

THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

COMP 550 Algorithm and Analysis

Sorting Algorithms

Based on CLRS Secs. 6-8

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Sorting Algorithms

• We've already studied

Algorithm	Running Time
Insertion Sort	$O(n^2)$
Selection Sort	$\Theta(n^2)$
Merge Sort	$\Theta(n \lg n)$

Heap Sort

- Binary Heap: Can either be MAX-heap or MIN-heap
 - Complete binary tree (all levels except the last one are full)
 - Each node has a key

- Satisfies heap property:
 - A node's key is larger than its children's key (MAX-heap)

Heap Sort

• MAX-Heap Operations:

Operation	Purpose	Running Time
MAX-heapify(A, i)	Percolates down A[i] that potentially violates MAX-heap property	$O(\lg n)$
Build-MAX-Heap(A, n)	Converts A[1:n] to a MAX-Heap	O(n)

Illustration of MAX-heapify(A, 2) from CLRS

Heap Sort

HEAPSORT(A)

- 1 BUILD-MAX-HEAP(A)
- 2 for *i* = *A*.length downto 2
- 3 exchange A[1] with A[i]
- 4 A.heap-size = A.heap-size 1
- 5 MAX-HEAPIFY(A, 1)
- Heap Sort running time = $\Theta(n \lg n)$
- In exams, you'll NOT be asked about how Build-Max-Heap and Max-Heapify work.
 - However, you should know their time complexity

Priority Queue

- <u>Max</u>-Priority Queue or <u>Min</u>-Priority Queue
 - Based on MAX- or Min-Heap
 - Enables dequeuing of MAX or MIN element in O(1) time

- Has very useful applications:
 - Ordering processes by their priorities in operating systems
 - Ordering events in event-driven simulation

Priority Queue

• MAX-Priority queue operations:

Operation	Purpose	Running Time
Insert	Insert a value	$O(\lg n)$
Maximum	Returns the maximum element w/o deleting it	0(1)
Extract-Max	Dequeue the maximum element	$O(\lg n)$
Increase-Key	Increase key of an element	$O(\lg n)$

- We'll be needing priority queues when solving problems of future topics
- You need to know what operations are supported and what are their running times
- For exams, you don't need to know how these operations actually work.

Quick Sort

- A very well-known sorting algorithm
- We'll not cover it in detail now (will do later if we get time)
- <u>Basic idea</u>: Divide & Conquer

Quick Sort

Divide step:

- Take an element k of the array as pivot.
- Place k in its correct position in the sorted array
- Place all elements smaller than k in its left and large elements in right

<u>Conquer step</u>: Recursively sort left and right side of k

<u>Combine step</u>: Nothing to do!

Quick Sort

<u>Running time</u>: Worst-case $\Theta(n^2)$, Average-case $\Theta(n \lg n)$

Very efficient on average: small constant factor hidden in $\Theta(n \lg n)$

In-place sorting can be done by Quick Sort

- No extra O(n) memory is required for sorting (No additional array needed)
- Which sorting algorithm needs extra array?

Announcement

Midterm 2: November 13, 2023 (in class)

Final Exam: Dec. 14th, Thursday, 4:00 PM

- We have three options for final exam
 - Dec. 14th, Thursday, 4:00 PM (M/W/F 3:35 PM)
 - Dec. 15th, Friday, 8:00 AM (M/W/F 3:35 PM)
 - Dec. 14th, Friday, 4:00 PM (Classes not otherwise...)

Sorting Algorithms

Algorithm	Running Time
Insertion Sort	$O(n^2)$
Selection Sort	$\Theta(n^2)$
Merge Sort	$\Theta(n \lg n)$
Heap Sort	$O(n \lg n)$
Quick Sort	$O(n^2)$

Seems like the worst-case running time is stuck at $\Theta(n \lg n)$

Can we do better?

Sorting Algorithms: Lower Bound

- Comparison sorts cannot run faster than $\Theta(n \lg n)$
 - In other words, comparison sorts require $\Omega(n \lg n)$ time
- <u>Comparison sort</u>: a sort that orders elements based on comparing elements.
- We can say A is greater than B only if
 - We've compared A to B or
 - We've compared A to something known to be greater than B.

Decision Trees

COMP550@UNC

- Numbers are indices not elements.
- Leaves indicate the sorted order of the original elements.
- Go left iff the first (left) element is smaller.
- Path length indicates the number of $\langle 1,3,2 \rangle$ $\langle 3,1,2 \rangle$ $\langle 2,3,1 \rangle$ $\langle 3,2,1 \rangle$ comparisons needed to reach a solution. Decision Tree for sorting a 3-item array
 - Tree height = worst-case running

Decision Trees

<u>Theorem 8.1</u>: Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof:

- <u>Goal</u>: Lower bound the tree height
- Decision tree must have at least n! leaves
- A binary tree of height h has at most 2^h
 leaves.

• Let *l* be the number of leaves.

Decision Tree for sorting a 3-item array

 $n! \le l \le 2^h$

Decision Trees

<u>Theorem 8.1</u>: Any comparison sort algorithm requires $\Omega(n \lg n)$ comparisons in the worst case.

Proof $n! \le l \le 2^h$ \Rightarrow {Transitive Property} $n! \le 2^h$ \Rightarrow {Take log in each side} $\log(n!) \le h$ \Rightarrow {Eq. 3.28, Sec. 3.3} $\Omega(n \log n) \le h$

There exists a permutation that requires at least $\Omega(n \log n)$ to reach.

Decision Tree for sorting a 3-item array

Non-comparison Sorts

• We've seen that, for any comparison sort

Worst-case running time $\geq cn \lg n$ (for some c and all $n \geq n_0$)

- Can we sort without making comparisons?
 - If so, can they have better worst-case running time?
- Answer of both is yes
 - But we need to make assumption about input
 - Example: Counting Sort, Radix Sort, Bucket Sort

- Key assumption: numbers to be sorted are integers in $\{0, 1, 2, ..., k\}$.
- Input: A[1:n], where $A[j] \in \{0, 1, 2, ..., k\}$ for j = 1, 2, ..., n. Array A and values n and k are given as parameters.
- Output: B[1:n] sorted.
- Auxiliary Storage: C[0..k]
- Runs in linear time if k = O(n).

COUNTING-SORT(A, n, k)

- 1 let B[1:n] and C[0:k] be new arrays
- 2 **for** i = 0 **to** k
- 3 C[i] = 0
- 4 **for** j = 1 **to** n

5
$$C[A[j]] = C[A[j]] + 1$$

- 6 // C[i] now contains the number of elements equal to i.
- 7 **for** i = 1 **to** k

8
$$C[i] = C[i] + C[i-1]$$

9 // C[i] now contains the number of elements less than or equal to i.

- 10 // Copy A to B, starting from the end of A.
- 11 for j = n downto 1
- 12 B[C[A[j]]] = A[j]
- 13 C[A[j]] = C[A[j]] 1 // to handle duplicate values
- 14 return B

12345678A25302303Array to sort, $A[i] \in \{0, 1, ..., 5\}$

Array C after line 8

COUNTING-SORT(A, n, k)

- 1 let B[1:n] and C[0:k] be new arrays
- 2 **for** i = 0 **to** k
- 3 C[i] = 0
- 4 **for** j = 1 **to** n

5
$$C[A[j]] = C[A[j]] + 1$$

- 6 // C[i] now contains the number of elements equal to i.
- 7 **for** i = 1 **to** k

8
$$C[i] = C[i] + C[i-1]$$

- 9 // C[i] now contains the number of elements less than or equal to i.
- 10 // Copy A to B, starting from the end of A.
- 11 for j = n downto 1
- 12 B[C[A[j]]] = A[j]
- 13 C[A[j]] = C[A[j]] 1 // to handle duplicate values
- 14 return B

Before 1st iteration of for loop in lines 11-13

After 1st iteration of for loop in lines 11-13

COMP550@UNC

COUNTING-SORT(A, n, k)

- 1 let B[1:n] and C[0:k] be new arrays
- 2 **for** i = 0 **to** k
- 3 C[i] = 0
- 4 **for** j = 1 **to** n

5
$$C[A[j]] = C[A[j]] + 1$$

- 6 // C[i] now contains the number of elements equal to i.
- 7 **for** i = 1 **to** k

8
$$C[i] = C[i] + C[i-1]$$

- 9 // C[i] now contains the number of elements less than or equal to i.
- 10 // Copy A to B, starting from the end of A.
- 11 for j = n downto 1
- 12 B[C[A[j]]] = A[j]
- 13 C[A[j]] = C[A[j]] 1 // to handle duplicate values
- 14 return B

Before 2nd iteration of for loop in lines 11-13

After 2nd iteration of for loop in lines 11-13

COUNTING-SORT(A, n, k)

- 1 let B[1:n] and C[0:k] be new arrays
- 2 **for** i = 0 **to** k
- 3 C[i] = 0
- 4 **for** j = 1 **to** n

5
$$C[A[j]] = C[A[j]] + 1$$

- 6 // C[i] now contains the number of elements equal to i.
- 7 **for** i = 1 **to** k

8
$$C[i] = C[i] + C[i-1]$$

- 9 // C[i] now contains the number of elements less than or equal to i.
- 10 // Copy A to B, starting from the end of A.
- 11 for j = n downto 1
- 12 B[C[A[j]]] = A[j]
- 13 C[A[j]] = C[A[j]] 1 // to handle duplicate values
- 14 return B

	1	2	3	4	5	6	7	8
A	2	5	3	0	2	3	0	3
	1	2	3	4	5	6	7	8
В		0					3	
	0	1	2	3	4	5		
С	1	2	4	6	7	8		

Before 3rd iteration of for loop in lines 11-13

After 3rd iteration of for loop in lines 11-13

$$A \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 5 & 3 & 0 & 2 & 3 & 0 & 3 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 1 & 2 & 3 & 4 & 5 \\ 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 4 & 5 & 7 & 8 \end{bmatrix}_{22}$$

COUNTING-SORT(A, n, k)

- 1 let B[1:n] and C[0:k] be new arrays
- 2 **for** i = 0 **to** k
- 3 C[i] = 0
- 4 **for** j = 1 **to** n

5
$$C[A[j]] = C[A[j]] + 1$$

- 6 // C[i] now contains the number of elements equal to i.
- 7 **for** i = 1 **to** k
- 8 C[i] = C[i] + C[i-1]
- 9 // C[i] now contains the number of elements less than or equal to i.
- 10 // Copy A to B, starting from the end of A.
- 11 for j = n downto 1
- 12 B[C[A[j]]] = A[j]
- 13 C[A[j]] = C[A[j]] 1 // to handle duplicate values
- 14 return B

After all iterations

<u>Question</u>: What about array *C* at the end?

What does each element in C mean?

COUNTING-SORT(A, n, k)

- 1 let B[1:n] and C[0:k] be new arrays
- 2 **for** i = 0 **to** k
- 3 C[i] = 0
- 4 **for** j = 1 **to** n

5
$$C[A[j]] = C[A[j]] + 1$$

- 6 // C[i] now contains the number of elements equal to i.
- 7 **for** i = 1 **to** k
- 8 C[i] = C[i] + C[i-1]
- 9 // C[i] now contains the number of elements less than or equal to i.
- 10 // Copy A to B, starting from the end of A.
- 11 for j = n downto 1
- 12 B[C[A[j]]] = A[j]
- 13 C[A[j]] = C[A[j]] 1 // to handle duplicate values
- 14 return B

After all iterations

Question: What is about array C at the end?

What does each element in C mean?

Counting Sort: Time Complexity

COUNTING-SORT(A, n, k)

1 let B[1:n] and C[0:k] be new arrays for i = 0 to k 2 Lines 2-3: **O**(*k*) C[i] = 03 for j = 1 to n4 Lines 4-5: **O**(*n*) C[A[j]] = C[A[j]] + 15 // C[i] now contains the number of elements equal to *i*. for i = 1 to k 7 Lines 7-8: **O**(*k*) C[i] = C[i] + C[i-1]8 $\parallel C[i]$ now contains the number of elements less than or equal to i. 9 // Copy A to B, starting from the end of A. 10 for j = n downto 1 11 Lines 11-13: **O**(*n*) B[C[A[j]]] = A[j]12 C[A[j]] = C[A[j]] - 1 // to handle duplicate values 13 return B 14

Running time: $\Theta(n+k)$

 $k = O(n) \Longrightarrow Running time: \Theta(n)$

- Counting Sort is stable
 - Same value elements appear in the same order in the output array as in the input array

Radix Sort

<u>Key idea:</u> sort on the "least significant digit" first and on the remaining digits in sequential order. The sorting method used to sort each digit must be "stable". Why?

RADIX-SORT(A, n, d)

2

1 for $i = 1$ to d	Start by sorting the i	least significant digit.

use a stable sort to sort array A[1:n] on digit *i*

Radix Sort: Time Complexity

RADIX-SORT(A, n, d)

- for i = 1 to d Start by sorting the least significant digit.
- 2 use a stable sort to sort array A[1:n] on digit *i*
- n numbers, each number has d digits, each digit can have k possible values
 - For example, in the previous example, d = 3 and k = 10
- If counting sort is used for each pass, then each pass takes $\Theta(n + k)$ time (i.e., line 2 takes $\Theta(n + k)$ time)
- <u>Running time of radix sort</u>: $\Theta(d \cdot (n+k))$ time
 - $d = \Theta(1)$ and $k = \Theta(n) \Rightarrow$ Running time is linear

Bucket Sort

• Assumes input is generated by a random process that distributes the elements uniformly over [0, 1).

• <u>Idea:</u>

- Divide [0, 1) into *n* equal-sized buckets.
- Distribute the *n* input values into the buckets.
- Sort each bucket.
- Then go through the buckets in order, listing elements in each one.

Bucket Sort

Input: $A[1:n]$, where $0 \le A[i] < 1$ for all <i>i</i> .
Auxiliary array: $B[0:n-1]$ of linked lists, each list initially empty.
BUCKET-SORT (A, n)
1 let $B[0:n-1]$ be a new array
2 for $i = 0$ to $n - 1$
3 make $B[i]$ an empty list
4 for $i = 1$ to n
5 insert $A[i]$ into list $B[\lfloor n \cdot A[i] \rfloor]$
6 for $i = 0$ to $n - 1$
7 sort list $B[i]$ with insertion sort
8 concatenate the lists $B[0], B[1], \ldots, B[n-1]$ together in order
9 return the concatenated lists

Bucket Sort: Time Complexity

Input: A[1:n], where $0 \le A[i] < 1$ for all *i*. **Auxiliary array:** B[0:n-1] of linked lists, each list initially empty.

BUCKET-SORT(A, n)

- 1 let B[0:n-1] be a new array
- 2 **for** i = 0 **to** n 1
 - make B[i] an empty list
- 4 **for** i = 1 **to** n
 - insert A[i] into list $B[\lfloor n \cdot A[i] \rfloor]$
- 6 **for** i = 0 **to** n 1
 - sort list B[i] with insertion sort
- 8 concatenate the lists $B[0], B[1], \ldots, B[n-1]$ together in order
- 9 **return** the concatenated lists

All lines except line 7 takes O(n) time:

- Line 1: $\Theta(1)$ time
- Lines 2-3: $\Theta(n)$ time
- Lines 4-6: $\Theta(n)$ time
- Line 8: $\Theta(n)$ time
- Line 9: $\Theta(1)$ time

Line 7 takes $O(n_i^2)$ time.

- n_i is a random variable
- n_i denotes #of items in bucket i

Bucket Sort: Time Complexity

Input: A[1:n], where $0 \le A[i] < 1$ for all *i*. **Auxiliary array:** B[0:n-1] of linked lists, each list initially empty.

BUCKET-SORT(A, n)

- 1 let B[0:n-1] be a new array
- 2 **for** i = 0 **to** n 1
 - make B[i] an empty list
- 4 **for** i = 1 **to** n

3

- 5 insert A[i] into list $B[\lfloor n \cdot A[i] \rfloor]$
- 6 **for** i = 0 **to** n 1
 - sort list B[i] with insertion sort
- 8 concatenate the lists $B[0], B[1], \ldots, B[n-1]$ together in order
- 9 **return** the concatenated lists

Running Time, $T(n) = \Theta(n) + \sum_{i=1}^{n} O(n_i^2)$

Worst-case: $T(n) = O(n^2)$

• All items in a single bucket

Best-case: $T(n) = \Theta(n)$

• One item in each bucket

Average-case:

 $E[T(n)] = E[\Theta(n) + \sum_{i=0}^{n-1} O(n_i^2)]$

Assuming, uniform distribution

 $E[T(n)] = \Theta(n)$

Thank You!