COMP 550
Algorithm and Analysis

Recurrence Relations

Based on CLRS Sec 4

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne



Recurrence Relations

* An equation or inequality that describes a function over the

integers or reals using the function itself

[ e(1) if n = 1 (base case)

T(n) =+

2T (g) + ®(n) |if n> 1 (recursive case)

\

« Zero, one, or many functions may satisfy a recurrence
« Well-defined if at least one satisfies, ill-defined otherwise



Algorithmic Recurrences

* T(n) is an algorithmic recurrence if for every sufficiently large
threshold constant ny, > 0
1. Foralln<ny,Tn)=0(0)

2. For all n = ny, every path of recursion tree terminates on a defined

base case within finite recursive invocations

® (1) |mp||es fOI" n< Ny, 0 < C1 < T(n) < Cy

* Not (2) implies the algorithm is incorrect!

Whenever a recurrence is stated without an explicit base case, we
assume that the recurrence is algorithmic.



Algorithmic Recurrences

« Divide-and-conquer and recurrences

T(n)=T (g) + T (2?n> + 0(n)

 Subproblems are not always of constant fraction of original problem

FindMax (A4,n)

1. ifn <1

2. return A[1]

3. return max(A[n], FindMax(A,n-1))

T(n)=T(n—-1)+ 6(1)



Solving A Recurrence

* Substitution method
* Recursion-tree method
* Master method

* Akra-Bazzi method



Substitution Method

* Two step process
* Guess the solution

« Use mathematical induction o show that the guessed solution works
* Works well when you can guess the solution

* Guessing may not be always easy



Substitution Method

* Determine an asymptotic upper bound on T(n) = 2T(|n/2]) + 0(n).

* Guess: T(n) = 0(nlgn)
 ITt's better not to try prove 0-bound directly. Why?

« Can prove separate O- and Q-bound instead.

* Note that T(n) = 0(nlgn) means T(n) < cnlgn holds for n > n,
« We don't need to prove anything for n < n,

* ny should be reasonably small so that T(n) = (1)



Substitution Method

T(n) = 2T(In/2]) + 6(n)
Assume that T(m) < ¢ - mlogm holds for all ny < m < n (n, to be defined later)

First consider, n > 2n,

T(n)

1 | VA A

IA 1A

2(c |n/2]1g(|n/2])) + On) logc(cz- b) =log. a + log. b (3.18 in book)
2(c(n/2)1g(n/2)) + O(n) log, (Z) =log. a — log, b (not in book)
cnlg(n/2) + ©(n)

cnlgn —cnlg2+ ®(n)
cnlgn —cn 4+ ©(n) Need cn to dominate 0(n).

cnlgn .

" From CLRS |
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Substitution Method

T(n) =2T(n/2]) + ©6(n)
Assume that T(m) < ¢ - mlogm holds for all ny < m < n (n, to be defined later)

Now consider, n, < n < 2n, (Induction base case). Looks different from
recursive base case?

Pick ny: Can we take ny, = 1? Then, T(1) < c-1-1g1 = 0. Possible?
Can we take ny = 2? Then, T(2) < 2clg?2
For ny = 2,base case includes2<n<2-2=4.50,n€{23}.T(3) <3clg3

Take ¢ = max(T(2),T(3)). Then, T(n) < cnlgn, for any n > ny = 2



Substitution Method

* Base case handling is often ignored

* Pretty much the same way to deal with

« Take a ny, then determine a large constant ¢ so that ny <n <ny’

admits the inductive hypothesis (n,’ is 2ny in prior example).



Substitution Method

« Steps:
* Guess the solution
* Prove the solution for large n > ny’

* Prove the solution for small n,ny < n < ng. (Usually done by taking
r(n) = 06(1))

 Determine c (can be done by previous step)

« Omitting the last two steps are often finel



Guessing Solution

 Try the solution to a similar-looking problem you've already solved
+ T(n) = 2T (3 + 17) + 0(n) looks like T(n) = 2T(|n/2]) + O(n), S0 try
T(n) <c-nlogn

* Try a looser solution and then narrow the bound from both ends

* Prove the recurrence is 0(n?) and Q(n). Work from both directions

to narrow the gap between upper and lower bounds

 Draw a recursion tree



Correct Guess But Math Fails

Try this: subtract a lower-order term.

+ T(n) = 2T (3) + 0(1) New Guess: T(n) < cn — d
Guess T(n) = 0(n), so T(n) < cn T(n) < 2(c(3) — d) + (1)
T(n) < 2c (g) +0(1) = cn + 0(1) = cn —2d + 6(1)
The above does NOT imply T(n) < cn <cn—d—(d—-0(1)
<cn—d

Be careful about choice of ¢, d, and base
cases
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Pitfalls

* Do NOT use asymptotic notation in
the inductive hypothesis.

T(n) =27 ([3]) + o)
Assume T(n) = 0(n)

Tn) <2-0 (E‘) + 0(n)

=2 0&+ O(n)
=0(n

The constant hidden by 0() may change.

COMP550@UNC

To avoid pitfall,

Assume T(n) < cn

Tm)<2-c (E‘) + 0(n)
<cn+ 0(n)
£ cn

14



Recursion-Tree Method

» Making a good guess is sometimes difficult with the substitution
method.

 Use recursion trees to devise good guesses.

* Better not to use it as direct proof (would need to be meticulous

about expanding tree and summing costs)

* For generating guess, some ‘sloppiness’ is tolerable



Recursion Tree

Example: T(n) = 3T (%) + 0(n?)

=
cn-

~

T(n) n?
i //

e - L e

e(3) e(3) ()

dere /NN /N
=) T()

n n n n n n n n
il TGe) The) (%) Zi%) e TiE Tis) T

~ From CLRS |
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Recursion Tree

Number of levels

Number of leaves

Cost per level

e(1) ©(1) (1) a(1) &) e(l) e(1) e(l) () (1) ...

[ From CLRS ]
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e(1) e() (1)

17



2
T(n) = cn? + —cn? + (i) cn® + -+ (
16 16
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Recursion Tree
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Recursion Tree

i :
Goal: evaluate )2, (136) The summation
zx" =1+x+x*+--+
® i k=0
3y 1 16
£i\16) 1 3 13 is a geometric series. If |x| < 1, then
1=0 — E n

1
k _
zx 11—y
k=1

Evaluating the sums
« Appendix A: Summations




2
T(n) = cn? + >cn? + (i) cn® + -+ (—
16 16

<

Recursion Tree

logy n—1
3 4
16) cn? + 0(nlo84+ 3)

_1/3\!
Zliig()4n 1 (1_6) cn? + @(nlog4 3)

i
>0 (116) cn? + O(nlo8+ 3)

1 6 2 1 1 /l/ \.\\ ‘///l ‘.\' /"/"/’ \
— 0 3 0BaR n V/-‘ ny\2 ; n2 n \2 ny\2 3 n\2 n ‘/3 n\2 > ny2
3 cne + @(Tl 84 ) T L Y o Y T Y LG T B L

0(n?)




Recursion Tree: Verify with Substitution

« Use substitution method to prove T(n) = 3T (%) +0(n?) is0(n?
Assume the constant in ®(n?) is c, i.e., ®(n?) = cn?
Assume, T(m) < dm? for all np <m <n.

We need to prove T(n) < dn? This calculation works for n = 4n,. Why?

Show for ny, < n < 4n, (Recurrence base case)

Now consider n,

n n\ 2 3d
= — 2< —_ 2: — 2
T(n) 3T(4)+cn _3d(4) + cn (16+c>n

Can we pick value of d so that % +c<d?
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Recursion Tree

An irregular example: T(n) = ( ) + T( ) + 0(n)

/\
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B B B ®
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Recursion Tree

« Height of the tree = 0(Ign)

+ Cost per level = 0(n) <6) 5)
¢ Guess, T(n) —_ O(n lg n) |log,,,(n/no) | + 1 ((:) (-T) L(_T) (T)
+ Try this by substitution method | | -
o g() | oMegm | | |
* How many leaves in total? T engg 0 ||

e(1)
: : Igs 2
- Assuming complete binary tree, # of leaves = 2198:27+1 1 1 < 29y 2" =07

* This is larger than tight running time 0(nlgn)

 Takeaway: Over-approximating #of leaves may cause running time to be
dominated by the costs of leaves leading to a loose running time bound.



Master Method

* A master recurrence is in form T(n) = aT (g) + f(n),where a > 0
and b> 1 are constants

 Divides a problem of size n info a subproblems, each of size -

* aT (%) actually means a'T (E‘) +a''T (ED for a’,a” = 0and
a+a’ =a

* f(n) = cost of dividing and combining.

* f(n) is referred to as the driving function.



Master Method

 Theorem 4.1 (Master Theorem):

« Solves master recurrences, T(n) = aT (%) + f(n)

» 3 cases based on comparing f(n) with n'°» @

« nl98v @ js called the watershed function



Master Method

n

T(n) =aT (b) + f(n)

I L

Casel  There exists constant € > 0 such that T(n) = O(n'°8» @)
f(n) = 0(n'o8 %=<)
Case 2  There exists constant k = 0 such that T(n) = O(n'°8» ¢ |gk+1 )

f(n) = O(nl°8r ¢ 1gk n)
Case 3  There exists constant € > 0 such that T(n) = 0(f(n))

f(n) = (o8 *+)
and af (%) < cf(n) for constant c < 1,

COMP550@UNC 27



Master Method

T(n) = aT g + f(n)

f(n) > fin)
_,<:’“ ,."' e 8
/"// S -g'— i \
il / ™
f(n/b) f(n/b) —— > af(n/b)
n |
/ .' u\\ / | a
— . J
| |
f |
f(n/b?) f(n/b?)f(n/b*) f(n/b*) f(n/b?)-f(n/b*)  f(n/b?) f(n/B?)--f(n/b?) —> a*f(n/b?)
n"' "1 '{ 'I \ / 'l l'- ‘.' 0’ \ "' ; \ '; l' \ '; 1' l.l /| ‘|' '; q' "n
Jj i1\ f \ l' AR { \ { \ f \ f /|l \ { \
1S U U s U s S s O3 s O 2
(1) &) ) () &) &) (1) \(1) 6(l) e(l) : @(1) (1) O(1) —» O(n'=p4)
dlbgh nj+1

[lezpn]
Total: ®(n'2%) + Z a’ f(n/b’)

J=0
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Master Method

. f(n) - > fn)
2 i -_::‘f": ﬂjj%\_
o . =3 ~\\_
Condition Solution WY
b) ves f(n/b) - > af(n/b)
Casel  There exists constant € > 0 such that T(n) = ©(n'o8r @) , #L
f(n) — O(TLIOgb a—E) - i
|
Case 2 There exists constant k > 0 such that T(n) = O(n'°8r 4 1gk+1n) 2y-f(/b®)  f(n/b?) f(n/b?)-f(n/b?) —> a*f(n/b?)
f(n) = O(nlose *1gk n) 1y /N I\
H Y A R
Case 3  There exists constant € > 0 such that T(m) = 0(f(n))
f(n) = Q(n'o8s a+€) L m
(1) B(1) (1 &) &) (1 » O(niezee
and af(g) < cf(n) for constant c < 1, R B $2.952 B i
u[log'. n|+1
lozpn]
Total: ©(n'2:9) 4+ Z a’ f(n/b’)
Jj=0

Any idea what' happening in each case?

(Hint: look at the solution and the cost of the levels in recursion tree)
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) - fin)
*

Y

el - Y
e 1 - [
h) f(n/by” > af(n/b)
Casel  There exists constant € > 0 such that T(n) = O(nlo8r ) A |
f(n) — 0(nlogb a—E) --'
|
Case 2 There exists constant k > 0 such that T(n) = O(n'°8» 2 1gk+1n)

f(n/b®) f(n/b?)-f(n/b*) —> a®f(n/b?)

| ) |
| \ | |\ | \

f(n) = o(n'°er¢1ghn)

Case 3  There exists constant € > 0 such that T(n) = 0(f(n))
f(n) = Q(nIOgb a+6) ; ; : E ; ;
and af (E) < cf(n) for constant c < 1 (red 8ty > 0 S) S B
b/ — ! =
u[log,.n]+l

[lezp )
Total: ©(n'2:9) 4+ Z a’ f(n/b’)

Jj=0

Case 1: Running time is dominated by leaves. When this happens?

Case 3: Running time is dominated by the root. When this happens?
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Master Method

f(n) > fn)

4 P ‘ -
_/’/-_- < — ,"’_ .I---’%\.,
e e
h) / (n h) » af(n/b)
Casel  There exists constant € > 0 such that T(n) = ©(n'°8 ) ; la
f() = 0@losr =€) " \
Case 2 There exists constant k > 0 such that T(n) = O(n'°8r 4 1gk+1n) 2y f(n/b?) /(n /b2 )r(r /b?)- f(n /b?) —> a2 f(n/b?)
— logp a5k /|
f(n) O(n 1g" n) ;i a\ ;T u, u a\ ,{T' t{fq
Case 3  There exists constant € > 0 such that T(m) = 0(f(n))
f(n) = Q(nlogb a+6) | : | : : :
and af (g) < cf(n) for constant ¢ < 1, (el O = 00 Q) Sle S~

a |logp n|+1
ez n] .
Total: ©(n'2:9) 4+ Z a’ f(n/b’)

J=0

Case 2: Each level (with internal nodes) has asymptotically same cost
(Just like merge sort and closest pair of points)
Total running time = cost per level * number of levels
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Master Method

Case 1: There exists constant € > 0 such that f(n) = 0(n'°8» =€)

T(n) = O(nl°8r 2)

* f(n) is polynomially smaller than nlogs @

* f(n) is asymptotically smaller than n'°8» ¢ by a factor of 0(n€) for € > 0



Master Method

Case 1: There exists constant € > 0 such that f(n) = 0(n'°8» =€)

T(n) = O(n'°8> ¢)

* Per-level cost increases as we go N
down the recursion tree A T e
« Cost of leaves dominates costs of . ... /" F1% Fi

internal nodes

— @A(nlogp a
° COST Of leaves - G(n gb O(1) 6(1) 8(1) 6(1) 6() 6() O() B(l) B(1) B(l) ... 6() 6() O()—= O(n*=)

- Cost of internal nodes = 0(n!°8» %)

> Total cost =0(n!o8» %) K




Master Method

Case 1: There exists constant € > 0 such that f(n) = 0(n'°8» =€)

T(n) = O(nl°8r @)

Example: 9T (%) +n

 Dissect the Recurrence

f(mM)=n, a=9,b=3: nlo8r® = nlogs 9 = p2
 Check case requirement
f(n)=n=0m*"1)

 Give the solution

T(n) = 6(n?)




Master Method

Case 2: There exists constant k > 0 such that f(n) = 0(n'°8» ¢ gk n)

T(Tl) — @(nlogb a lgk+1 Tl)

n) )
. . . logs a L 5
* f(n) is within a polylog factor of n'°&v e Rape—
e Cost at each level with internal nodes = H“ P
_ logy a ] k
f(n) = O(n g n
(~>|II| f~>|:h (-u:ln <-)(:l> (-)(:H t—>(:l) ‘~>(=l) (-N:l) H:l) l-’(:l) <-)(:l) (-):l) H(;l) »  O(n'ze9)

« Cost of all internal nodes

:@(nlogb a lgk+1 Tl)

|

allozs nl+1




Master Method

Case 2: There exists constant k > 0 such that f(n) = 0(n'°8» ¢ gk n)

T(Tl) — @(nlogb a lgk+1 Tl)

Example: T(n) = 27T (g) + n3log, n

 Dissect the Recurrence

f(n) =nllgn; a=27,b=23: nl°8»a =nlogs27 — 53
* Check case requirement

f(n) =ndlgn =0(Mn3lgn)

* Give the solution

T(n) = O(n3l1g?n)




Master Method

Case 3: There exists constant € > 0 such that f(n) = Q(n'°8» ¢*+€) and
af (g) < cf(n) for constant c < 1,

r(n) = 6(f(n))

 Mirrors Case 1, f(n) is polynomially greater
+han nlogs a

* af (n/b) < cf(n): Reqularity condition

e \ / | \ /
Llog 2 ),'J +1 /,,/ | \ . \ ,/

£ ‘,-“I:)!(.;,."/z) »_,f?( 1/b?) _,'(.',:"llzl,f' /b3y f(n/b?) f(n/b*) f(n/b? ";.(:,"13 22 f(n/b?
* Per-level cost decreases as we go down the i R ke
FEOAS S S S SRS

recursion tree

(] Roo"“'s COST = @(f(n) )’ O-‘-her.'s COST - 0 (f (n)) (~>|:1| (~)t:ln (-J(:l) ¢->(:|) (-u;l» <—)(:1) <—>:l> t-):l) r—u:l) (-)(:1) '~>(:l) H(‘n <->(:l» > O(n*E)

alloznn)+1

¢ TOTGI COST - @(f(n)) Total: @(n'*26%) + Z‘, f(n/b’



Master Method

Case 3: There exists constant € > 0 such that f(n) = Q(n'°8» ¢*+€) and
af (%) < cf(n) for constant c < 1,

T(n) = 6(f(n))

Example:T(n) = 5T (g) +n3
* Dissect the Recurrence
f(n) =n% a=050>b=2: nl°8p @ = plog25 = p3
 Check case requirement

— 13 = (nlo825 ds n_5n3<53
f(n) =n® = Q%% and 57 (7) =5(3) <¢n
 Give the solution
T(n) = 0(n)




Master Method: Not Applicable Case

Tl

Example: T(n) = ZT( )

* Dissect the Recurrence
f(n) =n/lgn; a=2b=2: nlo8ra =plog22 =y

 Check case requirement

lgn

f(n) = lg_n +0(n'~9),i.e., H is not polynomially smaller than n

* Case 1 not applicable

f(n) =nlg='n,k <0 required to match Case 2.
» Case 2 not applicable

f(n) =n/lgn # Q(n'€)
« Case 3 not applicable



Thank You!
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