
COMP 550
Algorithm and Analysis

Divide & Conquer

Based on CLRS Sec 2.3, 4, and
(33.4 of the 3rd edition)

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Divide & Conquer

• Recursive in structure

• Divide the problem into sub-problems that are similar to the

original but smaller in size

• Conquer the sub-problems by solving them recursively. If they are

small enough, just solve them in a straightforward manner.

• Combine the solutions to create a solution to the original problem

COMP550@UNC 2

3

Divide & Conquer

COMP550@UNC

Divide-and-Conquer(A)
 if size of A is small
 calculate and return result
 Partition A into A1, A2, …, Ak
 R1 = Divide-and-Conquer(A1)
 R2 = Divide-and-Conquer(A2)
 …
 Rk = Divide-and-Conquer(Ak)
 R = Calculate result from R1, R2, …, Rk
 return R

4

Merge Sort

COMP550@UNC

Sorting Problem: Sort a sequence of n elements into non-decreasing order.

• Divide: Divide the n-element sequence to be sorted into two subsequences

of n/2 elements each

• Conquer: Sort the two subsequences recursively using merge sort.

• Combine: Merge the two sorted subsequences to produce the sorted answer.

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

6 18 26 32 1 9 15 43

1 6 9 15 18 26 32 43

5

Merge Sort

COMP550@UNC

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

2618 6 32 1543 1 9

18 26 32 6 43 15 9 1

18 26 32 6 43 15 9 1

18 26 326 15 43 1 9

6 18 26 32 1 9 15 43

1 6 9 15 18 26 32 43

Original Sequence Sorted Sequence

6

Merge Sort

COMP550@UNC

Merge Procedure
From CLSR 3rd edition

• Input: Array 𝐴 with sorted

subarrays 𝐴[𝑝: 𝑞] and 𝐴 𝑞 + 1, 𝑟

• Output: Array A with sorted

subarray 𝐴[𝑝: 𝑟]

COMP550@UNC 7

Merge(𝑨, 𝒑, 𝒒, 𝒓)

1. nL = q – p + 1

2. nR = r – q

3. Let L[1:nL] and R[1:nR] be new arrays

4. for i = 1 to nL

5. L[i] = A[p + i – 1]

6. for j = 1 to nR

7. R[j] = A[q + j]

8. L[nL+1] = R[nR+1] = 

9. i = j = 1

10. for k = p to r

11. if L[i]  R[j]

12. A[k] = L[i]

13. i = i + 1

14. else

15. A[k] = R[j]

16. j = j + 1

Sentinels: Simplification by avoiding
having to check if either subarray is
fully copied at each step.

Merge Procedure

COMP550@UNC 8

j

Merge(𝑨, 𝒑, 𝒒, 𝒓)

1. nL = q – p + 1

2. nR = r – q

3. Let L[1:nL] and R[1:nR] be new arrays

4. for i = 1 to nL

5. L[i] = A[p + i – 1]

6. for j = 1 to nR

7. R[j] = A[q + j]

8. L[nL+1] = R[nR+1] = 

9. i = j = 1

10. for k = p to r

11. if L[i]  R[j]

12. A[k] = L[i]

13. i = i + 1

14. else

15. A[k] = R[j]

16. j = j + 1

6 8 26 32 1 9 42 43… …A

k

6 8 26 32 1 9 42 43

k k k k k k k

i i i i

 

i j j j j

6 8 26 32 1 9 42 43

1 6 8 9 26 32 42 43

k

L R

Merge Procedure

COMP550@UNC 9

Merge(𝑨, 𝒑, 𝒒, 𝒓)

1. nL = q – p + 1

2. nR = r – q

3. Let L[1:nL] and R[1:nR] be new arrays

4. for i = 1 to nL

5. L[i] = A[p + i – 1]

6. for j = 1 to nR

7. R[j] = A[q + j]

8. L[nL+1] = R[nR+1] = 

9. i = j = 1

10. for k = p to r

11. if L[i]  R[j]

12. A[k] = L[i]

13. i = i + 1

14. else

15. A[k] = R[j]

16. j = j + 1

• Correctness:

We need to show that-

• Given sorted subarrays 𝐴[𝑝: 𝑞] and

𝐴 𝑞 + 1: 𝑟 , the Merge procedure

constructs a sorted subarray 𝐴[𝑝: 𝑟]

that consists of all elements in 𝐴[𝑝: 𝑞]

and 𝐴 𝑞 + 1: 𝑟

Merge Procedure

COMP550@UNC 10

Merge(𝑨, 𝒑, 𝒒, 𝒓)

1. nL = q – p + 1

2. nR = r – q

3. Let L[1:nL] and R[1:nR] be new arrays

4. for i = 1 to nL

5. L[i] = A[p + i – 1]

6. for j = 1 to nR

7. R[j] = A[q + j]

8. L[nL+1] = R[nR+1] = 

9. i = j = 1

10. for k = p to r

11. if L[i]  R[j]

12. A[k] = L[i]

13. i = i + 1

14. else

15. A[k] = R[j]

16. j = j + 1

• Loop Invariant for the for loop

At the start of each iteration of the for

loop of lines 10-16, subarray A[p:k – 1]

consists of the k – p smallest elements

of L and R in sorted order. L[i] and R[j]

are the smallest elements of L and R

that have not been copied back into A.

Initialization: Trivial

Merge Procedure

COMP550@UNC 11

Merge(𝑨, 𝒑, 𝒒, 𝒓)

1. nL = q – p + 1

2. nR = r – q

3. Let L[1:nL] and R[1:nR] be new arrays

4. for i = 1 to nL

5. L[i] = A[p + i – 1]

6. for j = 1 to nR

7. R[j] = A[q + j]

8. L[nL+1] = R[nR+1] = 

9. i = j = 1

10. for k = p to r

11. if L[i]  R[j]

12. A[k] = L[i]

13. i = i + 1

14. else

15. A[k] = R[j]

16. j = j + 1

Maintenance:

Case 1: 𝐿[𝑖]  𝑅[𝑗]

• LI holds at the start of k-th iteration

• By LI, A contains 𝑘 – 𝑝 smallest elements of
L and R in sorted order.

• By LI, L[i] and R[j] are the smallest
elements of L and R not yet copied into A.

• Line 12 results in A containing 𝑘 – 𝑝 +
 1 smallest elements (again in sorted order).

• Incrementing i and k establishes the LI for
the next iteration.

• Similarly, for 𝑳[𝒊] > 𝑹[𝒋].

Merge Procedure

COMP550@UNC 12

Merge(𝑨, 𝒑, 𝒒, 𝒓)

1. nL = q – p + 1

2. nR = r – q

3. Let L[1:nL] and R[1:nR] be new arrays

4. for i = 1 to nL

5. L[i] = A[p + i – 1]

6. for j = 1 to nR

7. R[j] = A[q + j]

8. L[nL+1] = R[nR+1] = 

9. i = j = 1

10. for k = p to r

11. if L[i]  R[j]

12. A[k] = L[i]

13. i = i + 1

14. else

15. A[k] = R[j]

16. j = j + 1

Termination:

• On termination, 𝑘 = 𝑟 + 1.

• By LI, A contains 𝑟 – 𝑝 + 1 smallest

• elements of L and R in sorted order.

• L and R together contain 𝑟 – 𝑝 +
 3 elements.

• All but the two sentinels have been
copied back into A.

Merge Sort

COMP550@UNC 13

• Correctness of Merge Sort:

We need to prove that-

Given a (sub)array 𝐴 𝑝: 𝑟 , merge

sort correctly sort 𝐴 𝑝: 𝑟 .

Merge Sort

COMP550@UNC 14

Use Strong Induction

Base case: Array size = 1 (In other
words, 𝑝 = 𝑟)

Merge-Sort is correct due to lines 1-2

Inductive Hypothesis (IH): Merge sort correctly sorts any array of size <
𝑛 (In other words, 𝑟 − 𝑝 < 𝑛)

Inductive Step: By IH, after lines 4 and 5, 𝐴 𝑝: 𝑞 and 𝐴[𝑞 + 1: 𝑟] are sorted

By the Loop invariant we’ve proved, line 7 correctly constructs sorted 𝐴 𝑝: 𝑟

So, Merge Sort is correct.

Merge Procedure: Time Complexity

COMP550@UNC 15

Merge(𝑨, 𝒑, 𝒒, 𝒓)

1. nL = q – p + 1

2. nR = r – q

3. Let L[1:nL] and R[1:nR] be new arrays

4. for i = 1 to nL

5. L[i] = A[p + i – 1]

6. for j = 1 to nR

7. R[j] = A[q + j]

8. L[nL+1] = R[nR+1] = 

9. i = j = 1

10. for k = p to r

11. if L[i]  R[j]

12. A[k] = L[i]

13. i = i + 1

14. else

15. A[k] = R[j]

16. j = j + 1

Lines 1-3: Θ 1 time

Lines 4-7: Θ 𝑛𝐿 + 𝑛𝑅 = Θ(𝑛) time

 𝑛 = 𝑛𝐿 + 𝑛𝑅 = 𝑟 − 𝑝 + 1

Lines 8-9: Θ(1) time

Lines 10-16: Θ 𝑟 − 𝑝 + 1 = Θ(𝑛) time

Total running time: Θ(𝑛)

Merge Sort: Time Complexity

COMP550@UNC 16

Time

Θ(𝑛)

𝑇
𝑛

2

Θ(1)

Θ(1)

Θ(1)

𝑇(𝑛) = 2 × T
𝑛

2
+ Θ(𝑛)

• Determine running time 𝑇 𝑛 to sort 𝑛 elements

Merge Sort: Time Complexity

COMP550@UNC 17

Number of recursive calls

𝑇 𝑛 = 2𝑇
𝑛

2
+ Θ(𝑛)

Running time for input size 𝑛

Input size of recursive call

Non-recursive parts

Actual Merge Sort recurrence: 𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑇

𝑛

2
+ Θ(𝑛)

• Safe to ignore floors and ceilings in asymptotic analysis

Merge Sort: Time Complexity

COMP550@UNC 18

• Considering the base case

𝑇 𝑛 = ቐ
Θ 1

2𝑇
𝑛

2
+ Θ(𝑛)

• We can rewrite the above as

𝑇 𝑛 = ቐ

𝑐1

2𝑇
𝑛

2
+ 𝑐2𝑛

• Can we replace 𝑐1 and 𝑐2 by a single constant 𝑐?

if 𝑛 = 1

if 𝑛 > 1

if 𝑛 = 1

if 𝑛 > 1

COMP550@UNC 19

Recurrence Relations

Solving Recurrence: Recursion Trees

COMP550@UNC 20

𝑇 𝑛 = 2𝑇
𝑛

2
+ 𝑐2𝑛

𝑐2𝑛

+

𝑇
𝑛

2
𝑇

𝑛

2
+

Recursion Tree Expansion

COMP550@UNC 21

𝑇 𝑛 = 𝑐2𝑛 + 𝑇
𝑛

2
+ 𝑇

𝑛

2

𝑇
𝑛

2
= 𝑐2

𝑛

2
+ 𝑇

𝑛

4
+ 𝑇

𝑛

4

Recursion Tree Expansion

COMP550@UNC 22

Recursion Tree Expansion

COMP550@UNC 23

• Each time we go down one level, the number of

subproblems doubles, but the cost per

subproblem halves

• Cost per level remains the same (𝑐2𝑛) until 𝑛 = 1

• How many levels?

• When will input size go from 𝑛 to 1 by repetitive

division by 2?

• Alternative: When will input size go from 1 to n by

repetitive multiplication by 2?

Recursion Tree Expansion

COMP550@UNC 24

• Assume that 𝑛 is an exact power of 2

2 × 2 × 2 × ⋯ = 𝑛

⟹ 2𝑦 = 𝑛

⟹ 𝑦 = lg 𝑛

• 𝑦 = lg 𝑛 levels from size 2 to size 𝑛

• 𝑦 + 1 = lg 𝑛 + 1 steps from 1 to 𝑛

Recursion Tree Expansion

COMP550@UNC 25

• Cost at each level except the base case

(leaves) is 𝑐2𝑛

• Number of such levels, 𝑦 = lg 𝑛

• Cost for base case = 𝑐1𝑛

• Total cost = lg 𝑛 ⋅ 𝑐2𝑛 + 𝑐1𝑛 = Θ(𝑛 lg 𝑛)

Ignoring Floors And Ceilings

COMP550@UNC 26

• Actual merge sort recurrence,

𝑇 𝑛 = 𝑇
𝑛

2
+ 𝑇

𝑛

2
+ Θ 𝑛

≤ 2𝑇
𝑛

2
+ 1 + Θ(𝑛)

Define a new recurrence 𝑆 𝑛 = 𝑇(𝑛 + 𝑐), 𝑐 is a constant

Applying def of 𝑇 and 𝑆, 𝑆 𝑛 ≤ 2𝑆
𝑛

2
−

𝑐

2
+ 1 + 𝑛 + 𝑐

c=2 implies 𝑆 𝑛 ≤ 2𝑆
𝑛

2
+ 𝑛 + 2

Solution of 𝑆 𝑛 = 𝑂(𝑛 lg 𝑛), asymptotically remains same for 𝑇(𝑛)

Closest Pair of Points

COMP550@UNC 27

• Input: A set 𝑃 = 𝑝1, 𝑝2, … , 𝑝𝑛 of 𝑛 points on a plane. Each 𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖)

• Output: A pair of points that are closest together

(0,0) (10,0)

(12,3)
(3,0)

𝑥

𝑦

Closest Pair of Points: Naïve Solution

COMP550@UNC 28

• What it this algorithm’s

running time?

• Θ(𝑛2)

ClosestPointNaive(𝑷, 𝒏)

1. Minimum = ∞

2. Closest = NIL

3. for i = 1 to n

4. for j = i + 1 to n

5. if Dist(pi , pj) < Minimum

6. Minimum = Dist(pi , pj)

7. Closest = (pi , pj)

8. return Closest

dist(𝒑𝒊 , 𝒑𝒋)

1. // sqrt is not needed for this purpose

2. return (pi.x - pj.x) * (pi.x - pj.x)

 + (pi.y - pj.y) * (pi.y - pj.y)

Divide and Conquer Solution

COMP550@UNC 29

• Any better solution must run faster than Θ 𝑛2

• Typical runtime to consider: 𝑂 𝑛 , 𝑂 𝑛 lg 𝑛 , 𝑂 𝑛 lg2 𝑛 , …

• Divide and conquer approach similar to merge sort: first attempt

Divide and Conquer Solution

COMP550@UNC 30

• Problem: Subdividing the entire region in 4 quadrants each with
𝑛

4

points is impossible.

Divide and Conquer Solution

COMP550@UNC 31

• Divide: 𝑛 points into ≈
𝑛

2
 points in left and right by a vertical line 𝐿

• Need to sort all points according to 𝑥-coordinate

Divide and Conquer Solution

COMP550@UNC 32

• Divide: 𝑛 points into ≈
𝑛

2
 points in left and right by a vertical line 𝐿

• Conquer: Find closest pair of points in each side recursively

Divide and Conquer Solution

COMP550@UNC 33

• Divide: 𝑛 points into ≈
𝑛

2
 points in left and right by a vertical line 𝐿

• Conquer: Find closest pair of points in each side recursively

• Combine: Find closest pair with one point in each side and return the
closest among the three

Combine

COMP550@UNC 34

• Let 𝛿1, 𝛿2 be the distance between closest pair in each side.

• Let 𝛿 = min 𝛿1, 𝛿2

• Observation: Only points within 𝛿 within 𝐿 can be closer than the current
closest pair 𝛿

𝛿 = min 12,21
 = 12

Combine

COMP550@UNC 35

• Observation: Only points within 𝛿 within 𝐿 are needed to be checked

• Does calculating all pair distance between two shaded region help?

𝛿 = min 12,21
 = 12

𝛿

Combine

COMP550@UNC 36

• Observation: Only points within 𝛿 within 𝐿 are needed to be checked

• Does calculating all pair distance between two shaded region help?

𝛿 = min 12,21
 = 12

𝛿

Combine

COMP550@UNC 37

• Observation: Only points within 𝛿 within 𝐿 are needed to be checked

• Sort points in 2𝛿-strip by their 𝑦-coordinates

• For each point, only check distances of those within 11 positions in sorted list!

𝛿 = min 12,21
 = 12

𝛿

1
2

3

4
5

6

7

Combine

COMP550@UNC 38

• Let 𝑆𝑦 be the sorted points within the 2𝛿-strip

Proof: Assume that 𝑝𝑖 , 𝑝𝑗 are at least 12 points of each other.

Subdivide the 2𝛿-strip into
𝛿

2
×

𝛿

2
 boxes.

Each box contains at most one point. Why?

So, there must be two rows of boxes between 𝑝𝑖 , 𝑝𝑗 . Why?

Then, 𝑑𝑖𝑠𝑡 𝑝𝑖 , 𝑝𝑗 ≥ 2 ⋅
𝛿

2
= 𝛿, contradiction.

Lemma. If 𝑝𝑖 , 𝑝𝑗 lie in different side of 𝐿 and 𝑑𝑖𝑠𝑡 𝑝𝑖 , 𝑝𝑗 < 𝛿 holds, then 𝑝𝑖
and 𝑝𝑗 are within 11 points of each other in 𝑆𝑦

The Algorithm

COMP550@UNC 39

• Lines 1-2, Θ 1 time

• Line 3, Θ 𝑛 lg 𝑛 time

• Lines 4-5, Θ 1 time

• Lines 6-7, 2𝑇
𝑛

2
 time

• Lines 8-9, Θ 1 time

• Line 10, Θ 𝑛 time

• Line 11, Θ(𝑛 lg 𝑛) time

• Line 12, Θ(1) time

• Lines 13-16, Θ 𝑛 time

• Line 17, Θ 1 time

ClosestPoint (𝑷, 𝒏)

1. if n ≤ 3

2. Calculate all distances and return min

3. Sort P by x-coordinates

4. mid =
𝑛

2

5. L = vertical line according to pmid
6. (𝑠𝐿, 𝑠𝑅, 𝛿1) = ClosestPoint({p1, p2,…, pmid)

7. (𝑡𝐿, 𝑡𝑅, 𝛿2) = ClosestPoint({pmid+1, pmid+2,…, pn)

8. 𝛿 = min(𝛿1, 𝛿2)

9. m1, m2 = Points corresponding to 𝛿

10. Sy = All points within 2𝛿-strip from L

11. Sort Sy by y-coordinates

12. ny = |Sy|

13. for i = 1 to ny-1

14. for j = i + 1 to min(i + 11, ny)

15. if dist(pi, pj) < 𝛿

16. (m1,m2,𝛿) = (pi,pj,dist(pi, pj))

17. return (m1,m2,𝛿)

Recurrence

COMP550@UNC 40

𝑇 𝑛 = ቐ
Θ(1)

2𝑇
𝑛

2
+ Θ(𝑛 lg 𝑛)

Solving the recurrence,

𝑇 𝑛 = Θ(𝑛 lg2𝑛)

How?

if 𝑛 ≤ 3

if 𝑛 > 3

Running Time

COMP550@UNC 41

𝑐2 𝑛 lg 𝑛

𝑐2

𝑛

2
 lg

𝑛

2
𝑐2

𝑛

2
 lg

𝑛

2

𝑐2

𝑛

4
 lg

𝑛

4
𝑐2

𝑛

4
 lg

𝑛

4
𝑐2

𝑛

4
 lg

𝑛

4
𝑐2

𝑛

4
 lg

𝑛

4

𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1 𝑐1

𝑐2 𝑛 lg 𝑛

𝑐2 𝑛 lg
𝑛

2

𝑐2 𝑛 lg
𝑛

4

𝑐1 𝑛

lg 𝑛 + 1

Running Time

COMP550@UNC 42

Assume 𝑛 = 2y

 𝑇 𝑛 = 𝑐2𝑛 ⋅ lg 𝑛 + lg
𝑛

2
+ ⋯ + lg 2 + 𝑐1𝑛

 = 𝑐2𝑛 ⋅ ((lg 𝑛 + lg 𝑛 + ⋯ + lg 𝑛) − 1 + 2 + ⋯ + 2𝑦−1) + 𝑐1𝑛

 = 𝑐2𝑛 lg2 𝑛 − 𝑐2𝑛
2𝑦−1

2−1
+ 𝑐1𝑛

 = 𝑐2𝑛 lg2 𝑛 − 𝑐2𝑛(lg 𝑛 − 1) + 𝑐1𝑛

 = Θ(𝑛 lg2 𝑛)

Running Time

COMP550@UNC 43

Conclusion: Closest pair of points can be computed in Θ(𝑛 lg2 𝑛) time

It is possible to improve the running time to Θ(𝑛 lg 𝑛)

Thank You!

COMP550@UNC 44

	Slide 1: COMP 550 Algorithm and Analysis Divide & Conquer Based on CLRS Sec 2.3, 4, and (33.4 of the 3rd edition)
	Slide 2: Divide & Conquer
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Merge Procedure
	Slide 8: Merge Procedure
	Slide 9: Merge Procedure
	Slide 10: Merge Procedure
	Slide 11: Merge Procedure
	Slide 12: Merge Procedure
	Slide 13: Merge Sort
	Slide 14: Merge Sort
	Slide 15: Merge Procedure: Time Complexity
	Slide 16: Merge Sort: Time Complexity
	Slide 17: Merge Sort: Time Complexity
	Slide 18: Merge Sort: Time Complexity
	Slide 19
	Slide 20: Solving Recurrence: Recursion Trees
	Slide 21: Recursion Tree Expansion
	Slide 22: Recursion Tree Expansion
	Slide 23: Recursion Tree Expansion
	Slide 24: Recursion Tree Expansion
	Slide 25: Recursion Tree Expansion
	Slide 26: Ignoring Floors And Ceilings
	Slide 27: Closest Pair of Points
	Slide 28: Closest Pair of Points: Naïve Solution
	Slide 29: Divide and Conquer Solution
	Slide 30: Divide and Conquer Solution
	Slide 31: Divide and Conquer Solution
	Slide 32: Divide and Conquer Solution
	Slide 33: Divide and Conquer Solution
	Slide 34: Combine
	Slide 35: Combine
	Slide 36: Combine
	Slide 37: Combine
	Slide 38: Combine
	Slide 39: The Algorithm
	Slide 40: Recurrence
	Slide 41: Running Time
	Slide 42: Running Time
	Slide 43: Running Time
	Slide 44: Thank You!

