What about 𝑂 1 ?

• Infer from context

• If 𝑓 𝑛 = 𝑂(1), 𝑛 goes to ∞

• 𝑇 𝑛 = 𝑂 1 for 𝑛 < 3

• ∃𝑐 > 0 ∶ 𝑇 𝑛 ≤ 𝑐 for 𝑛 < 3

31

𝑜-Notation

COMP550@UNC

• Non-tight upper bound

• Compare the definition with 𝑂-notation

• 2𝑛2 + 𝑛 is 𝑂(𝑛2), but not 𝑜(𝑛2)

• 2𝑛2−𝜖 + 𝑛 for any 𝜖 > 0 is 𝑜(𝑛2)

𝑜 𝑔 𝑛 = {𝑓 𝑛 ∶ ∀ positive constants 𝑐, ∃𝑛0 > 0

such that 0 ≤ 𝑓 𝑛 < 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}

32

𝑜-Notation

COMP550@UNC

• Non-tight upper bound

• Intuitively, 𝑓 𝑛 becomes insignificant w.r.t 𝑔(𝑛) as 𝑛 → ∞

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0

𝑜 𝑔 𝑛 = {𝑓 𝑛 ∶ ∀ positive constants 𝑐, ∃𝑛0 > 0

such that 0 ≤ 𝑓 𝑛 < 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}

33

𝜔-Notation

COMP550@UNC

• Non-tight upper bound

• Compare the definition with Ω-notation

• 2𝑛2 + 𝑛 is Ω(𝑛2), but not 𝜔(𝑛2)

• 2𝑛2+𝜖 + 𝑛 for any 𝜖 > 0 is 𝜔(𝑛2)

𝜔 𝑔 𝑛 = {𝑓 𝑛 ∶ ∀ positive constants 𝑐, ∃𝑛0 > 0

such that 0 ≤ 𝑐𝑔 𝑛 < 𝑓(𝑛) holds for all 𝑛 ≥ 𝑛0}

34

𝜔-Notation

COMP550@UNC

• Non-tight upper bound

• Intuitively, 𝑓 𝑛 becomes arbitrarily large w.r.t 𝑔(𝑛) as 𝑛 → ∞

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞

𝑜 𝑔 𝑛 = {𝑓 𝑛 ∶ ∀ positive constants 𝑐, ∃𝑛0 > 0

such that 0 ≤ 𝑓 𝑛 < 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}

35

Asymptotic Notations: Properties

COMP550@UNC

• Transitivity:

• 𝑓 𝑛 = 𝑋 𝑔 𝑛 ∧ 𝑔 𝑛 = 𝑋 ℎ 𝑛 ⇒ 𝑓 𝑛 = 𝑋 ℎ 𝑛

• 𝑋 can be any one of 𝑂, Ω, Θ, 𝑜, 𝜔

• Reflexivity:

• 𝑓 𝑛 = 𝑋(𝑓 𝑛), where 𝑋 is one of 𝑂, Ω, Θ

• Why not applicable to 𝑜 and 𝜔?

36

Asymptotic Notations: Properties

COMP550@UNC

• Symmetry:

• 𝑓 𝑛 = Θ 𝑔 𝑛 ⇔ 𝑔 𝑛 = Θ 𝑓 𝑛

• Transpose symmetry:

• 𝑓 𝑛 = 𝑂 𝑔 𝑛 ⇔ 𝑔 𝑛 = Ω 𝑓 𝑛

• 𝑓 𝑛 = 𝑜 𝑔 𝑛 ⇔ 𝑔 𝑛 = 𝜔 𝑓 𝑛

37

Asymptotic Notations: Properties

COMP550@UNC

• Prove that 𝑜 𝑔 𝑛 ∩ 𝜔 𝑔 𝑛 = ∅.

• Assume that 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ∩ 𝜔 𝑔 𝑛

• From 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 , ∀𝑐 > 0, ∃𝑛0
′ > 0: ∀𝑛 ≥ 𝑛0

′ , 0 ≤ 𝑓 𝑛 < 𝑐𝑔 𝑛

• From 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 , ∀𝑐 > 0, ∃𝑛0
′′ > 0: ∀𝑛 ≥ 𝑛0

′′, 0 ≤ 𝑐𝑔 𝑛 < 𝑓 𝑛

• Let 𝑛0 = max{𝑛0
′ , 𝑛0

′′}

• Then, ∀𝑛 ≥ 𝑛0: 𝑓 𝑛 < 𝑐𝑔 𝑛 ∧ 𝑐𝑔 𝑛 < 𝑓 𝑛

• This is impossible, a contradiction

38

Asymptotic Notations: Properties

COMP550@UNC

Θ(𝑔 𝑛)

𝑂(𝑔 𝑛) Ω(𝑔 𝑛)

𝑜(𝑔 𝑛) 𝜔(𝑔 𝑛)

39

Useful but Incorrect Analogies

COMP550@UNC

Asymptotic Notation Is Like

𝒇 𝒏 = 𝑶(𝒈 𝒏) 𝒇 𝒏 ≤ 𝒈(𝒏)

𝒇 𝒏 = 𝚯(𝒈 𝒏) 𝒇 𝒏 = 𝒈 𝒏

𝒇 𝒏 = 𝛀(𝒈 𝒏) 𝒇 𝒏 ≥ 𝒈 𝒏

𝒇 𝒏 = 𝒐(𝒈 𝒏) 𝒇 𝒏 < 𝒈(𝒏)

𝒇 𝒏 = 𝝎(𝒈 𝒏) 𝒇 𝒏 > 𝒈(𝒏)

Warning: DO NOT formally use them in
HWs/Exams/Interviews

40

Exercise

COMP550@UNC

Express functions in A in asymptotic notation using functions in B.

A B

5n2 + 100n 3n2 + 2

A  Q(n2), n2  Q(B)  A  Q(B)

log3(n
2) log2(n

3)

logba = logca / logcb; A = 2lgn / lg3, B = 3lgn, A/B =2/(3lg3)

lg2n n1/2

A  Q(B)

A  Q(B)

A  o (B)

lim (lga n / nb) = 0 (here a = 2 and b = 1/2)  A  o (B)

n→

41

Common Functions

COMP550@UNC

42

Motonocity

COMP550@UNC

• A function 𝑓(𝑛) is

• Monotonically increasing if 𝑚 ≤ 𝑛 ⟹ 𝑓 𝑚 ≤ 𝑓(𝑛)

• Monotonically decreasing if 𝑚 ≤ 𝑛 ⟹ 𝑓 𝑚 ≥ 𝑓(𝑛)

• Strictly increasing if 𝑚 < 𝑛 ⟹ 𝑓 𝑚 < 𝑓 𝑛

• Strictly decreasing if 𝑚 < 𝑛 ⟹ 𝑓 𝑚 > 𝑓(𝑛)

• Question: Which of the above is true for 𝑓 𝑛 = 𝑛2 where 𝑛 ≥ 0?

43

Polynomials

COMP550@UNC

• 𝑝 𝑛 is a polynomial in 𝑛 of degree 𝑑 if

• 𝑝 𝑛 = 𝑎𝑑𝑝𝑑 + 𝑎𝑑−1𝑝𝑑−1 + ⋯ + 𝑎0 AND 𝑎𝑑 ≠ 0 (𝑑 ≥ 0 is an integer constant)

• 𝑎𝑑 , 𝑎𝑑−1, … are co-efficients

• 𝑝 𝑛 = Θ(𝑛𝑑)

• A function 𝑓 𝑛 = 𝑂(𝑛𝑘) for a constant 𝑘 is called polynomially bounded

• Common polynomials:

• 𝑂(𝑛): Linear running time, 𝑂(𝑛2): Quadratic running time, 𝑂(𝑛3): Cubic

running time

44

Exponentials

COMP550@UNC

• Functions that have 𝑎𝑛 terms (𝑎 is a constant)

• Polynomials: variable base, constant exponent

• Exponentials: constant base, variable exponent

• For any real constants 𝑎, 𝑏 with 𝑎 > 1

• 𝑛𝑏 = 𝑜(𝑎𝑏), because lim
𝑛⟶∞

𝑛𝑏

𝑎𝑏 = 0

• See book for some (in)equalities regarding 𝑒𝑥

Identities

45

Logarithms

COMP550@UNC

• 𝑥 = log𝑏𝑎 ⟺ 𝑎 = 𝑏𝑥

CLRS NotationsIdentities

46

Logarithms

COMP550@UNC

• Log bases do not matter in asymptotic notations

• log𝑎 𝑛 = Θ(logb 𝑛). Why?

• A function 𝑓 𝑛 = 𝑂(lg𝑘𝑛) for a constant 𝑘 is

called polylogarithmically bounded

• lg𝑏 𝑛 = 𝑜(𝑛𝑎) for any 𝑎 > 0

Identities

47

Factorials

COMP550@UNC

• How many ways can you arrange 𝑛 items?

• Stirling’s approximation

• Using the above:

48

Growth Rates

COMP550@UNC

𝒏 lg 𝒏 lg𝟐 𝒏 𝒏 𝒏 lg 𝒏 𝒏𝟐 𝒏𝟑 𝟐𝒏

4 2 4 2 8 16 64 16
16 4 16 4 64 256 4096 65536

64 6 36 8 384 4096 2.62E+05 1.84E+19

256 8 64 16 2048 65536 1.68E+07 1.16E+77

1024 10 100 32 10240 1.05E+06 1.07E+09 1.79E+308

4096 12 144 64 4.92E+04 1.68E+07 6.87E+10 E+1233

16384 14 196 128 2.29E+05 2.68E+08 4.40E+12 E+4932

65536 16 256 256 1.05E+06 4.29E+09 2.81E+14 E+19728

262144 18 324 512 4.72E+06 6.87E+10 1.80E+16 E+78913

49

Growth Rates

COMP550@UNC

𝒏 lg 𝒏 lg𝟐 𝒏 𝒏 𝒏 lg 𝒏 𝒏𝟐 𝒏𝟑 𝟐𝒏

4 <1 sec <1 sec <1 sec < 1 sec <1 sec <1 sec <1 sec

16 <1 sec <1 sec <1 sec < 1 sec <1 sec <1 sec <1 sec

64 <1 sec <1 sec <1 sec < 1 sec <1 sec <1 sec
2*10^8

years

256 <1 sec <1 sec <1 sec < 1 sec <1 sec 16 sec very long

1024 <1 sec <1 sec <1 sec < 1 sec 1 sec 18 min very long

4096 <1 sec <1 sec <1 sec < 1 sec 16 sec 19 hours very long

16384 <1 sec <1 sec <1 sec < 1 sec 5 min 51 years very long

65536 <1 sec <1 sec <1 sec 1 sec 1 hour 3257 years very long

262144 <1 sec <1 sec <1 sec 5 sec 19 hours 2*10^5 years very long

Running times on a million instruction/sec machine

50COMP550@UNC

Growth Rate Name Examples and Notes

Θ(1) Constant Add to linked list (unsorted)
Assign value to variable

Θ(lg 𝑛) Logarithmic Binary Search

Θ(𝑛) Square Root Primality Testing;

Θ(𝑛) Linear Find item in unsorted lists, String comparison, Special-
purpose sorts

Θ(𝑛 lg 𝑛) Log-Linear Good sorting algorithms (merge sort, heapsort)

Θ(𝑛2) Quadratic Naive sorting algorithms (Bubble, Insertion, Selection)

Θ(𝑛3) Cubic Naive Matrix Multiplication
Floyd-Warshall (All-pairs shortest paths)

Θ 𝑛𝑝 , 𝑝 > 3 High-Order
Polynomial

Perfect graph recognition, O(𝑛9).
https://cstheory.stackexchange.com/questions/6660/polyn
omial-time-algorithms-with-huge-exponent-constant/

Θ 𝑐𝑛 , 𝑐 > 1 Exponential Find all subsets. Algorithm is inefficient, if can’t do better,
then the problem is hard.

Θ(𝑛!) Factorial Find all permutations.

https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant/
https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant/

Thank You!

COMP550@UNC 51

	Slide 1: COMP 550 Algorithm and Analysis Asymptotic Complexity Based on CLRS Sec 3
	Slide 2: Asymptotic Complexity
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8: Why Functions?
	Slide 9: Insertion Sort Asymptotic Complexity
	Slide 10: Insertion Sort Asymptotic Complexity
	Slide 11: Insertion Sort Asymptotic Complexity
	Slide 12: Insertion Sort Asymptotic Complexity
	Slide 13: Insertion Sort Asymptotic Complexity
	Slide 14: Insertion Sort Asymptotic Complexity
	Slide 15: Insertion Sort Asymptotic Complexity
	Slide 16: cap O-Notation Definition
	Slide 17: cap O-Notation Definition
	Slide 18: cap O-Notation Definition
	Slide 19: cap O-Notation Definition
	Slide 20: cap O-Notation Definition
	Slide 21: cap omega-Notation Definition
	Slide 22: cap omega-Notation Definition
	Slide 23: cap theta-Notation Definition
	Slide 24: cap theta-Notation Definition
	Slide 25: cap theta-Notation Definition
	Slide 26: cap theta-Notation Definition
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51: Thank You!

