
COMP 550
Algorithm and Analysis

Asymptotic Complexity

Based on CLRS Sec 3

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne 



Asymptotic Complexity

• Order of growth: how an algorithm’s running time increases w.r.t 

input size

• Asymptotic behavior (Asymptotic complexity) of the algorithm

• Running time increase as input size increases without bound

• Expressed using Asymptotic Notations

• Example: 𝑂 (Big-Oh), Ω (Big-Omega), Θ (Big-Theta)
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𝑂-Notation (Big-Oh)
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• 𝑂-notation characterizes an upper bound on the asymptotic behavior 

of a function

• A function grows no faster than a certain rate (based on higher order terms)

• A function is O(𝑔 𝑛 ) if it grows no faster than 𝑐 ⋅ 𝑔 𝑛  for constant 𝑐
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𝑂-Notation (Big-Oh)
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• A function is O(𝑔 𝑛 ) if it grows no faster 

than 𝑐 ⋅ 𝑔 𝑛  for constant 𝑐

• Example: 𝑓(𝑛) = 7𝑛3 + 100𝑛2 − 20𝑛 + 6 

• 𝑓 𝑛  is 𝑂(𝑛3)

• 𝑓(𝑛) is also 𝑂(𝑛5), 𝑂(2𝑛), and 𝑂 𝑛! . Why?
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Ω-Notation (Big-Omega)
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• Ω-notation characterizes a lower bound on the asymptotic behavior of 

a function

• A function grows no slower than a certain rate (based on higher order terms)

• A function is Ω(𝑔 𝑛 ) if it grows no slower than 𝑐 ⋅ 𝑔 𝑛  for constant 𝑐
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Ω-Notation (Big-Omega)
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• A function is Ω(𝑔 𝑛 ) if it grows no slower 

than 𝑐 ⋅ 𝑔 𝑛  for constant 𝑐

• Example: 𝑓(𝑛) = 7𝑛3 + 100𝑛2 − 20𝑛 + 6 

• 𝑓 𝑛  is Ω(𝑛3)

• 𝑓(𝑛) is also Ω(𝑛2), Ω(𝑛), and Ω log 𝑛 . Why?
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Θ-Notation (Big-Theta)
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• Ω-notation characterizes a tight bound on the asymptotic behavior of 

a function

• A function grows precisely a certain rate (based on higher order terms)

• A function is Θ(𝑔 𝑛 ) if it is both 𝑂(𝑔 𝑛 ) and Ω(𝑔 𝑛 )

• Example: 𝑓(𝑛) = 7𝑛3 + 100𝑛2 − 20𝑛 + 6 

• 𝑓 𝑛  is Θ(𝑛3)

• 𝑓(𝑛) is NOT Θ(𝑛2), Θ(𝑛4), and Θ log 𝑛 . Why?



Why Functions?

• Recall that our derived running times for FindMax, Linear 

Search, and Insertion Sort are functions of input size 𝑛

• We will represent these running times in asymptotic notations

• Simplicity

• Enable comparison
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Insertion Sort Asymptotic Complexity

• Worst-case running time, 𝑇 𝑛 = Longest running time for any 

input of size 𝑛.

• Worst-case running time of Insertion Sort is Θ(𝑛2). How?
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Insertion Sort Asymptotic Complexity

• Can we determine this asymptotic complexity w/o evaluating sums?

• Show that the worst-case running time is both 𝑂 𝑛2  and Ω 𝑛2 .

• Worst-case running time of Insertion Sort is 𝑂(𝑛2). 

• Outer loop runs 𝑛 − 1 times

• For each iteration of outer loop

• Inner loop runs at most 𝑖 − 1 times

• 𝑖 ≤ 𝑛 ⟹ 𝑖 − 1 ≤ 𝑛 − 1

• Total inner loop iteration ≤ (𝑛 − 1)(𝑛 − 1)

• Each line takes constant time

• Worst-case running time = 𝑂(𝑛2)
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Insertion Sort Asymptotic Complexity
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• Worst-case running time of Insertion Sort is Ω(𝑛2),

• For every 𝑛, there exists an input that takes at least 𝑐 ⋅ 𝑛2 time for some 

constant 𝑐

• For a reverse-sorted array, 

• A[1] moves through at least 𝑛 − 1 positions

• A[2] moves through at least 𝑛 − 2 positions

• …

• Total steps ≥ 𝑛 − 1 + 𝑛 − 2 + ⋯ + 0 = σ𝑖=1
𝑛−1 𝑖  =

𝑛−1 𝑛

2

• Worst-case running time is at least 
𝑛−1 𝑛

2
, meaning Ω(𝑛2)

* The textbook has a different example



Insertion Sort Asymptotic Complexity
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• The worst-case running time of Insertion Sort is Θ 𝑛2

• Can we say that running time of Insertion Sort is Θ 𝑛2 ?

• No. Why?

• No “worst-case” in the statement ⟹ Θ(𝑛2) for all cases!

• Running time is 𝑎𝑛 + 𝑏 for some input (best-case running time)

• Running time of Insertion Sort is 𝑂(𝑛2) and Ω(𝑛)



Insertion Sort Asymptotic Complexity
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• Worst-case running time is both 𝑂(𝑛2) and Ω 𝑛2  

⇒ Θ(𝑛2)

• Best-case running time is both 𝑂(𝑛) and Ω(𝑛) 

⇒ Θ 𝑛

• Running time is 𝑂(𝑛2) and Ω(𝑛)



Insertion Sort Asymptotic Complexity
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• Running time is 𝑂(𝑔(𝑛)) ⇒ Worst-case running time is 𝑂(𝑔(𝑛))

• 𝑂(𝑔(𝑛)) bound on the worst-case running time ⇒ 𝑂(𝑔(𝑛)) bound on the 

running time of every input.

• Θ(𝑔(𝑛)) bound on the worst-case running time ⇏ Θ(𝑔(𝑛)) bound on the 

running time of every input.

• Running time is Ω(𝑔(𝑛)) ⇒ Best case is Ω(𝑔(𝑛)) 

• Can still say “Worst-case running time is Ω(𝑔(𝑛))”

• The worst-case running time is given by some unspecified function 𝑓 𝑛 ∈

Ω 𝑔 𝑛 .



Insertion Sort Asymptotic Complexity
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• Insertion sort takes Q(n2) in the worst case, so sorting (as a 

problem) is O(n2).  Why?

• Any sorting algorithm must look at each item, so sorting is 

W(n).



𝑂-Notation Definition
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• For a given function 𝑔 𝑛 , 𝑂(𝑔 𝑛 ) is the set of 

functions

• Pronounced as big-oh of g of n

• 𝑂 𝑔 𝑛  is the set of all functions whose rate of 

growth is the same as or lower than that of g(n).

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such 

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}



𝑂-Notation Definition
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• For a given function 𝑔 𝑛 , 𝑂(𝑔 𝑛 ) is the set of 

functions

• We should write 𝑓 𝑛 ∈ 𝑂(𝑔 𝑛 )

• Common notational abuse, 𝑓 𝑛 = 𝑂(𝑔 𝑛 )

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such 

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}



𝑂-Notation Definition
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• Show that 4𝑛2 + 100𝑛 + 500 ∈ 𝑂(𝑛2)

• Need to find appropriate 𝑐 and 𝑛0 such that

4𝑛2 + 100𝑛 + 500 ≤ 𝑐𝑛2

• So, 𝑐 ≥ 4 +
100

𝑛
+

500

𝑛2

• One choice 𝑛0 = 1 and any 𝑐 ≥ 604

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such 

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}



𝑂-Notation Definition
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• Show that 𝑛3 − 100𝑛2 ∉ 𝑂(𝑛2)

• Assume that

𝑛3 − 100𝑛2 ≤ 𝑐𝑛2

• So, 𝑐 ≥ 𝑛 − 100, which is impossible

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such 

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}



𝑂-Notation Definition
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• Note that this definition requires 𝑓 𝑛  and 𝑔(𝑛) 

to be asymptotically non-negative

• 𝑓 𝑛 ≥ 0, as 𝑛 → ∞

𝑂 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such 

that 0 ≤ 𝑓 𝑛 ≤ 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}



Ω-Notation Definition
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• For a given function 𝑔 𝑛 , Ω(𝑔 𝑛 ) is the set of 

functions

• Pronounced as big-omega of g of n

• Ω 𝑔 𝑛  is the set of all functions whose rate of 

growth is the same as or higher than that of 𝑔(𝑛).

Ω 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such 

that 0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓(𝑛) holds for all 𝑛 ≥ 𝑛0}



Ω-Notation Definition
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• Show that 4𝑛2 + 100𝑛 + 500 ∈ Ω(𝑛2)

• Need to find appropriate 𝑐 and 𝑛0 such that

4𝑛2 + 100𝑛 + 500 ≥ 𝑐𝑛2

• So, 𝑐 ≤ 4 +
100

𝑛
+

500

𝑛2

• One choice 𝑛0 = 1 and any 𝑐 ≤ 604

Ω 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐, 𝑛0 such 

that 0 ≤ 𝑐𝑔 𝑛 ≤ 𝑓(𝑛) holds for all 𝑛 ≥ 𝑛0}



Θ-Notation Definition
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• For a given function 𝑔 𝑛 , Θ(𝑔 𝑛 ) is the set of 

functions

• Pronounced as big-theta of g of n

• Θ 𝑔 𝑛  is the set of all functions whose rate of 

growth is the same as 𝑔(𝑛).

Θ 𝑔 𝑛 = {𝑓 𝑛 ∶ ∃ positive constants 𝑐1, 𝑐2, 𝑛0 such 

that 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}



Θ-Notation Definition
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• Question: How to prove statement “P if and only if Q”?

• If P, then Q  (Q is a necessary condition for P)

• If Q, then P  (Q is a sufficient condition for P)

Proof Obligation:

• If 𝑓 𝑛 = Θ 𝑔(𝑛) , then 𝑓 𝑛 = 𝑂 𝑔(𝑛)  and 𝑓 𝑛 = Ω 𝑔(𝑛)

• If 𝑓 𝑛 = 𝑂 𝑔(𝑛)  and 𝑓 𝑛 = Ω 𝑔(𝑛) , then𝑓 𝑛 = Θ 𝑔(𝑛)

Thm. 3.1. 𝑓 𝑛 = Θ 𝑔(𝑛)  if and only if 𝑓 𝑛 = 𝑂 𝑔(𝑛)  and 𝑓 𝑛 = Ω 𝑔(𝑛)



Θ-Notation Definition

COMP550@UNC 25

If 𝑓 𝑛 = Θ 𝑔(𝑛) , then 𝑓 𝑛 = 𝑂 𝑔(𝑛)  and 𝑓 𝑛 = Ω 𝑔(𝑛) :

𝑓 𝑛 = Θ 𝑔(𝑛) ⟹ ∃𝑐1, 𝑐2, 𝑛0 > 0 ∶ ∀𝑛 ≥ 𝑛𝑜, 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔(𝑛)

So, ∃𝑐1, 𝑛0 > 0 ∶ ∀𝑛 ≥ 𝑛𝑜, 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛

⇒ 𝒇 𝒏 = 𝛀(𝒈 𝒏 )

Also, ∃𝑐2, 𝑛0 > 0 ∶ ∀𝑛 ≥ 𝑛𝑜, 0 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛

⇒ 𝒇 𝒏 = 𝑶(𝒈 𝒏 )

Thm. 3.1. 𝑓 𝑛 = Θ 𝑔(𝑛)  if and only if 𝑓 𝑛 = 𝑂 𝑔(𝑛)  and 𝑓 𝑛 = Ω 𝑔(𝑛)



Θ-Notation Definition
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If𝑓 𝑛 = 𝑂 𝑔(𝑛)  and 𝑓 𝑛 = Ω 𝑔(𝑛) , then 𝑓 𝑛 = Θ 𝑔(𝑛) :

𝑓 𝑛 = Ω 𝑔(𝑛) ⟹ ∃𝑐1, 𝑛0
′ > 0 ∶ ∀𝑛 ≥ 𝑛0

′ , 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛

𝑓 𝑛 = 𝑂 𝑔(𝑛) ⟹ ∃𝑐2, 𝑛0
′′ > 0 ∶ ∀𝑛 ≥ 𝑛0

′′, 0 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔(𝑛)

Let 𝑛0 = max {𝑛0
′ , 𝑛0

′′}

So, ∃𝑐1, 𝑐2, 𝑛0 > 0 ∶ ∀𝑛 ≥ 𝑛𝑜, 0 ≤ 𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛

⇒ 𝒇 𝒏 = 𝚯(𝒈 𝒏 )

Thm. 3.1. 𝑓 𝑛 = Θ 𝑔(𝑛)  if and only if 𝑓 𝑛 = 𝑂 𝑔(𝑛)  and 𝑓 𝑛 = Ω 𝑔(𝑛)
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Asymptotic Notations
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• Be as precise as possible

• If 𝑓 𝑛 = Θ 𝑛 , then try to write so (not 𝑓 𝑛 = 𝑂(𝑛))

• Algorithm A runs in 3𝑛2 + 20𝑛 time in all cases

• Running time (or Time Complexity) is Θ(𝑛2)

• Running time is O 𝑛3 , this is imprecise

• Running time is Θ 3𝑛2 + 20𝑛 , this has unnecessary details
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Asymptotic Notations
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• Common mistakes (but kind of accepted)

• An 𝑂(𝑛 log 𝑛) time algorithm is faster than 𝑂(𝑛2) time algorithm

• 𝑂-notation is the earliest (Bachman 1892)

• Θ- and Ω-notations were advocated by Knuth
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Asymptotic Notations in Expressions

COMP550@UNC

• 2𝑛2 + 3𝑛 + 1 = Θ 𝑛2

• Equality means set membership

• 2𝑛2 + Θ(𝑛)

• Θ 𝑛  is standing for an anonymous function 𝑓 𝑛 ∈ Θ(𝑛)

• 2𝑛2 + Θ 𝑛 = Θ(𝑛2)

• No matter what anonymous function Θ 𝑛  represents, there is always 

a way to choose an anonymous function for Θ 𝑛2  so that the equation 

is valid.
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Asymptotic Notations in Expressions
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• O(g(n)) means order of growth as 𝑛 goes to ∞

• What about 𝑂 1 ?

• Infer from context

• If 𝑓 𝑛 = 𝑂(1), 𝑛 goes to ∞

• 𝑇 𝑛 = 𝑂 1  for 𝑛 < 3

• ∃𝑐 > 0 ∶  𝑇 𝑛 ≤ 𝑐 for 𝑛 < 3



31

𝑜-Notation
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• Non-tight upper bound

• Compare the definition with 𝑂-notation

• 2𝑛2 + 𝑛 is 𝑂(𝑛2), but not 𝑜(𝑛2)

• 2𝑛2−𝜖 + 𝑛 for any 𝜖 > 0 is 𝑜(𝑛2)

𝑜 𝑔 𝑛 = {𝑓 𝑛 ∶ ∀ positive constants 𝑐, ∃𝑛0 > 0 

such that 0 ≤ 𝑓 𝑛 < 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}
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𝑜-Notation
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• Non-tight upper bound

• Intuitively, 𝑓 𝑛  becomes insignificant w.r.t 𝑔(𝑛) as 𝑛 → ∞

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= 0

𝑜 𝑔 𝑛 = {𝑓 𝑛 ∶ ∀ positive constants 𝑐, ∃𝑛0 > 0 

such that 0 ≤ 𝑓 𝑛 < 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}
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𝜔-Notation

COMP550@UNC

• Non-tight upper bound

• Compare the definition with Ω-notation

• 2𝑛2 + 𝑛 is Ω(𝑛2), but not 𝜔(𝑛2)

• 2𝑛2+𝜖 + 𝑛 for any 𝜖 > 0 is 𝜔(𝑛2)

𝜔 𝑔 𝑛 = {𝑓 𝑛 ∶ ∀ positive constants 𝑐, ∃𝑛0 > 0 

such that 0 ≤ 𝑐𝑔 𝑛 < 𝑓(𝑛) holds for all 𝑛 ≥ 𝑛0}
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𝜔-Notation
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• Non-tight upper bound

• Intuitively, 𝑓 𝑛  becomes arbitrarily large w.r.t 𝑔(𝑛) as 𝑛 → ∞

lim
𝑛→∞

𝑓(𝑛)

𝑔(𝑛)
= ∞

𝑜 𝑔 𝑛 = {𝑓 𝑛 ∶ ∀ positive constants 𝑐, ∃𝑛0 > 0 

such that 0 ≤ 𝑓 𝑛 < 𝑐𝑔(𝑛) holds for all 𝑛 ≥ 𝑛0}
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Asymptotic Notations: Properties
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• Transitivity:

• 𝑓 𝑛 = 𝑋 𝑔 𝑛 ∧ 𝑔 𝑛 = 𝑋 ℎ 𝑛  ⇒ 𝑓 𝑛 = 𝑋 ℎ 𝑛

• 𝑋 can be any one of 𝑂, Ω, Θ, 𝑜, 𝜔

• Reflexivity:

• 𝑓 𝑛 = 𝑋(𝑓 𝑛 ), where 𝑋 is one of 𝑂, Ω, Θ

• Why not applicable to 𝑜 and 𝜔?
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Asymptotic Notations: Properties
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• Symmetry:

• 𝑓 𝑛 = Θ 𝑔 𝑛  ⇔ 𝑔 𝑛 = Θ 𝑓 𝑛

• Transpose symmetry:

• 𝑓 𝑛 = 𝑂 𝑔 𝑛 ⇔ 𝑔 𝑛 = Ω 𝑓 𝑛

• 𝑓 𝑛 = 𝑜 𝑔 𝑛 ⇔ 𝑔 𝑛 = 𝜔 𝑓 𝑛
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Asymptotic Notations: Properties

COMP550@UNC

• Prove that 𝑜 𝑔 𝑛 ∩ 𝜔 𝑔 𝑛 = ∅.

• Assume that 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 ∩ 𝜔 𝑔 𝑛

• From 𝑓 𝑛 ∈ 𝑜 𝑔 𝑛 , ∀𝑐 > 0, ∃𝑛0
′ > 0: ∀𝑛 ≥ 𝑛0

′ , 0 ≤ 𝑓 𝑛 < 𝑐𝑔 𝑛

• From 𝑓 𝑛 ∈ 𝜔 𝑔 𝑛 , ∀𝑐 > 0, ∃𝑛0
′′ > 0: ∀𝑛 ≥ 𝑛0

′′, 0 ≤ 𝑐𝑔 𝑛 < 𝑓 𝑛

• Let 𝑛0 = max{𝑛0
′ , 𝑛0

′′} 

• Then, ∀𝑛 ≥ 𝑛0: 𝑓 𝑛 < 𝑐𝑔 𝑛 ∧ 𝑐𝑔 𝑛 < 𝑓 𝑛

• This is impossible, a contradiction
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Asymptotic Notations: Properties
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Θ(𝑔 𝑛 )

𝑂(𝑔 𝑛 ) Ω(𝑔 𝑛 )

𝑜(𝑔 𝑛 ) 𝜔(𝑔 𝑛 )
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Useful but Incorrect Analogies
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Asymptotic Notation Is Like

𝒇 𝒏 = 𝑶(𝒈 𝒏 ) 𝒇 𝒏 ≤ 𝒈(𝒏)

𝒇 𝒏 = 𝚯(𝒈 𝒏 ) 𝒇 𝒏 = 𝒈 𝒏

𝒇 𝒏 = 𝛀(𝒈 𝒏 ) 𝒇 𝒏 ≥ 𝒈 𝒏

𝒇 𝒏 = 𝒐(𝒈 𝒏 ) 𝒇 𝒏 < 𝒈(𝒏)

𝒇 𝒏 = 𝝎(𝒈 𝒏 ) 𝒇 𝒏 > 𝒈(𝒏)

Warning: DO NOT formally use them in 
HWs/Exams/Interviews
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Exercise
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Express functions in A in asymptotic notation using functions in B.

A                                         B                                    

5n2 + 100n              3n2 + 2

A  Q(n2), n2  Q(B)  A  Q(B)

log3(n
2)           log2(n

3)

logba = logca / logcb; A = 2lgn / lg3, B  = 3lgn, A/B =2/(3lg3)

lg2n                              n1/2

A  Q(B)

A  Q(B)

A  o (B)

lim ( lga n / nb ) = 0 (here a = 2 and b = 1/2)  A  o (B)

 
n→
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Common Functions
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Motonocity
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• A function 𝑓(𝑛) is

• Monotonically increasing if 𝑚 ≤ 𝑛 ⟹ 𝑓 𝑚 ≤ 𝑓(𝑛)

• Monotonically decreasing if 𝑚 ≤ 𝑛 ⟹ 𝑓 𝑚 ≥ 𝑓(𝑛)

• Strictly increasing if 𝑚 < 𝑛 ⟹ 𝑓 𝑚 < 𝑓 𝑛

• Strictly decreasing if 𝑚 < 𝑛 ⟹ 𝑓 𝑚 > 𝑓(𝑛)

• Question: Which of the above is true for 𝑓 𝑛 = 𝑛2 where 𝑛 ≥ 0?
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Polynomials
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• 𝑝 𝑛  is a polynomial in 𝑛 of degree 𝑑 if 

• 𝑝 𝑛 = 𝑎𝑑𝑝𝑑 + 𝑎𝑑−1𝑝𝑑−1 + ⋯ + 𝑎0 AND 𝑎𝑑 ≠ 0 (𝑑 ≥ 0 is an integer constant)

• 𝑎𝑑 , 𝑎𝑑−1, … are co-efficients

• 𝑝 𝑛 = Θ(𝑛𝑑)

•  A function 𝑓 𝑛 = 𝑂(𝑛𝑘) for a constant 𝑘 is called polynomially bounded

• Common polynomials:

• 𝑂(𝑛): Linear running time, 𝑂(𝑛2): Quadratic running time, 𝑂(𝑛3): Cubic 

running time
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Exponentials
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• Functions that have 𝑎𝑛 terms (𝑎 is a constant)

• Polynomials: variable base, constant exponent

• Exponentials: constant base, variable exponent

• For any real constants 𝑎, 𝑏 with 𝑎 > 1

• 𝑛𝑏 = 𝑜(𝑎𝑏), because lim
𝑛⟶∞

𝑛𝑏

𝑎𝑏 = 0

• See book for some (in)equalities regarding 𝑒𝑥

Identities
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Logarithms
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• 𝑥 =  log𝑏𝑎 ⟺ 𝑎 =  𝑏𝑥

CLRS NotationsIdentities



46

Logarithms
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• Log bases do not matter in asymptotic notations

• log𝑎 𝑛 = Θ(logb 𝑛). Why?

• A function 𝑓 𝑛 = 𝑂(lg𝑘𝑛) for a constant 𝑘 is 

called polylogarithmically bounded

• lg𝑏 𝑛 = 𝑜(𝑛𝑎) for any 𝑎 > 0

Identities
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Factorials
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• How many ways can you arrange 𝑛 items?

• Stirling’s approximation

• Using the above: 
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Growth Rates
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𝒏 lg 𝒏 lg𝟐 𝒏 𝒏 𝒏 lg 𝒏 𝒏𝟐 𝒏𝟑 𝟐𝒏

4 2 4 2 8 16 64 16
16 4 16 4 64 256 4096 65536

64 6 36 8 384 4096 2.62E+05 1.84E+19

256 8 64 16 2048 65536 1.68E+07 1.16E+77

1024 10 100 32 10240 1.05E+06 1.07E+09 1.79E+308

4096 12 144 64 4.92E+04 1.68E+07 6.87E+10 E+1233

16384 14 196 128 2.29E+05 2.68E+08 4.40E+12 E+4932

65536 16 256 256 1.05E+06 4.29E+09 2.81E+14 E+19728

262144 18 324 512 4.72E+06 6.87E+10 1.80E+16 E+78913
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Growth Rates
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𝒏 lg 𝒏 lg𝟐 𝒏 𝒏 𝒏 lg 𝒏 𝒏𝟐 𝒏𝟑 𝟐𝒏

4 <1 sec <1 sec <1 sec < 1 sec <1 sec <1 sec <1 sec

16 <1 sec <1 sec <1 sec < 1 sec <1 sec <1 sec <1 sec

64 <1 sec <1 sec <1 sec < 1 sec <1 sec <1 sec
2*10^8 

years

256 <1 sec <1 sec <1 sec < 1 sec <1 sec 16 sec very long

1024 <1 sec <1 sec <1 sec < 1 sec 1 sec 18 min very long

4096 <1 sec <1 sec <1 sec < 1 sec 16 sec 19 hours very long

16384 <1 sec <1 sec <1 sec < 1 sec 5 min 51 years very long

65536 <1 sec <1 sec <1 sec 1 sec 1 hour 3257 years very long

262144 <1 sec <1 sec <1 sec 5 sec 19 hours 2*10^5 years very long

Running times on a million instruction/sec machine
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Growth Rate Name Examples and Notes

Θ(1) Constant Add to linked list (unsorted)
Assign value to variable

Θ(lg 𝑛) Logarithmic Binary Search

Θ( 𝑛) Square Root Primality Testing; 

Θ(𝑛) Linear Find item in unsorted lists, String comparison, Special-
purpose sorts

Θ(𝑛 lg 𝑛) Log-Linear Good sorting algorithms (merge sort, heapsort)

Θ(𝑛2) Quadratic Naive sorting algorithms (Bubble, Insertion, Selection)

Θ(𝑛3) Cubic Naive Matrix Multiplication
Floyd-Warshall (All-pairs shortest paths)

Θ 𝑛𝑝 , 𝑝 > 3 High-Order 
Polynomial

Perfect graph recognition, O(𝑛9). 
https://cstheory.stackexchange.com/questions/6660/polyn
omial-time-algorithms-with-huge-exponent-constant/

Θ 𝑐𝑛 , 𝑐 > 1 Exponential Find all subsets. Algorithm is inefficient, if can’t do better, 
then the problem is hard.  

Θ(𝑛!) Factorial Find all permutations. 

https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant/
https://cstheory.stackexchange.com/questions/6660/polynomial-time-algorithms-with-huge-exponent-constant/
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