

of NORTH CAROLINA at CHAPEL HILL

COMP 550 Algorithm and Analysis

Recurrence Relations

Based on CLRS Sec 4

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Recurrence Relations

 An equation or inequality that describes a function over the integers or reals using the function itself

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1 \text{ (base case)} \\ 2T\left(\frac{n}{2}\right) + \Theta(n) & \text{if } n > 1 \text{ (recursive case)} \end{cases}$$

Zero, one, or many functions may satisfy a recurrence
 Well-defined if at least one satisfies, ill-defined otherwise

Algorithmic Recurrences

- T(n) is an algorithmic recurrence if for every sufficiently large threshold constant $n_0 > 0$
 - 1. For all $n < n_0, T(n) = \Theta(1)$
 - 2. For all $n \ge n_0$, every path of recursion tree terminates on a defined base case within finite recursive invocations
- (1) implies for $n < n_0, 0 \le c_1 \le T(n) \le c_2$
- Not (2) implies the algorithm is incorrect!

Whenever a recurrence is stated without an explicit base case, we assume that the recurrence is algorithmic.

Algorithmic Recurrences

• Divide-and-conquer and recurrences

$$T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + \Theta(n)$$

• Subproblems are not always of constant fraction of original problem

FindMax (A, n)
1. if
$$n \leq 1$$
2. return A[1]
3. return max(A[n], FindMax(A, n-1))

$$T(n) = T(n-1) + \Theta(1)$$

Solving A Recurrence

- Substitution method
- Recursion-tree method
- Master method
- Akra-Bazzi method

- Two step process
 - Guess the solution
 - Use mathematical induction to show that the guessed solution works
- Works well when you can guess the solution
- Guessing may not be always easy

- Determine an asymptotic upper bound on $T(n) = 2T(\lfloor n/2 \rfloor) + \Theta(n)$.
- Guess: $T(n) = O(n \lg n)$
 - It's better not to try prove Θ-bound directly. Why?
 - Can prove separate 0- and Ω -bound instead.
- Note that $T(n) = O(n \lg n)$ means $T(n) \le cn \lg n$ holds for $n \ge n_0$
 - We don't need to prove anything for $n < n_0$
 - n_0 should be reasonably small so that $T(n) = \Theta(1)$

 $T(n) = 2T(\lfloor n/2 \rfloor) + \Theta(n)$

Assume that $T(m) \leq c \cdot m \log m$ holds for all $n_0 \leq m < n$ (n_0 to be defined later)

First consider, $n \ge 2n_0$

 $T(n) \leq 2(c \lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor)) + \Theta(n)$ $\leq 2(c(n/2) \lg(n/2)) + \Theta(n)$ $= cn \lg(n/2) + \Theta(n)$ $= cn \lg n - cn \lg 2 + \Theta(n)$ $\leq cn \lg n - cn + \Theta(n)$ $\leq cn \lg n .$ From CLRS

 $T(n) = 2T(\lfloor n/2 \rfloor) + \Theta(n)$

Assume that $T(m) \le c \cdot m \log m$ holds for all $n_0 \le m < n$ (n_0 to be defined later)

Now consider, $n_0 \le n < 2n_0$ (Induction base case). Looks different from recursive base case?

Pick n_0 : Can we take $n_0 = 1$? Then, $T(1) \le c \cdot 1 \cdot \lg 1 = 0$. Possible?

Can we take $n_0 = 2$? Then, $T(2) \le 2c \lg 2$

For $n_0 = 2$, base case includes $2 \le n < 2 \cdot 2 = 4$. So, $n \in \{2,3\}$. $T(3) \le 3c \lg 3$

Take $c = \max(T(2), T(3))$. Then, $T(n) \le cn \lg n$, for any $n \ge n_0 = 2$

- Base case handling is often ignored
 - Pretty much the same way to deal with
 - Take a n_0 , then determine a large constant c so that $n_0 \le n < n_0'$ admits the inductive hypothesis (n_0' is $2n_0$ in prior example).

- Steps:
 - Guess the solution
 - Prove the solution for large $n \ge n_0{}'$
 - Prove the solution for small $n, n_0 \le n < n_0'$. (Usually done by taking $T(n) = \Theta(1)$)
 - Determine c (can be done by previous step)
- Omitting the last two steps are often fine!

Guessing Solution

- Try the solution to a similar-looking problem you've already solved
 - $T(n) = 2T\left(\frac{n}{2} + 17\right) + \Theta(n)$ looks like $T(n) = 2T(\lfloor n/2 \rfloor) + \Theta(n)$, so try $T(n) \le c \cdot n \log n$
- Try a looser solution and then narrow the bound from both ends
 - Prove the recurrence is $O(n^2)$ and $\Omega(n)$. Work from both directions to narrow the gap between upper and lower bounds
- Draw a recursion tree

Correct Guess But Math Fails

•
$$T(n) = 2T\left(\frac{n}{2}\right) + \Theta(1)$$

Guess T(n) = O(n), so $T(n) \le cn$

$$T(n) \le 2c\left(\frac{n}{2}\right) + \Theta(1) = cn + \Theta(1)$$

The above does NOT imply $T(n) \leq cn$

Try this: subtract a lower-order term.

New Guess: $T(n) \le cn - d$ $T(n) \le 2(c\left(\frac{n}{2}\right) - d) + \Theta(1)$ $= cn - 2d + \Theta(1)$ $\le cn - d - (d - \Theta(1))$

 $\leq cn - d$

Be careful about choice of c, d, and base cases

COMP550@UNC

Pitfalls

 Do NOT use asymptotic notation in the inductive hypothesis. $T(n) = 2T\left(\left|\frac{n}{2}\right|\right) + \Theta(n)$ Assume T(n) = O(n) $T(n) \le 2 \cdot O\left(\left|\frac{n}{2}\right|\right) + \Theta(n)$ $= 2 \cdot O(n) + \Theta(n)$ = O(n)

To avoid pitfall,

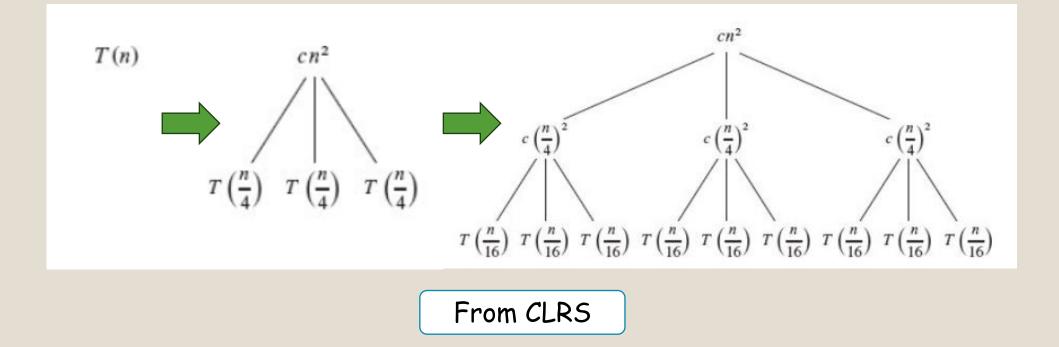
Assume $T(n) \le cn$ $T(n) \le 2 \cdot c\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + \Theta(n)$ $\le cn + \Theta(n)$ $\le cn$

The constant hidden by O() may change.

Recursion-Tree Method

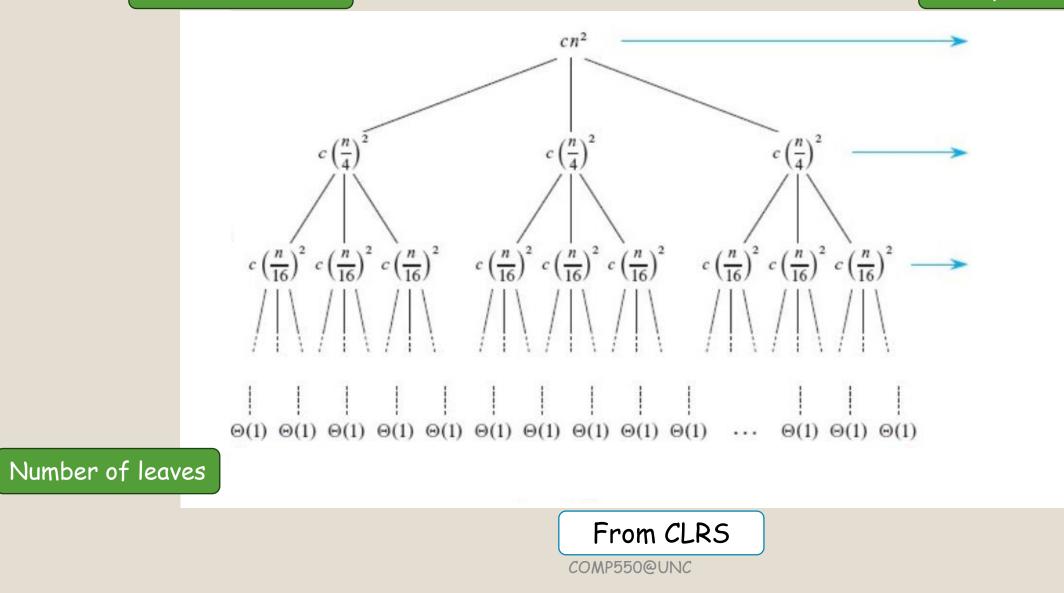
- Making a good guess is sometimes difficult with the substitution method.
- Use recursion trees to devise good guesses.
 - Better not to use it as direct proof (would need to be meticulous about expanding tree and summing costs)
 - For generating guess, some 'sloppiness' is tolerable

Example:
$$T(n) = 3T\left(\frac{n}{4}\right) + \Theta(n^2)$$



Number of levels

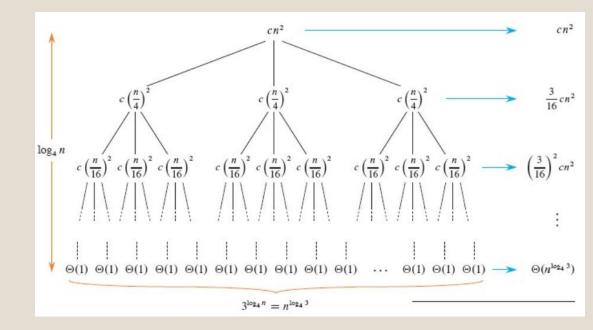
Cost per level



$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4} n - 1}cn^{2} + \Theta(n^{\log_{4} 3})$$

$$= \sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$\leq \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$



Goal: evaluate
$$\sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^{i}$$

$$\sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i = \frac{1}{1 - \frac{3}{16}} = \frac{16}{13}$$

The summation

$$\sum_{k=0}^{\infty} x^{k} = 1 + x + x^{2} + \dots + \infty$$
is a geometric series. If $|x| < 1$, then

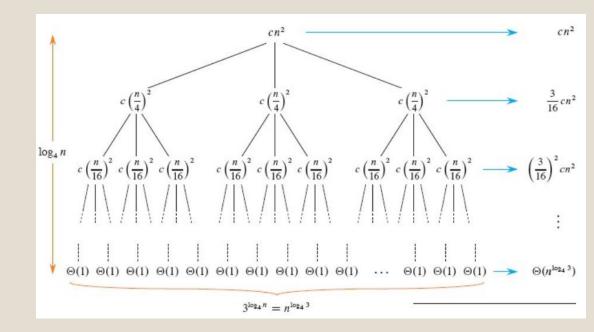
$$\sum_{k=1}^{n} x^{k} = \frac{1}{1-x}$$
Evaluating the sums
• Appendix A: Summations

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \dots + \left(\frac{3}{16}\right)^{\log_{4} n - 1}cn^{2} + \Theta(n^{\log_{4} 3})$$

$$= \sum_{i=0}^{\log_4 n-1} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$\leq \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta(n^{\log_4 3})$$

$$= \frac{16}{13}cn^2 + \Theta(n^{\log_4 3})$$
$$= O(n^2)$$



Recursion Tree: Verify with Substitution

• Use substitution method to prove $T(n) = 3T\left(\frac{n}{4}\right) + \Theta(n^2)$ is $O(n^2)$

Assume the constant in $\Theta(n^2)$ is c, i.e., $\Theta(n^2) = cn^2$

Assume, $T(m) \leq dm^2$ for all $n_0 \leq m < n$.

We need to prove $T(n) \leq dn^2$

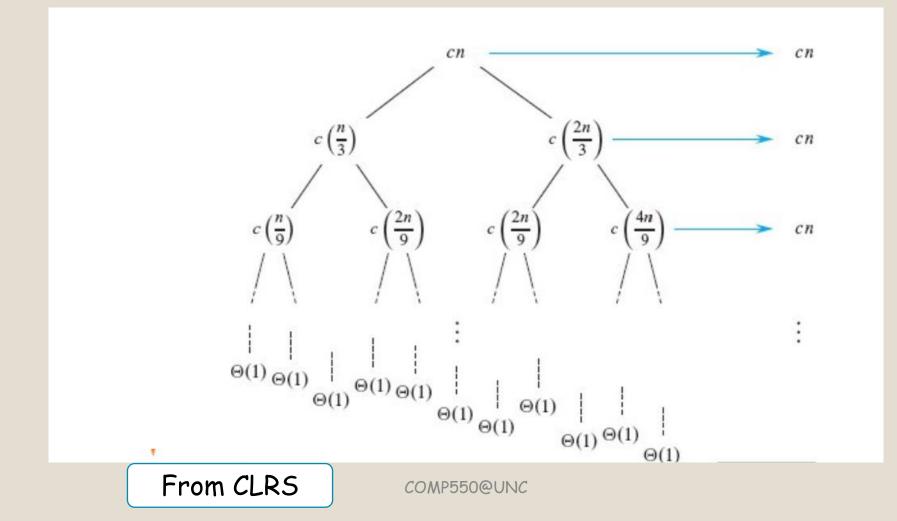
Now consider n,

This calculation works for $n \ge 4n_0$. Why? Show for $n_0 \le n < 4n_0$ (Recurrence base case)

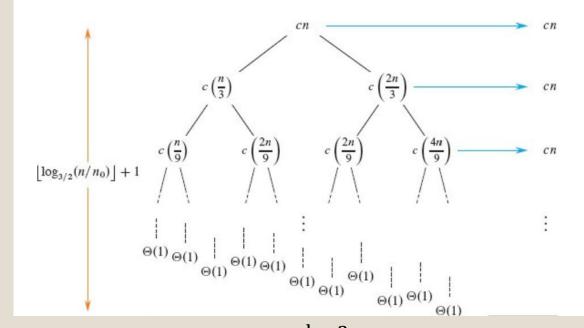
$$T(n) = 3T\left(\frac{n}{4}\right) + cn^2 \le 3d\left(\frac{n}{4}\right)^2 + cn^2 = \left(\frac{3d}{16} + c\right)n^2$$

Can we pick value of d so that $\frac{3d}{16} + c \le d$?

An irregular example: $T(n) = T\left(\frac{n}{3}\right) + T\left(\frac{2n}{3}\right) + \Theta(n)$



- Height of the tree = $\Theta(\lg n)$
- Cost per level = O(n)
- Guess, $T(n) = O(n \lg n)$
 - Try this by substitution method
- How many leaves in total?



- Assuming complete binary tree, # of leaves = $2^{\lfloor \log_{3/2} n \rfloor + 1} + 1 \le 2n^{\lfloor \log_{3/2} 2 \rfloor} = O(n^{1.71})$
- This is larger than tight running time $O(n \lg n)$
- Takeaway: Over-approximating #of leaves may cause running time to be dominated by the costs of leaves leading to a loose running time bound.

- A master recurrence is in form $T(n) = aT\left(\frac{n}{b}\right) + f(n)$, where a > 0and b > 1 are constants
- Divides a problem of size n into a subproblems, each of size $\frac{n}{b}$

•
$$aT\left(\frac{n}{b}\right)$$
 actually means $a'T\left(\left\lfloor\frac{n}{b}\right\rfloor\right) + a''T\left(\left\lceil\frac{n}{b}\right\rceil\right)$ for $a', a'' \ge 0$ and $a' + a'' = a$

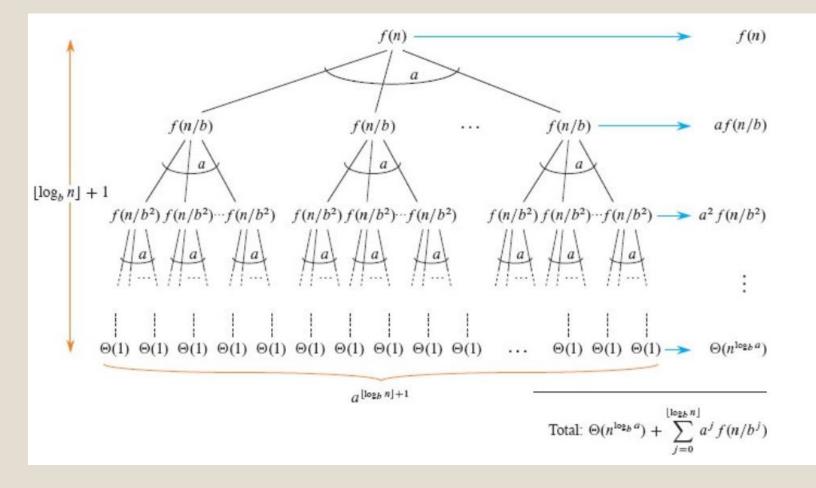
- f(n) = cost of dividing and combining.
- f(n) is referred to as the driving function.

- <u>Theorem 4.1 (Master Theorem)</u>:
 - Solves master recurrences, $T(n) = aT\left(\frac{n}{b}\right) + f(n)$
 - 3 cases based on comparing f(n) with $n^{\log_b a}$
 - $n^{\log_b a}$ is called the watershed function

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

	Condition	Solution
Case 1	There exists constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$	$T(n) = \Theta(n^{\log_b a})$
Case 2	There exists constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$	$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$
Case 3	There exists constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$ and $af\left(\frac{n}{b}\right) \le cf(n)$ for constant $c < 1$,	$T(n) = \Theta(f(n))$

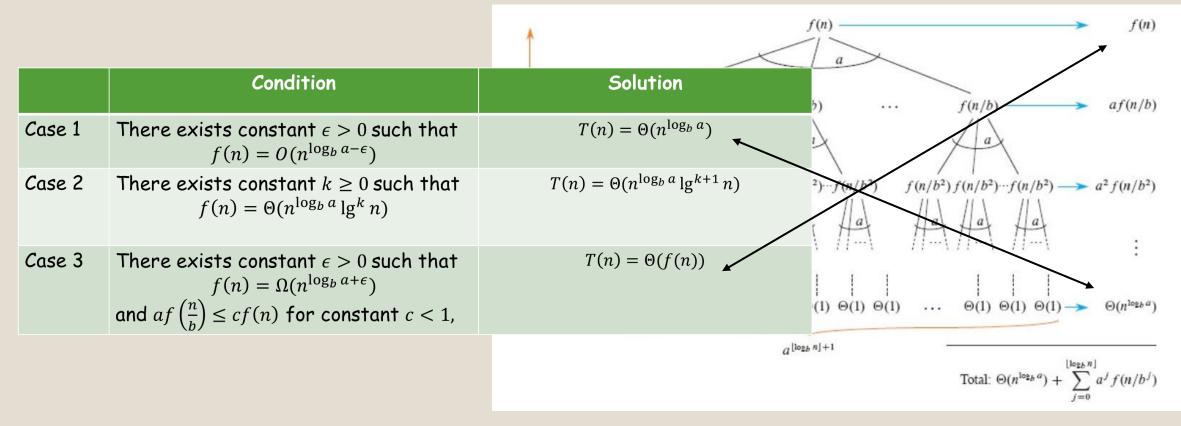
$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$



			$f(n) \longrightarrow f(n)$
	Condition	Solution	b) $\dots f(n/b) \longrightarrow af(n/b)$
Case 1	There exists constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$	$T(n) = \Theta(n^{\log_b a})$	iz Aa
Case 2	There exists constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$	$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$	$ \begin{array}{ccc} f(n/b^2) & f(n/b^2) f(n/b^2) \cdots f(n/b^2) \longrightarrow a^2 f(n/b^2) \\ & & & & & & & & & & & \\ & & & & & & $
Case 3	There exists constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$ and $af\left(\frac{n}{b}\right) \le cf(n)$ for constant $c < 1$,	$T(n) = \Theta(f(n))$	$(1) \ \Theta(1) \ \Theta(1) \ \cdots \ \Theta(1) \ \Theta(1) \ \Theta(1) \longrightarrow \ \Theta(n^{\log_b a})$
			$a^{\lfloor \log_b n \rfloor + 1}$ Total: $\Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor} a^j f(n/b^j)$

Any idea what' happening in each case?

(Hint: look at the solution and the cost of the levels in recursion tree)



Case 1: Running time is dominated by leaves. When this happens?

Case 3: Running time is dominated by the root. When this happens?

			$f(n) \longrightarrow f(n)$
	Condition	Solution	b) $\dots f(n/b) \longrightarrow af(n/b)$
Case 1	There exists constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$	$T(n) = \Theta(n^{\log_b a})$	iz Aa
Case 2	There exists constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$	$T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$	$ \begin{array}{ccc} f(n/b^2) & f(n/b^2) f(n/b^2) \cdots f(n/b^2) \longrightarrow a^2 f(n/b^2) \\ \hline & & & & & & \\ \hline & & & & & & \\ \hline & & & &$
Case 3	There exists constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$ and $af\left(\frac{n}{b}\right) \le cf(n)$ for constant $c < 1$,	$T(n) = \Theta(f(n))$	$(1) \ \Theta(1) \ \Theta(1) \ \cdots \ \Theta(1) \ \Theta(1) \ \Theta(1) \longrightarrow \ \Theta(n^{\log_b a})$
			$a^{\lfloor \log_b n \rfloor + 1}$ Total: $\Theta(n^{\log_b a}) + \sum_{j=0}^{\lfloor \log_b n \rfloor} a^j f(n/b^j)$

Case 2: Each level (with internal nodes) has asymptotically same cost (Just like merge sort and closest pair of points) Total running time = cost per level * number of levels

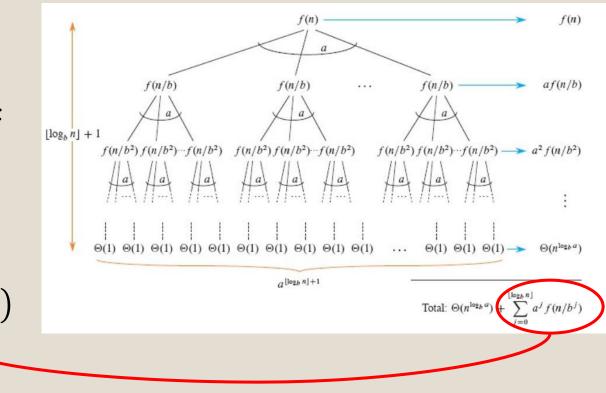
<u>Case 1</u>: There exists constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ $T(n) = \Theta(n^{\log_b a})$

- f(n) is polynomially smaller than $n^{\log_b a}$
 - f(n) is asymptotically smaller than $n^{\log_b a}$ by a factor of $O(n^{\epsilon})$ for $\epsilon > 0$

<u>Case 1</u>: There exists constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$ $T(n) = \Theta(n^{\log_b a})$

• Per-level cost increases as we go down the recursion tree

- Cost of leaves dominates costs of internal nodes
 - Cost of leaves = $\Theta(n^{\log_b a})$
 - Cost of internal nodes = $O(n^{\log_b a})$
 - Total cost = $\Theta(n^{\log_b a})$



<u>Case 1</u>: There exists constant $\epsilon > 0$ such that $f(n) = O(n^{\log_b a - \epsilon})$

 $T(n) = \Theta(n^{\log_b a})$

Example:
$$9T\left(\frac{n}{3}\right) + n$$

• Dissect the Recurrence

$$f(n) = n; a = 9, b = 3; n^{\log_b a} = n^{\log_3 9} = n^2$$

<u>Check case requirement</u>

 $f(n) = n = O(n^{2-1})$

<u>Give the solution</u>

 $T(n) = \Theta(n^2)$

<u>Case 2</u>: There exists constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$ $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$

- f(n) is within a polylog factor of $n^{\log_b a}$
- Cost at each level with internal nodes = $\log_{n} n + 1$ $f(n) = \Theta(n^{\log_b a} \log^k n)$
- Cost of all internal nodes

 $=\Theta(n^{\log_b a} \lg^{k+1} n)$

f(n/b)f(n/b)f(n/b)af(n/b). . . $f(n/b^2) f(n/b^2) \cdots f(n/b^2) = f(n/b^2) f(n/b^2) \cdots f(n/b^2)$ $f(n/b^2) f(n/b^2) \cdots f(n/b^2) \longrightarrow a^2 f(n/b^2)$ 1a $\lfloor a \rfloor$ Ha} \dots $\Theta(1)$ $\Theta(1)$ $\Theta(1) \longrightarrow$ $\Theta(1) \Theta(1) \Theta(1) \Theta(1)$ $\Theta(n^{\log_b a})$ $a \lfloor \log_b n \rfloor + 1$ Total: $\Theta(n^{\log_b a}) +$ $\sum a^j f(n/b^j)$

f(n)

f(n)

<u>Case 2</u>: There exists constant $k \ge 0$ such that $f(n) = \Theta(n^{\log_b a} \lg^k n)$ $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$

Example:
$$T(n) = 27T\left(\frac{n}{3}\right) + n^3 \log_2 n$$

• Dissect the Recurrence

 $f(n) = n^3 \lg n; \quad a = 27, b = 3; \ n^{\log_b a} = n^{\log_3 27} = n^3$

<u>Check case requirement</u>

 $f(n) = n^3 \lg n = \Theta(n^3 \lg n)$

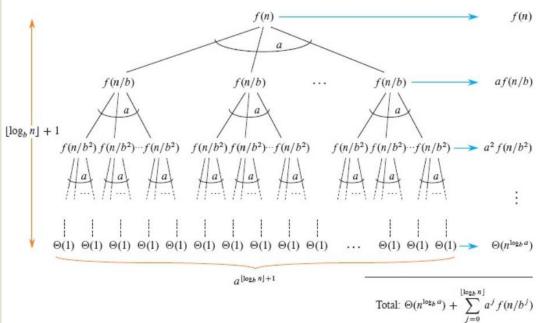
Give the solution

 $T(n) = \Theta(n^3 \lg^2 n)$

<u>Case 3</u>: There exists constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$ and $af\left(\frac{n}{b}\right) \le cf(n)$ for constant c < 1,

$$T(n) = \Theta(f(n))$$

- Mirrors Case 1, f(n) is polynomially greater than $n^{\log_b a}$
- $af(n/b) \le cf(n)$: Regularity condition
- Per-level cost decreases as we go down the recursion tree
- Root's cost = $\Theta(f(n))$, Other's cost = O(f(n))
- Total cost = $\Theta(f(n))$



<u>Case 3</u>: There exists constant $\epsilon > 0$ such that $f(n) = \Omega(n^{\log_b a + \epsilon})$ and $af\left(\frac{n}{b}\right) \le cf(n)$ for constant c < 1,

$$T(n) = \Theta(f(n))$$

Example: $T(n) = 5T\left(\frac{n}{2}\right) + n^3$

- <u>Dissect the Recurrence</u> $f(n) = n^3$; a = 5, b = 2: $n^{\log_b a} = n^{\log_2 5} = n^3$ • <u>Check case requirement</u> $f(n) = n^3 = \Omega(n^{\log_2 5})$ and $5f\left(\frac{n}{2}\right) = 5\left(\frac{n}{2}\right)^3 \le \frac{5}{8}n^3$
- <u>Give the solution</u>

 $T(n) = \Theta(n^3)$

Master Method: Not Applicable Case

Example:
$$T(n) = 2T\left(\frac{n}{2}\right) + \frac{n}{\lg n}$$

• Dissect the Recurrence

 $f(n) = n/\lg n; \quad a = 2, b = 2; \ n^{\log_b a} = n^{\log_2 2} = n$

<u>Check case requirement</u>

 $f(n) = \frac{n}{\lg n} \neq O(n^{1-\epsilon}), \text{ i.e., } \frac{n}{\lg n} \text{ is not polynomially smaller than } n$ • Case 1 not applicable

 $f(n) = n \lg^{-1} n$, k < 0 required to match Case 2. • Case 2 not applicable $f(n) = n/\lg n \neq \Omega(n^{1+\epsilon})$

• Case 3 not applicable

Thank You!