
COMP 550
Algorithm and Analysis

Recurrence Relations

Based on CLRS Sec 4

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Recurrence Relations

• An equation or inequality that describes a function over the

integers or reals using the function itself

 𝑇 𝑛 = ቐ
Θ 1

2𝑇
𝑛

2
+ Θ(𝑛)

• Zero, one, or many functions may satisfy a recurrence

• Well-defined if at least one satisfies, ill-defined otherwise

COMP550@UNC 2

if 𝑛 = 1 (base case)

if 𝑛 > 1 (recursive case)

3

Algorithmic Recurrences

COMP550@UNC

• 𝑇(𝑛) is an algorithmic recurrence if for every sufficiently large

threshold constant 𝑛0 > 0

1. For all 𝑛 < 𝑛0, 𝑇 𝑛 = Θ(1)

2. For all 𝑛 ≥ 𝑛0, every path of recursion tree terminates on a defined

base case within finite recursive invocations

• (1) implies for 𝑛 < 𝑛0, 0 ≤ 𝑐1 ≤ 𝑇 𝑛 ≤ 𝑐2

• Not (2) implies the algorithm is incorrect!

4

Algorithmic Recurrences

COMP550@UNC

• Divide-and-conquer and recurrences

𝑇 𝑛 = 𝑇
𝑛

3
+ 𝑇

2𝑛

3
+ Θ(𝑛)

• Subproblems are not always of constant fraction of original problem

𝑇 𝑛 = 𝑇 𝑛 − 1 + Θ(1)

FindMax (𝑨, 𝒏)

1. if n ≤ 1

2. return A[1]

3. return max(A[n], FindMax(A,n-1))

5

Solving A Recurrence

COMP550@UNC

• Substitution method

• Recursion-tree method

• Master method

• Akra-Bazzi method

6

Substitution Method

COMP550@UNC

• Two step process

• Guess the solution

• Use mathematical induction to show that the guessed solution works

• Works well when you can guess the solution

• Guessing may not be always easy

Substitution Method
• Determine an asymptotic upper bound on 𝑇 𝑛 = 2𝑇 Τ𝑛 2 + Θ 𝑛 .

• Guess: 𝑇(𝑛) = 𝑂(𝑛 lg 𝑛)

• It’s better not to try prove Θ-bound directly. Why?

• Can prove separate 𝑂- and Ω-bound instead.

• Note that 𝑇(𝑛) = 𝑂(𝑛 lg 𝑛) means 𝑇 𝑛 ≤ 𝑐𝑛 lg 𝑛 holds for 𝑛 ≥ 𝑛0

• We don’t need to prove anything for 𝑛 < 𝑛0

• 𝑛0 should be reasonably small so that 𝑇 𝑛 = Θ(1)

COMP550@UNC 7

COMP550@UNC 8

Assume that 𝑇 𝑚 ≤ 𝑐 ∙ 𝑚 log 𝑚 holds for all 𝑛0 ≤ 𝑚 < 𝑛 (𝑛0 to be defined later)

log𝑐(𝑎 ⋅ 𝑏) = log𝑐 𝑎 + log𝑐 𝑏 (3.18 in book)

log𝑐
𝑎

𝑏
= log𝑐 𝑎 − log𝑐 𝑏 (not in book)

Need 𝑐𝑛 to dominate Θ 𝑛 .

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + Θ 𝑛

≤

First consider, 𝑛 ≥ 2𝑛0

From CLRS

Substitution Method

COMP550@UNC 9

Assume that 𝑇 𝑚 ≤ 𝑐 ∙ 𝑚 log 𝑚 holds for all 𝑛0 ≤ 𝑚 < 𝑛 (𝑛0 to be defined later)

𝑇 𝑛 = 2𝑇 Τ𝑛 2 + Θ 𝑛

Now consider, 𝑛0 ≤ 𝑛 < 2𝑛0 (Induction base case). Looks different from
recursive base case?

Pick 𝑛0: Can we take 𝑛0 = 1? Then, 𝑇 1 ≤ 𝑐 ⋅ 1 ⋅ lg 1 = 0. Possible?

Can we take 𝑛0 = 2? Then, 𝑇 2 ≤ 2𝑐 lg 2

For 𝑛0 = 2, base case includes 2 ≤ 𝑛 < 2 ⋅ 2 = 4. So, 𝑛 ∈ 2,3 . 𝑇 3 ≤ 3𝑐 lg 3

Take 𝑐 = max(𝑇 2 , 𝑇 3) . Then, 𝑇 𝑛 ≤ 𝑐𝑛 lg 𝑛 , for any 𝑛 ≥ 𝑛0 = 2

Substitution Method

Substitution Method

COMP550@UNC 10

• Base case handling is often ignored

• Pretty much the same way to deal with

• Take a 𝑛0, then determine a large constant 𝑐 so that 𝑛0 ≤ 𝑛 < 𝑛0′

admits the inductive hypothesis (𝑛0′ is 2𝑛0 in prior example).

COMP550@UNC 11

Substitution Method
• Steps:

• Guess the solution

• Prove the solution for large 𝑛 ≥ 𝑛0′

• Prove the solution for small 𝑛, 𝑛0 ≤ 𝑛 < 𝑛0
′ . (Usually done by taking

𝑇 𝑛 = Θ(1))

• Determine 𝑐 (can be done by previous step)

• Omitting the last two steps are often fine!

Guessing Solution

COMP550@UNC 12

• Try the solution to a similar-looking problem you’ve already solved

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ 17 + Θ 𝑛 looks like 𝑇 𝑛 = 2𝑇 Τ𝑛 2 + Θ(𝑛), so try

𝑇 𝑛 ≤ 𝑐 ⋅ 𝑛 log 𝑛

• Try a looser solution and then narrow the bound from both ends

• Prove the recurrence is 𝑂 𝑛2 and Ω 𝑛 . Work from both directions

to narrow the gap between upper and lower bounds

• Draw a recursion tree

Correct Guess But Math Fails

COMP550@UNC 13

• 𝑇 𝑛 = 2𝑇
𝑛

2
+ Θ 1

Guess 𝑇 𝑛 = 𝑂(𝑛), so 𝑇 𝑛 ≤ 𝑐𝑛

 𝑇 𝑛 ≤ 2𝑐
𝑛

2
+ Θ 1 = 𝑐𝑛 + Θ 1

The above does NOT imply 𝑇 𝑛 ≤ 𝑐𝑛

Try this: subtract a lower-order term.

New Guess: 𝑇 𝑛 ≤ 𝑐𝑛 − 𝑑

𝑇 𝑛 ≤ 2(𝑐
𝑛

2
− 𝑑) + Θ 1

 = 𝑐𝑛 − 2𝑑 + Θ(1)

 ≤ 𝑐𝑛 − 𝑑 − 𝑑 − Θ 1

 ≤ 𝑐𝑛 − 𝑑

Be careful about choice of 𝑐, 𝑑, and base
cases

Pitfalls

COMP550@UNC 14

• Do NOT use asymptotic notation in
the inductive hypothesis.

 𝑇 𝑛 = 2𝑇
𝑛

2
+ Θ(𝑛)

Assume 𝑇 𝑛 = 𝑂(𝑛)

 𝑇 𝑛 ≤ 2 ⋅ 𝑂
𝑛

2
+ Θ(𝑛)

 = 2 ⋅ 𝑂 𝑛 + Θ(𝑛)

 = 𝑂 𝑛

The constant hidden by 𝑂() may change.

To avoid pitfall,

Assume 𝑇 𝑛 ≤ 𝑐𝑛

𝑇 𝑛 ≤ 2 ⋅ 𝑐
𝑛

2
+ Θ(𝑛)

 ≤ 𝑐𝑛 + Θ(𝑛)

 ≰ 𝑐𝑛

Recursion-Tree Method

COMP550@UNC 15

• Making a good guess is sometimes difficult with the substitution

method.

• Use recursion trees to devise good guesses.

• Better not to use it as direct proof (would need to be meticulous

about expanding tree and summing costs)

• For generating guess, some ‘sloppiness’ is tolerable

Recursion Tree

COMP550@UNC 16

Example: 𝑇 𝑛 = 3𝑇
𝑛

4
+ Θ 𝑛2

From CLRS

Recursion Tree

COMP550@UNC 17

From CLRS

Cost per levelNumber of levels

Number of leaves

Recursion Tree

COMP550@UNC 18

𝑇 𝑛 = 𝑐𝑛2 +
3

16
𝑐𝑛2 +

3

16

2
𝑐𝑛2 + ⋯ +

3

16

log4 𝑛−1
𝑐𝑛2 + Θ(𝑛log4 3)

 = σ𝑖=0
log4 𝑛−1 3

16

𝑖
𝑐𝑛2 + Θ(𝑛log4 3)

 ≤ σ𝑖=0
∞ 3

16

𝑖
𝑐𝑛2 + Θ(𝑛log4 3)

Recursion Tree

COMP550@UNC 19

Goal: evaluate σ𝑖=0
∞ 3

16

𝑖

෍

𝑖=0

∞
3

16

𝑖

=
1

1 −
3

16

=
16

13

The summation

෍

𝑘=0

∞

𝑥𝑘 = 1 + 𝑥 + 𝑥2 + ⋯ + ∞

is a geometric series. If 𝑥 < 1, then

෍

𝑘=1

𝑛

𝑥𝑘 =
1

1 − 𝑥

Evaluating the sums
• Appendix A: Summations

Recursion Tree

COMP550@UNC 20

𝑇 𝑛 = 𝑐𝑛2 +
3

16
𝑐𝑛2 +

3

16

2
𝑐𝑛2 + ⋯ +

3

16

log4 𝑛−1
𝑐𝑛2 + Θ(𝑛log4 3)

 = σ𝑖=0
log4 𝑛−1 3

16

𝑖
𝑐𝑛2 + Θ(𝑛log4 3)

 ≤ σ𝑖=0
∞ 3

16

𝑖
𝑐𝑛2 + Θ(𝑛log4 3)

 =
16

13
𝑐𝑛2 + Θ(𝑛log4 3)

 = 𝑂(𝑛2)

Recursion Tree: Verify with Substitution

COMP550@UNC 21

• Use substitution method to prove 𝑇 𝑛 = 3𝑇
𝑛

4
+ Θ(𝑛2) is 𝑂 𝑛2

Assume the constant in Θ 𝑛2 is 𝑐, i.e., Θ 𝑛2 = 𝑐𝑛2

Assume, 𝑇 𝑚 ≤ 𝑑𝑚2 for all 𝑛0 ≤ 𝑚 < 𝑛.

We need to prove 𝑇 𝑛 ≤ 𝑑𝑛2

Now consider 𝑛,

𝑇 𝑛 = 3𝑇
𝑛

4
+ 𝑐𝑛2 ≤ 3𝑑

𝑛

4

2

+ 𝑐𝑛2 =
3𝑑

16
+ 𝑐 𝑛2

Can we pick value of 𝑑 so that
3𝑑

16
+ 𝑐 ≤ 𝑑?

This calculation works for 𝑛 ≥ 4𝑛0. Why?
Show for 𝑛0 ≤ 𝑛 < 4𝑛0 (Recurrence base case)

Recursion Tree

COMP550@UNC 22

An irregular example: 𝑇 𝑛 = 𝑇
𝑛

3
+ 𝑇

2𝑛

3
+ Θ(𝑛)

From CLRS

Recursion Tree

COMP550@UNC 24

• Height of the tree = Θ(lg 𝑛)

• Cost per level = 𝑂(𝑛)

• Guess, 𝑇 𝑛 = 𝑂(𝑛 lg 𝑛)

• Try this by substitution method

• How many leaves in total?

• Assuming complete binary tree, # of leaves = 2 log3/2 𝑛 +1 + 1 ≤ 2𝑛
lg3

2
2

= 𝑂 𝑛1.71

• This is larger than tight running time 𝑂(𝑛 lg 𝑛)

• Takeaway: Over-approximating #of leaves may cause running time to be

dominated by the costs of leaves leading to a loose running time bound.

Master Method

COMP550@UNC 25

• A master recurrence is in form 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛 , where 𝑎 > 0

and b> 1 are constants

• Divides a problem of size 𝑛 into a subproblems, each of size
𝑛

𝑏

• 𝑎𝑇
𝑛

𝑏
 actually means 𝑎′𝑇

𝑛

𝑏
+ 𝑎′′𝑇

𝑛

𝑏
 for 𝑎′, 𝑎′′ ≥ 0 and

𝑎′ + 𝑎′′ = 𝑎

• 𝑓 𝑛 = cost of dividing and combining.

• 𝑓(𝑛) is referred to as the driving function.

Master Method

COMP550@UNC 26

• Theorem 4.1 (Master Theorem):

• Solves master recurrences, 𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛

• 3 cases based on comparing 𝑓(𝑛) with 𝑛log𝑏 𝑎

• 𝑛log𝑏 𝑎 is called the watershed function

Master Method

COMP550@UNC 27

Condition Solution

Case 1 There exists constant 𝜖 > 0 such that
𝑓 𝑛 = 𝑂(𝑛log𝑏 𝑎−𝜖)

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Case 2 There exists constant 𝑘 ≥ 0 such that
𝑓 𝑛 = Θ(𝑛log𝑏 𝑎 lg𝑘 𝑛)

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 lg𝑘+1 𝑛)

Case 3 There exists constant 𝜖 > 0 such that
𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+𝜖)

and 𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓 𝑛 for constant 𝑐 < 1,

𝑇 𝑛 = Θ(𝑓(𝑛))

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛

Master Method

COMP550@UNC 29

𝑇 𝑛 = 𝑎𝑇
𝑛

𝑏
+ 𝑓 𝑛

Master Method

COMP550@UNC 30

Any idea what’ happening in each case?

(Hint: look at the solution and the cost of the levels in recursion tree)

Master Method

COMP550@UNC 31

Case 1: Running time is dominated by leaves. When this happens?

Case 3: Running time is dominated by the root. When this happens?

Master Method

COMP550@UNC 32

Case 2: Each level (with internal nodes) has asymptotically same cost
 (Just like merge sort and closest pair of points)
Total running time = cost per level * number of levels

Master Method

COMP550@UNC 33

• 𝑓 𝑛 is polynomially smaller than 𝑛log𝑏 𝑎

• 𝑓 𝑛 is asymptotically smaller than 𝑛log𝑏 𝑎 by a factor of 𝑂 𝑛𝜖 for 𝜖 > 0

Case 1: There exists constant 𝜖 > 0 such that 𝑓 𝑛 = 𝑂(𝑛log𝑏 𝑎−𝜖)

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Master Method

COMP550@UNC 34

• Per-level cost increases as we go
down the recursion tree

• Cost of leaves dominates costs of

internal nodes

• Cost of leaves = Θ 𝑛log𝑏 𝑎

• Cost of internal nodes = 𝑂 𝑛log𝑏 𝑎

• Total cost =Θ 𝑛log𝑏 𝑎

Case 1: There exists constant 𝜖 > 0 such that 𝑓 𝑛 = 𝑂(𝑛log𝑏 𝑎−𝜖)

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Master Method

COMP550@UNC 35

Case 1: There exists constant 𝜖 > 0 such that 𝑓 𝑛 = 𝑂(𝑛log𝑏 𝑎−𝜖)

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎)

Example: 9𝑇
𝑛

3
+ 𝑛

• Dissect the Recurrence

 𝑓 𝑛 = 𝑛; 𝑎 = 9, 𝑏 = 3: 𝑛log𝑏 𝑎 = 𝑛log3 9 = 𝑛2

• Check case requirement

 𝑓 𝑛 = 𝑛 = 𝑂 𝑛2−1

• Give the solution

 𝑇 𝑛 = Θ(𝑛2)

Master Method

COMP550@UNC 36

• 𝑓(𝑛) is within a polylog factor of 𝑛log𝑏 𝑎

• Cost at each level with internal nodes =

𝑓 𝑛 = Θ 𝑛log𝑏 𝑎 lg𝑘 𝑛

• Cost of all internal nodes

=Θ 𝑛log𝑏 𝑎 lg𝑘+1 𝑛

Case 2: There exists constant 𝑘 ≥ 0 such that 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎 lg𝑘 𝑛)

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 lg𝑘+1 𝑛)

Master Method

COMP550@UNC 37

Case 2: There exists constant 𝑘 ≥ 0 such that 𝑓 𝑛 = Θ(𝑛log𝑏 𝑎 lg𝑘 𝑛)

𝑇 𝑛 = Θ(𝑛log𝑏 𝑎 lg𝑘+1 𝑛)

Example: 𝑇 𝑛 = 27𝑇
𝑛

3
+ 𝑛3 log2 𝑛

• Dissect the Recurrence

 𝑓 𝑛 = 𝑛3 lg 𝑛; 𝑎 = 27, 𝑏 = 3: 𝑛log𝑏 𝑎 = 𝑛log3 27 = 𝑛3

• Check case requirement

 𝑓 𝑛 = 𝑛3 lg 𝑛 = Θ 𝑛3 lg 𝑛

• Give the solution

 𝑇 𝑛 = Θ(𝑛3 lg2 𝑛)

Master Method

COMP550@UNC 38

• Mirrors Case 1, 𝑓(𝑛) is polynomially greater
than 𝑛log𝑏 𝑎

• 𝑎𝑓 𝑛/𝑏 ≤ 𝑐𝑓 𝑛 : Regularity condition

• Per-level cost decreases as we go down the
recursion tree

• Root’s cost = Θ 𝑓(𝑛) , Other’s cost = 𝑂(𝑓(𝑛))

• Total cost = Θ(𝑓 𝑛)

Case 3: There exists constant 𝜖 > 0 such that 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+𝜖) and

𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓 𝑛 for constant 𝑐 < 1,

𝑇 𝑛 = Θ(𝑓(𝑛))

Master Method

COMP550@UNC 39

Example:𝑇 𝑛 = 5𝑇
𝑛

2
+ 𝑛3

• Dissect the Recurrence

 𝑓 𝑛 = 𝑛3; 𝑎 = 5, 𝑏 = 2: 𝑛log𝑏 𝑎 = 𝑛log2 5 = 𝑛3

• Check case requirement

 𝑓 𝑛 = 𝑛3 = Ω(𝑛log2 5) and 5𝑓
𝑛

2
= 5

𝑛

2

3
≤

5

8
𝑛3

• Give the solution

 𝑇 𝑛 = Θ(𝑛3)

Case 3: There exists constant 𝜖 > 0 such that 𝑓 𝑛 = Ω(𝑛log𝑏 𝑎+𝜖) and

𝑎𝑓
𝑛

𝑏
≤ 𝑐𝑓 𝑛 for constant 𝑐 < 1,

𝑇 𝑛 = Θ(𝑓(𝑛))

Master Method: Not Applicable Case

COMP550@UNC 40

Example: 𝑇 𝑛 = 2𝑇
𝑛

2
+

𝑛

lg 𝑛

• Dissect the Recurrence

 𝑓 𝑛 = 𝑛/ lg 𝑛 ; 𝑎 = 2, 𝑏 = 2: 𝑛log𝑏 𝑎 = 𝑛log2 2 = 𝑛

• Check case requirement

 𝑓 𝑛 =
𝑛

lg 𝑛
≠ O 𝑛1−𝜖 , i.e.,

𝑛

lg 𝑛
 is not polynomially smaller than 𝑛

• Case 1 not applicable

𝑓 𝑛 = 𝑛 lg−1 𝑛 , 𝑘 < 0 required to match Case 2.
• Case 2 not applicable

 𝑓 𝑛 = 𝑛/ lg 𝑛 ≠ Ω(𝑛1+𝜖)
• Case 3 not applicable

Thank You!

COMP550@UNC 42

	Slide 1: COMP 550 Algorithm and Analysis Recurrence Relations Based on CLRS Sec 4
	Slide 2: Recurrence Relations
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Substitution Method
	Slide 8
	Slide 9
	Slide 10: Substitution Method
	Slide 11: Substitution Method
	Slide 12: Guessing Solution
	Slide 13: Correct Guess But Math Fails
	Slide 14: Pitfalls
	Slide 15: Recursion-Tree Method
	Slide 16: Recursion Tree
	Slide 17: Recursion Tree
	Slide 18: Recursion Tree
	Slide 19: Recursion Tree
	Slide 20: Recursion Tree
	Slide 21: Recursion Tree: Verify with Substitution
	Slide 22: Recursion Tree
	Slide 24: Recursion Tree
	Slide 25: Master Method
	Slide 26: Master Method
	Slide 27: Master Method
	Slide 29: Master Method
	Slide 30: Master Method
	Slide 31: Master Method
	Slide 32: Master Method
	Slide 33: Master Method
	Slide 34: Master Method
	Slide 35: Master Method
	Slide 36: Master Method
	Slide 37: Master Method
	Slide 38: Master Method
	Slide 39: Master Method
	Slide 40: Master Method: Not Applicable Case
	Slide 42: Thank You!

