

UNIVERSITY of NORTH CAROLINA

COMP 550 Algorithm and Analysis

Divide & Conquer

Based on CLRS Sec 2.3, 4, and (33.4 of the 3rd edition)

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Divide & Conquer

- Recursive in structure
 - **Divide** the problem into sub-problems that are similar to the original but smaller in size
 - Conquer the sub-problems by solving them recursively. If they are small enough, just solve them in a straightforward manner.
 - Combine the solutions to create a solution to the original problem

Divide & Conquer

Merge Sort

Sorting Problem: Sort a sequence of *n* elements into non-decreasing order.

- Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each
- Conquer: Sort the two subsequences recursively using merge sort.
- Combine: Merge the two sorted subsequences to produce the sorted answer.

Merge Sort

Merge Sort

MERGE-SORT(A, p, r)		
1 if $p \ge r$	<i>II</i> zero or one element?	
2 return		
$q = \lfloor (p + r)/2 \rfloor$	II midpoint of $A[p:r]$	
4 MERGE-SORT (A, p, q)	II recursively sort $A[p:q]$	
5 MERGE-SORT $(A, q + 1, r)$	<i>II</i> recursively sort $A[q + 1 : r]$	
6 II Merge $A[p:q]$ and $A[q+1:r]$ into $A[p:r]$.		
7 MERGE (A, p, q, r)		

Merge(A, p, q, r)1. $n_{L} = q - p + 1$ 2. $n_R = r - q$ 3. Let $L[1:n_1]$ and $R[1:n_R]$ be new arrays 4. for i = 1 to n_i 5. L[i] = A[p + i - 1]6. for j = 1 to n_R 7. R[j] = A[q + j]8. $L[n_1+1] = R[n_R+1] = \infty$ 9. i = j = 1**10.** for k = p to r**11.** if $L[i] \leq R[j]$ 12. A[k] = L[i]13. i = i + 114. else A[k] = R[j]15. j = j + 116.

From CLSR 3rd edition

- Input: Array A with sorted
 subarrays A[p:q] and A[q + 1,r]
- Output: Array A with sorted

subarray A[p:r]

Sentinels: Simplification by avoiding having to check if either subarray is fully copied at each step.

Merge(A, p, q, r)1. $n_{L} = q - p + 1$ 2. $n_R = r - q$ 3. Let $L[1:n_i]$ and $R[1:n_R]$ be new arrays **4.** for i = 1 to n_i 5. L[i] = A[p + i - 1]6. for j = 1 to n_R 7. R[j] = A[q + j]8. $L[n_1+1] = R[n_R+1] = \infty$ 9. i = j = 1**10. for** k = p **to** r**11.** if $L[i] \leq R[j]$ 12. A[k] = L[i]13. i = i + 114. else 15. A[k] = R[j]j = j + 116.

<u>Correctness:</u>

We need to show that-

Given sorted subarrays A[p:q] and A[q + 1:r], the Merge procedure constructs a sorted subarray A[p:r] that consists of all elements in A[p:q] and A[q + 1:r]

Merge(A, p, q, r)1. $n_{L} = q - p + 1$ 2. $n_R = r - q$ 3. Let $L[1:n_1]$ and $R[1:n_R]$ be new arrays **4.** for i = 1 to n_i 5. L[i] = A[p + i - 1]6. for j = 1 to n_R 7. R[j] = A[q + j]8. $L[n_1+1] = R[n_R+1] = \infty$ 9. i = j = 1**10.** for k = p to r**11.** if $L[i] \leq R[j]$ 12. A[k] = L[i]13. i = i + 114. else A[k] = R[j]15. j = j + 116.

Loop Invariant for the for loop

At the start of each iteration of the for loop of lines 10-16, subarray A[p:k-1]consists of the k - p smallest elements of L and R in sorted order. L[i] and R[j]are the smallest elements of L and R

that have not been copied back into A.

Initialization: Trivial

Merge(A, p, q, r)

- 1. $n_L = q p + 1$
- 2. $n_R = r q$
- 3. Let $L[1:n_L]$ and $R[1:n_R]$ be new arrays
- **4.** for i = 1 to n_L

5.
$$L[i] = A[p + i - 1]$$

6. for j = 1 to n_R

7.
$$R[j] = A[q + j]$$

8.
$$L[n_L+1] = R[n_R+1] = \infty$$

9.
$$i = j = 1$$

10. for
$$k = p$$
 to r

11. if
$$L[i] \leq R[j]$$

12.
$$A[k] = L[i]$$

13.
$$i = i + i$$

14. else

15.
$$A[k] = R[j]$$

16. $j = j + 1$

Maintenance:

Case 1: $L[i] \leq R[j]$

- LI holds at the start of k-th iteration
- By LI, A contains k p smallest elements of L and R in sorted order.
- By LI, L[i] and R[j] are the smallest elements of L and R not yet copied into A.
- Line 12 results in A containing k p + 1 smallest elements (again in sorted order).
- Incrementing *i* and *k* establishes the LI for the next iteration.
- Similarly, for L[i] > R[j].

Merge(A, p, q, r)

- 1. $n_L = q p + 1$
- 2. $n_R = r q$
- 3. Let $L[1:n_L]$ and $R[1:n_R]$ be new arrays
- **4.** for i = 1 to n_L

5.
$$L[i] = A[p + i - 1]$$

6. for
$$j = 1$$
 to n_R

7.
$$R[j] = A[q + j]$$

8.
$$L[n_L+1] = R[n_R+1] = \infty$$

9.
$$i = j = 1$$

10. for
$$k = p$$
 to r

11. if
$$L[i] \leq R[j]$$

12.
$$A[k] = L[i]$$

13.
$$i = i + 2$$

14. else

15.
$$A[k] = R[j]$$

16.
$$j = j + 1$$

<u>Termination:</u>

- On termination, k = r + 1.
- By LI, A contains r p + 1 smallest
- elements of *L* and *R* in sorted order.
- L and R together contain r p + 3 elements.
- All but the two sentinels have been copied back into A.

Merge Sort

 Correctness of Merge Sort: 	MERGE-SORT(A, p, r)	
<i>y y y y y y y y y y</i>	1 if $p \ge r$	<i>II</i> zero or one element?
	2 return	
We need to prove that	$q = \lfloor (p+r)/2 \rfloor$	II midpoint of $A[p:r]$
we need to prove that-	4 MERGE-SORT (A, p, q)	<i>II</i> recursively sort $A[p:q]$
	5 MERGE-SORT $(A, q + 1, r)$	<i>II</i> recursively sort $A[q + 1 : r]$
Given a (sub)array $A[p:r]$, merge	6 II Merge $A[p:q]$ and $A[q+1:r]$ into $A[p:r]$.	
	7 MERGE (A, p, q, r)	
sort correctly sort $A[p:r]$.		

Merge Sort

Use Strong Induction	MERGE-SORT (A, p, r)	
	1 if $p \ge r$	<i>II</i> zero or one element?
Rase case: Array size - 1 (In other	2 return	
<u>Buse cuse</u> . All uy size – 1 (In other	$q = \lfloor (p+r)/2 \rfloor$	II midpoint of $A[p:r]$
words, $p = r$)	4 MERGE-SORT (A, p, q)	<i>II</i> recursively sort $A[p:q]$
Merge-Sort is correct due to lines 1-2	5 MERGE-SORT $(A, q + 1, r)$	<i>II</i> recursively sort $A[q + 1 : r]$
	6 II Merge $A[p:q]$ and $A[q+1:r]$ into $A[p:r]$.	
	7 MERGE (A, p, q, r)	

<u>Inductive Hypothesis (IH)</u>: Merge sort correctly sorts any array of size < n (In other words, r - p < n)

<u>Inductive Step</u>: By IH, after lines 4 and 5, A[p:q] and A[q + 1:r] are sorted

By the Loop invariant we've proved, line 7 correctly constructs sorted A[p:r]

So, Merge Sort is correct.

Merge Procedure: Time Complexity

Merge(*A*, *p*, *q*, *r*)

1. $n_L = q - p + 1$

```
2. n_R = r - q
```

- 3. Let $L[1:n_L]$ and $R[1:n_R]$ be new arrays
- **4.** for i = 1 to n_{L}

5.
$$L[i] = A[p + i - 1]$$

6. for
$$j = 1$$
 to n_R

7.
$$R[j] = A[q + j]$$

8.
$$L[n_L+1] = R[n_R+1] = \infty$$

9.
$$i = j = 1$$

10 for $k = n + n + n + n$

10. TOP
$$R = p$$
 to P

$$11. \quad 1 \neq L[1] \leq R[j]$$

12.
$$A[k] = L[i]$$

14. else

$$15. \qquad A[k] = R[j]$$

16. j = j + 1

Lines 1-3: $\Theta(1)$ time

ines 4-7:
$$\Theta(n_L + n_R) = \Theta(n)$$
 time
 $n = n_L + n_R = r - p + 1$

Lines 8-9: $\Theta(1)$ time

Lines 10-16: $\Theta(r - p + 1) = \Theta(n)$ time

Total running time: $\Theta(n)$

Merge Sort: Time Complexity

• Determine running time T(n) to sort n elements

Time MERGE-SORT(A, p, r) $\Theta(1)$ if $p \geq r$ $\Theta(1)$ return 2 q = |(p+r)/2| $\Theta(1)$ 3 MERGE-SORT(A, p, q)4 $T\left(\frac{n}{2}\right)$ MERGE-SORT(A, q + 1, r)5 // Merge A[p:q] and A[q+1:r]6 $\Theta(n)$ MERGE(A, p, q, r)7

$$T(n) = 2 \times T\left(\frac{n}{2}\right) + \Theta(n)$$

COMP550@UNC

Actual Merge Sort recurrence: $T(n) = T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + T\left(\left\lceil \frac{n}{2} \right\rceil\right) + \Theta(n)$

• Safe to ignore floors and ceilings in asymptotic analysis

Merge Sort: Time Complexity

• Considering the base case

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n) & \text{if } n > 1 \end{cases}$$

• We can rewrite the above as

$$T(n) = \begin{cases} c_1 & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + c_2 n & \text{if } n > 1 \end{cases}$$

• Can we replace c_1 and c_2 by a single constant c?

Recurrence Relations

Solving Recurrence: Recursion Trees

$$T(n) = c_2 n + T\left(\frac{n}{2}\right) + T\left(\frac{n}{2}\right)$$

$$T\left(\frac{n}{2}\right) = c_2\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + T\left(\frac{n}{4}\right)$$

$$T(n/2)$$

$$C_2 n$$

$$T(n/2)$$

$$T(n/2)$$
 $T(n/2)$ $T(n/2)$ $T(n/4)$ $T(n/4)$ $T(n/4)$ $T(n/4)$

 $c_2 n$

- Each time we go down one level, the number of subproblems doubles, but the cost per subproblem halves
 - Cost per level remains the same (c_2n) until n = 1
- How many levels?
 - When will input size go from *n* to 1 by repetitive division by 2?
 - Alternative: When will input size go from 1 to n by repetitive multiplication by 2?

• Assume that n is an exact power of 2

 $2 \times 2 \times 2 \times \dots = n$ $\implies 2^{y} = n$ $\implies y = \lg n$

•
$$y = \lg n$$
 levels from size 2 to size n

•
$$y + 1 = \lg n + 1$$
 steps from 1 to n

- Cost at each level except the base case
 (leaves) is c₂n
 - Number of such levels, $y = \lg n$
 - Cost for base case $= c_1 n$
- Total cost = $\lg n \cdot c_2 n + c_1 n = \Theta(n \lg n)$

Ignoring Floors And Ceilings

• Actual merge sort recurrence,

$$T(n) = T\left(\left\lfloor\frac{n}{2}\right\rfloor\right) + T\left(\left\lceil\frac{n}{2}\right\rceil\right) + \Theta(n)$$
$$\leq 2T\left(\frac{n}{2} + 1\right) + \Theta(n)$$

Define a new recurrence S(n) = T(n + c), c is a constant

Applying def of T and S,
$$S(n) \le 2S\left(\frac{n}{2} - \frac{c}{2} + 1\right) + n + c$$

c=2 implies $S(n) \le 2S\left(\frac{n}{2}\right) + n + 2$

Solution of $S(n) = O(n \lg n)$, asymptotically remains same for T(n)

Closest Pair of Points

- Input: A set $P = \{p_1, p_2, \dots, p_n\}$ of n points on a plane. Each $p_i = (x_i, y_i)$
- Output: A pair of points that are closest together

Closest Pair of Points: Naïve Solution

ClosestPointNaive(P,n)

- 1. Minimum = ∞
- 2. Closest = NIL
- **3.** for i = 1 to n
- **4.** for j = i + 1 to n
- 5. **if** $Dist(p_i, p_j) < Minimum$
 - $Minimum = Dist(p_i, p_j)$
- 7. Closest = (p_i, p_j)
- 8. return Closest

$dist(p_i, p_j)$

6.

1. // sqrt is not needed for this purpose
2. return
$$(p_i.x - p_j.x) * (p_i.x - p_j.x) + (p_i.y - p_j.y) * (p_i.y - p_j.y)$$

What it this algorithm's running time?
Θ(n²)

- Any better solution must run faster than $\Theta(n^2)$
 - Typical runtime to consider: O(n), $O(n \lg n)$, $O(n \lg^2 n)$, ...
- Divide and conquer approach similar to merge sort: first attempt

• Problem: Subdividing the entire region in 4 quadrants each with $\frac{n}{4}$ points is impossible.

- <u>Divide</u>: n points into $\approx \frac{n}{2}$ points in left and right by a vertical line L
 - Need to sort all points according to x-coordinate

- Divide: n points into $\approx \frac{n}{2}$ points in left and right by a vertical line L
- <u>Conquer</u>: Find closest pair of points in each side recursively

- Divide: n points into $\approx \frac{n}{2}$ points in left and right by a vertical line L
- Conquer: Find closest pair of points in each side recursively
- <u>Combine</u>: Find closest pair with one point in each side and return the closest among the three

- Let δ_1, δ_2 be the distance between closest pair in each side.
- Let $\delta = \min{\{\delta_1, \delta_2\}}$
- Observation: Only points within δ within L can be closer than the current closest pair

- Observation: Only points within δ within L are needed to be checked
- Does calculating all pair distance between two shaded region help?

- Observation: Only points within δ within L are needed to be checked
- Does calculating all pair distance between two shaded region help?

- Observation: Only points within δ within L are needed to be checked
- Sort points in 2δ -strip by their y-coordinates
- For each point, only check distances of those within 11 positions in sorted list!

• Let S_y be the sorted points within the 2δ -strip

Lemma. If p_i, p_j lie in different side of L and $dist(p_i, p_j) < \delta$ holds, then p_i and p_j are within 11 points of each other in S_y

<u>Proof</u>: Assume that p_i , p_j are at least 12 points of each other.

Subdivide the
$$2\delta$$
-strip into $\frac{\delta}{2} \times \frac{\delta}{2}$ boxes.

Each box contains at most one point. Why?

So, there must be two rows of boxes between p_i, p_j . Why?

Then,
$$dist(p_i, p_j) \ge 2 \cdot \frac{\delta}{2} = \delta$$
, contradiction.

The Algorithm

ClosestPoint (P,n)

- 1. if $n \leq 3$
- 2. Calculate all distances and return min
- 3. Sort *P* by *x*-coordinates
- 4. mid = $\left\lfloor \frac{n}{2} \right\rfloor$
- 5. L = vertical line according to p_{mid}

6.
$$(sL, sR, \delta_1) = \text{ClosestPoint}(\{p_1, p_2, \dots, p_{mid}\})$$

7.
$$(t_L, t_R, \delta_2) = \text{ClosestPoint}(\{p_{mid+1}, p_{mid+2}, ..., p_n\})$$

8.
$$\delta = \min(\delta_1, \delta_2)$$

- 9. m_1 , m_2 = Points corresponding to δ
- 10. S_y = All points within 2δ -strip from L
- 11. Sort S_y by y-coordinates

12.
$$n_v = |S_v|$$

13. for
$$i = 1$$
 to $n_v - 1$

14. **for**
$$j = i + 1$$
 to min $(i + 11, n_y)$

15. **if** dist $(p_i, p_j) < \delta$

16. $(m_1, m_2, \delta) = (p_i, p_j, dist(p_i, p_j))$ 17. return (m_1, m_2, δ)

- Lines 1-2, $\Theta(1)$ time
- Line 3, $\Theta(n \lg n)$ time
- Lines 4-5, $\Theta(1)$ time
- Lines 6-7, $2T\left(\frac{n}{2}\right)$ time
- Lines 8-9, $\Theta(1)$ time
- Line 10, $\Theta(n)$ time
- Line 11, $\Theta(n \lg n)$ time
- Line 12, $\Theta(1)$ time
- Lines 13-16, $\Theta(n)$ time
- Line 17, $\Theta(1)$ time

Recurrence

$$T(n) = \begin{cases} \Theta(1) & \text{if } n \leq 3\\ 2T\left(\frac{n}{2}\right) + \Theta(n \lg n) & \text{if } n > 3 \end{cases}$$

Solving the recurrence,

$$T(n) = \Theta(n \lg^2 n)$$

How?

Running Time

Running Time

Assume
$$n = 2^{y}$$

$$T(n) = c_{2}n \cdot \left(\lg n + \lg \frac{n}{2} + \dots + \lg 2 \right) + c_{1}n$$

$$= c_{2}n \cdot \left((\lg n + \lg n + \dots + \lg n) - (1 + 2 + \dots + 2^{y-1}) \right) + c_{1}n$$

$$= c_{2}n \lg^{2}n - c_{2}n \frac{2^{y-1}}{2-1} + c_{1}n$$

$$= c_{2}n \lg^{2}n - c_{2}n (\lg n - 1) + c_{1}n$$

$$= \Theta(n \lg^{2}n)$$

$$\lg n + 1$$

$$\lg n + 1$$

$$\lg n + 1$$

$$\lg n + 1$$

Running Time

<u>Conclusion</u>: Closest pair of points can be computed in $\Theta(n \lg^2 n)$ time

It is possible to improve the running time to $\Theta(n \lg n)$

Thank You!