COMP 550
Algorithm and Analysis

Divide & Conquer

Based on CLRS Sec 2.3, 4, and
(33.4 of the 3rd edition)

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Divide & Conquer

* Recursive in structure

» Divide the problem into sub-problems that are similar to the

original but smaller in size

» Conquer the sub-problems by solving them . If they are

small enough, just solve them in a straightforward manner.

« Combine the solutions to create a solution to the original problem

Divide & Conquer

Divide-and-Conquer(A) | Divide in half
if size of A is small [Split list equally J
calculate and return result
Partition A into A,, A,, .., A,
R, = Divide-and-Conquer(A;)
R, = Divide-and-Conquer(A,)

R, = Divide-and-Conquer(A,)
R = Calculate result from R;, R,, .., R,
return R

Merge Sort

Sorting Problem: Sort a sequence of n elements into non-decreasing order.

* Divide: Divide the n-element sequence to be sorted into two subsequences

of n/2 elements each
* Conquer: Sort the two subsequences recursively using merge sort.

« Combine: Merge the two sorted subsequences to produce the sorted answer.

1 (6] 9]|15(18|26]|32]| 43

S

6 |18 | 26 325‘1 9 | 15 | 43

Merge Sort

Original Sequence Sorted Seqguence
18‘26‘32‘6‘43‘15‘9‘1 1| 6|9]15]18]26
18‘26‘32‘6?‘43‘15‘9‘1 6 [18[26[32] [1]9

ZAN ZONENIZAN

18 26E32‘ 6 |[43 15E‘ 9‘1 18 [26[6 [32]] 15] 43 1/&9
18E‘26 E 43515 9E1 18 [[261[32] 6 |[43]] 15

\ 4 \ 4 y A4 l A4 A4) \ 4

18 [261][32]1] 6 [[43][15]] 9 |[1

Merge Sort

MERGE-SORT(A4, p, r)

1ifp>r Il zero or one element?

2 return

3 g=|(p+ r/2] /[l midpoint of A[p : r]

4 MERGE-SORT(A, p, q) Il recursively sort A[p : ¢]

5 MERGE-SORT(A4,qg + 1, r) Il recursively sort A[g + 1 : 7]
6 Il Merge A[p : gl and A[g + 1 : r] Into A[p : r].
7 MERGE(A, p, q, r)

COMP550@UNC

Merge Procedure

Merge(A4, p, q, T . .
i P}L(= 5_qp z . From CLSR 3rd edition
2. np=r -4
3. Let L[1:n,] and R[1:n,] be new arrays | ® IHPUT3 AI"I"C(Y A with sorted
4. for 1 =1 to n,
5. L[i] = A[p + 1 - 1] SLIbClI"I"GYS A[p:Q] and A[q + 1,7”]
6. for j =1 to n,
7. R[] = Alg + J] * Output: Array A with sorted
8. L[n,+1] = R[ng+tl] =
9. i=9 =1 subarray A[p:r]
10. for kR = p to r
L[1] < R[J]
12. A[R] = L[1] Sentinels: Simplification by avoiding
13. i=1+1 “N having to check if either subarray is
1 fully copied at each step.
15. A[R] = R[J]
16. j=3+1

Merge Procedure

Merge(4, p, q, 1)

W 0 NGO U p W N R

=
)

12.
13.
14.
15.
16.

nL_
Ng

g-p+1
r-gq

Let L[1:n,] and R[1:n,] be new arrays

for 1 = 1 to n,

L[1] = A[p + 1 - 1]

for j =1 to n,

R[J] = Alg + J]
L[n,+1] = R[Ng+1l] = o

1 =7 =1
.for kR = p to r
L[1] < R[J]
A[R] = L[1]
1=1+1
A[R] = R[J]
j=3+1

26

32

42

43

26

32 | oo

42

43

Merge Procedure

Merge(4, p, q,) » Correctness:

1. np, =q-p +1

2. np=r -4

3. Let L[1:n,] and R[1:n,] be new arrays We need to show that-

4. for 1 =1 to n, .

5. L[i] = A[p + i - 1] * Given sorted subarrays A[p: q] and
6. for j =1ton, Alq + 1:7], the Merge procedure

7. R[J] = Alg + j]

8. L[n+1] = R[Ng+1] = oo constructs a sorted subarray A[p:r]
9. i=3j=1

10. for ,J? - ptor that consists of all elements in A[p: q]
11. if L[1] < R[J] and A[q + 1:7]

12. A[R] = L[1]

13. 1=1+1

14. else

15. A[k] = R[J]

16. j=3 + 1

Merge Procedure

Merge(A, p, q, T) Loop Invariant for the for loop
1. np, =q-p +1
2. n=r-gq At the start of each iteration of the for

. : d : b .
i. ;2: i[i ';Lloar;L A Sal] B WS arreyE loop of lines 10-16, subarray A[p:k - 1]
2 LEUIRSRA PR consists of the k - p smallest elements
6. for j =1 to n,
7. R[F] = A[q + j] of L and R in sorted order. L[i] and R[]
g: ,LL[ZLJ;.”: B gl = & are the smallest elements of L and R
oo WO L2 = 2 WD I that have not been copied back into A.
11. if L[1] < R[F]
12. A[k] = L[i]
" tored Initialization: Trivial

. else
15. A[R] = R[J]
16. j=7+1

coMP550@UNC 10

Merge Procedure

Merge(4, p, q, 1)
n=q-p+1
n. =r - g
Let L[1:n,] and R[1:n,] be new arrays
for 1 = 1 to n,
L[1] = A[p + 1 - 1]
for j = 1 to ny
R[J] = Alg + J]
L[n,+1] = R[Ng+l] =
1=7=1
. for kR = p to r
if L[1] £ R[7F]
A[R] = L[1]
1=1+1

VW 0O NGO U p W N R

P R R R
A W NEFEFO

else
A[R] = R[J]
j=3+1

N
A U

Maintenance:
Case 1: L[i] <R]j]

e LT holds at the start of k-th iteration

* By LI, A contains k - p smallest elements of
L and R in sorted order.

+ By LI, L[i]and R[j] are the smallest
elements of L and R not yet copied into A.

» Line 12 results in A containing k -p +
1 smallest elements (again in sorted order).

* Incrementing i and k establishes the LI for
the next iteration.

 Similarly, for L[i] > RJ[j].

Merge Procedure

Merge(A, p, q, 1) Termination:
;' 9 ’; v + On termination, k = r + 1.
. R - - s
3. Let L[1:n,] and R[1:n,] be new arrays ||° By LI, A contains r - p + 1smallest
4. for 1 =1 to n « elements of L and R in sorted order.
5. L[1] = A[p + 1 - 1] :
6. for j = 1 ton, . Lgarl\d R ’rsr)ge’rher' containr - p +
7. R[51 = A[g + 3] elements.
8. L[n+1] = R[n+1] = o « All but the two sentinels have been
9. i=3 =1 copied back into A.
10. for kR = p to r
11. if L[i] < R[]
12. A[R] = L[1]
13. 1=1+1
14. else
15. A[R] = R[J]

16. j=3+1

Merge Sort

* Correctness of Merge Sort: |MERGE-SORT(4.p.1)

1 ifp>r Il zero or one element?
2 return
_ 3g=1(p+r)/2] /I midpoint of A[p : r]
We need TO pr‘OVe ThGT 4 MERGE-SORT(A, p, qg) Il recursively sort A[p : g

5 MERGE-SORT(4,¢q¢+ 1,r) Il recursively sort A[g + 1 : 7]

Given a (SUb)Gr'r'ay A [p 7"], mer'ge 6 Il Merge A[p : g and A[g + 1 : r] into A[p : r].
7 MERGE(A4, p, g, r)

sort correctly sort Alp:r].

Merge Sort

Use Strong Induction MERGE-SORT(4, p,)

1 ifp>r Il zero or one element?
. . . 2 return
Base case: Array size =1 (Inother |, g=1p + 2l I midpoint of A[p : 1
words, p = 1) 4 MERGE-SORT(4, p, ¢) Il recursively sort A[p : ¢
_ . ° _2 |5 MERGE-SORT(4, ¢ + 1,r) Il recursively sort A[g + 1 : 7]
Merge Sort is correct due to lines 1-2 Il Merge A[p : gl and A[g + 1 :] into A[p : r].
7 MERGE(A4, p, g, r)

=

Inductive Hypothesis (IH): Merge sort correctly sorts any array of size <
n (In other words, r —p < n)

Inductive Step: By IH, after lines 4 and 5, A[p: q] and A[q + 1: 7] are sorted

By the Loop invariant we've proved, line 7 correctly constructs sorted A[p:r]

So, Merge Sort is correct.

Merge Procedure: Time Complexity

Merge(4, p, q, 1)

VW 0O NGO U p W N R

R R R RRRPB R
oA n W NEFEO

n=q-p+1
n. =r - g
Let L[1:n,] and R[1:n,] be new arrays
for 1 = 1 to n,
L[1] = A[p + 1 - 1]
for j = 1 to ny
R[J] = Alg + J]
L[n,+1] = R[Ng+l] =
1=7j=1

.for kR = p to r

if L[1] < R[]]

AlR] = L[1]

1=1+1
else

A[R] = R[J]

j=3+1

Lines 1-3: O(1) time

Lines 4-7: O(n; + ng) = O(n) time

n=n,+ng=r—p+1
Lines 8-9: ©6(1) time
Lines 10-16: 0(r —p + 1) = O(n) time

Total running time: 0(n)

Merge Sort: Time Complexity

« Determine running time T(n) to sort n elements

MERGE-SORT(A, p,r)
if p>r

return
qg = |(p+r)/2]
MERGE-SORT (A, p,q)
MERGE-SORT(A,q + 1,r)
// Merge A[p:q]and Alg

~] N i B b

MERGE(A, p,q,r)

Time
0(1)
0(1)
0(1)

()

O(n)

1:r]

n
2

T(n) =2><T(

)+ O(n)

Merge Sort: Time Complexity

T(n) = 2T (g) +0(n)

Running time for input size n /

\ Non-recursive parts
Number of recursive calls

Input size of recursive call

Actual Merge Sort recurrence: T(n) =T (E‘) ANT (ED +0(n)
 Safe to ignore floors and ceilings in asymptotic analysis

Merge Sort: Time Complexity

» Considering the base case

(o) ifn=1
I'(n) = 12T (g) +0() [ifn>1
* We can rewrite the above as
T(n) = <f ”Cl fn=1
N kZT(f)"'CZ" ifn>1

* Can we replace c¢; and ¢, by a single constant c?

Recurrence Relations

Solving Recurrence: Recursion Trees

T(n) = 2T (E) + c,n ‘ C‘T‘n ‘ / \

: T(E) + T(E) T(n/2) T(n/2)

Recursion Tree Expansion

T(n) =cyn+ T(%)+T<g)

r(3)=«@)+ @)+ G

€afl
Cottf2

T'(n/4) T(n/4) Fn/4y T(n/4)

/\

T(u,fz T(n/2)

COMP550@UNC 21

Recursion Tree Expansion

> Call

N\

cn/f2 Conf2 — > con

[\

canjé canja cn/4 cn/4—> Canl

::/ \‘-. / \\' / |\‘_ / _

Cp € €1 €1 € €1 C1 € Cp »++Cy € €4 —>» (1N

n

COMP550@UNC

22

Recursion Tree Expansion

> Call

N

canf2 Cnjf2 — > can
Cu/4 cn/4 Cn/4 Cn/4—> Call
!
\ | ’
\ | \| ": \ /
.lul '1' \. ..' \l‘ \

Cp € €1 €1 €1 €1 C1 € € »¢C1 1 € —>»> (1N

n

* Each time we go down one level, the number of

subproblems doubles, but the cost per
subproblem halves

* Cost per level remains the same (c,n) until n =1

* How many levels?

* When will input size go from n to 1 by repetitive
division by 2?

* Alternative: When will input size go from 1 fo n by
repetitive multiplication by 2?

Recursion Tree Expansion

can > CoNl
can/2 cnjf2 — > con
cn/4 cn/4 cn/4 cn/4—> Call

'\I .." "\\

| I
\

\

Cp € €1 €1 €1 €1 C1 € € »eC1 1 €4 —m>» (10

n

« Assume that n is an exact power of 2

2X2X2X-=n
= 2Y =n

= y=Ilgn
« y =lgn levels from size 2 to size n

*y+1=Ign+1steps from 1ton

Recursion Tree Expansion

> CoN

N

canf2 Cof2 — > con

/\ /\

cn/4 0/1/4 cn/4 cn/4—> Call

.ll‘ ‘l" '\. In" ||\\

Cp € €1 €1 €1 €1 C1 € € »eC1 1 €4 —m>» (10

n

* Cost at each level except the base case

(leaves) is c,n

* Number of such levels,y =

« Cost for base case = ¢yn

* Total cost = lgn - co,n + ¢yn = O(nlgn)

lgn

Ignoring Floors And Ceilings

 Actual merge sort recurrence,

=) () + o

n
< 2T (E-l— 1) + @(Tl)
Define a new recurrence S(n) = T(n + ¢), c is a constant

Applying def of T and S, S(n) < 2S (g — % + 1) +n+c

c=2 implies S(n) < 2§ (2) +n+2

Solution of S(n) = 0(nlgn), asymptotically remains same for T(n)

Closest Pair of Points

 Input: A set P = {py,py, ..., pn} of n points on a plane. Each p; = (x;,v;)

 Output: A pair of points that are closest together
Yy

(12,3)
)
O

(0,0) (10,0) E

(3,0)

Closest Pair of Points: Naive Solution

ClosestPointNaive(P,n)

1. Minimum = oo

2. Closest = NIL

3. for 1 =1 ton

4, for j =1+ 1 ton) . i ,
5. if Dist(p; , p;) < Minimum * What it this GIQOI"ITth
6 Minimum = Dist(p; , p;)))

7 Closest = (p; , pj) I"Ul'mlng T|me?

8. return Closest

« O(n?)

dist(p;, pj)
1. // sqgrt is not needed for this purpose
2. return (p;.x - p;.x) * (p;-X - p;.X)

+ (p;.y - p;.y) * (pi.y - p;.y)

Divide and Conquer Solution

* Any better solution must run faster than ©(n?*)

* Typical runtime to consider: 0(n), 0(nlgn), 0(nlg?n), ...

» Divide and conquer approach similar to merge sort: first attempt

Divide and Conquer Solution

* Problem: Subdividing the entire region in 4 quadrants each with %
points is impossible.

° L
TS
:.. .. o
O] ®
@ O @ o

Divide and Conquer Solution

. Divide: n points into ~ = points in left and right by a vertical line L
p " p ght by

 Need to sort all points according to x-coordinate

Divide and Conquer Solution

+ Divide: n points into ~ = points in left and right by a vertical line L
» Conquer: Find closest pair of points in each side recursively

o] . . e
. o . o /21 .

Divide and Conquer Solution

+ Divide: n points into ~ = points in left and right by a vertical line L

* Conquer: Find closest pair of points in each side recursively
 Combine: Find closest pair with one point in each side and return the

closest among the three
o L ® o @
. - 8 |o / . .
12 o °
./. @ @ ®

Combine

* Let §;, 5, be the distance between closest pair in each side.
° L€'|' 5 = min {51, 52}
 Observation: Only points within § within L can be closer than the current

closest pair 5
@ L ® o]
o ’ e ¢ /2]_ .
L) ’ § = min{12,21}
") ° ° .| =12

Combine

* Observation: Only points within § within L are needed to be checked
* Does calculating all pair distance between two shaded region help?

<«
@ L ® o]
o ’ e ¢ /2]_ .
L) ’ § = min{12,21}
") ° ° .| =12

Combine

* Observation: Only points within § within L are needed to be checked
* Does calculating all pair distance between two shaded region help?

<«
@ L ® o]
o ’ e ¢ /2]_ .
L) ’ § = min{12,21}
") ° ° .| =12

Combine

* Observation: Only points within § within L are needed to be checked
* Sort points in 25-strip by their y-coordinates

* For each point, only check distances of those within 11 positions in sorted list!
5

@ L ® o @
° (7) ®
o ° © ’
o ‘| 0® [/ a)
. .| ® d = min{12,21}
./o e o o =12
e 5 @ o
O o

Combine

* Let S, be the sorted points within the 26-strip

Lemma. If p;,p; lie in different side of L and dist(p;,p;) < & holds, then p;

and p; are within 11 points of each other in S,

Proof: Assume that p;,p; are at least 12 points of each other.

Subdivide the 26-strip into g X g boxes.

Each box contains at most one point. Why?

So, there must be two rows of boxes between p;,p;. Why?

Then, dist(p;, ;) = 2 -g = §, contradiction.

Line L

1

The Algorithm

ClosestPoint (P,n)

1. ifn <3

2. Calculate all distances and return min
3. Sort P by x-coordinates

4. mid = [7]

5. L = vertical 1line according to p,.4

6. (sL,sR,6;) = ClosestPoint({pi, Pys->s Puig)

7. (t,tg6) = ClosestPoint({pniqi1s Pmigs2s-> Pn)
8. & = min(6;,9,)

9. my, m, = Points corresponding to ¢

16. S, = All points within 26-strip from L

11. Sort S, by y-coordinates

12. n, = |S,|

13. for 1 =1 to n,-1

14. for j =1 + 1 to min(1 + 11, n))

15. if dist(p;, p;) < 6

16. (my,my,6) = (pispysdist(pi, p;))
17. return (m;,m,,J)

Lines 1-2, 0(1) time
Line 3, O(nlgn) time
Lines 4-5, ©(1) time
Lines 6-7, 2T (g) time
Lines 8-9, 0(1) time
Line 10, ©(n) time
Line 11, O(nlgn) time
Line 12, ©(1) time
Lines 13-16, ©(n) time

Line 17, (1) time

Recurrence

T(n) =+

Solving the recurrence,

How?

f 0(1)
2T (E) + O(nlgn)
L 2

T(n) = O(nlg?n)

ifn<3

if n>3

Running Time

[cznlgn] =[Cznlgn]
n_n n_n (n
27 187 23 187 canlgs |

CCCCCCCCCCC

Running Time

Assume n = 27
T(n) = cyn - (lgn + lgg + -+ 1g 2) + cyn

=c,n-(lgn+lgn+--+lgn) — (A1 +2+--+2Y"1)) +¢n
2Y -1
2—1

=cynlg?n — cyn + cin ?

= conlg?n —cn(lgn —1) + ¢yn
= O(nlg*n)

n_ n
szlgz

g +1

A NI

7 \ 7 N\ rd ~ 7/ \~
7/ A S /7 . + ~ s

1 1 1
1 1 | I | | 1 | | 1
) ler) fer)) o) o) (o) o) fer) fes}f cam

Running Time

Conclusion: Closest pair of points can be computed in ©(nlg*n) time

It is possible to improve the running time to O@(nlgn)

Thank You!

	Slide 1: COMP 550 Algorithm and Analysis Divide & Conquer Based on CLRS Sec 2.3, 4, and (33.4 of the 3rd edition)
	Slide 2: Divide & Conquer
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Merge Procedure
	Slide 8: Merge Procedure
	Slide 9: Merge Procedure
	Slide 10: Merge Procedure
	Slide 11: Merge Procedure
	Slide 12: Merge Procedure
	Slide 13: Merge Sort
	Slide 14: Merge Sort
	Slide 15: Merge Procedure: Time Complexity
	Slide 16: Merge Sort: Time Complexity
	Slide 17: Merge Sort: Time Complexity
	Slide 18: Merge Sort: Time Complexity
	Slide 19
	Slide 20: Solving Recurrence: Recursion Trees
	Slide 21: Recursion Tree Expansion
	Slide 22: Recursion Tree Expansion
	Slide 23: Recursion Tree Expansion
	Slide 24: Recursion Tree Expansion
	Slide 25: Recursion Tree Expansion
	Slide 26: Ignoring Floors And Ceilings
	Slide 27: Closest Pair of Points
	Slide 28: Closest Pair of Points: Naïve Solution
	Slide 29: Divide and Conquer Solution
	Slide 30: Divide and Conquer Solution
	Slide 31: Divide and Conquer Solution
	Slide 32: Divide and Conquer Solution
	Slide 33: Divide and Conquer Solution
	Slide 34: Combine
	Slide 35: Combine
	Slide 36: Combine
	Slide 37: Combine
	Slide 38: Combine
	Slide 39: The Algorithm
	Slide 40: Recurrence
	Slide 41: Running Time
	Slide 42: Running Time
	Slide 43: Running Time
	Slide 44: Thank You!

