
COMP 550
Algorithm and Analysis

Sorting Algorithms

Based on CLRS Secs. 6-8

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Sorting Algorithms

• We’ve already studied

COMP550@UNC 2

Algorithm Running Time

Insertion Sort 𝑂 𝑛2

Selection Sort Θ(𝑛2)

Merge Sort Θ(𝑛 lg 𝑛)

3

Heap Sort

COMP550@UNC

• Binary Heap: Can either be MAX-heap or MIN-heap

• Complete binary tree (all levels except the last one are full)

• Each node has a key

• Satisfies heap property:

• A node’s key is larger than its children’s key (MAX-heap)

From CLRS

4

Heap Sort

COMP550@UNC

• MAX-Heap Operations:

Operation Purpose Running Time

MAX-heapify(A, i) Percolates down A[i] that potentially
violates MAX-heap property

𝑂(lg 𝑛)

Build-MAX-Heap(A, n) Converts A[1:n] to a MAX-Heap 𝑂(𝑛)

Illustration of MAX-heapify(A, 2) from CLRS

5

Heap Sort

COMP550@UNC

• Heap Sort running time = 𝛩 𝑛 lg 𝑛

• In exams, you’ll NOT be asked about how Build-Max-Heap and

Max-Heapify work.

• However, you should know their time complexity

6

Priority Queue

COMP550@UNC

• Max-Priority Queue or Min-Priority Queue

• Based on MAX- or Min-Heap

• Enables dequeuing of MAX or MIN element in 𝑂(1) time

• Has very useful applications:

• Ordering processes by their priorities in operating systems

• Ordering events in event-driven simulation

Priority Queue

• MAX-Priority queue operations:

COMP550@UNC 7

Operation Purpose Running Time

Insert Insert a value 𝑂(lg 𝑛)

Maximum Returns the maximum element w/o
deleting it

𝑂(1)

Extract-Max Dequeue the maximum element 𝑂(lg 𝑛)

Increase-Key Increase key of an element 𝑂(lg 𝑛)

• We’ll be needing priority queues when solving problems of future topics

• You need to know what operations are supported and what are their running times

• For exams, you don’t need to know how these operations actually work.

Quick Sort

COMP550@UNC 8

• A very well-known sorting algorithm

• We’ll not cover it in detail now (will do later if we get time)

• Basic idea: Divide & Conquer

COMP550@UNC 9

Quick Sort
Divide step:

Take an element 𝑘 of the array as pivot.

Place 𝑘 in its correct position in the sorted array

Place all elements smaller than 𝑘 in its left and large elements in right

Conquer step: Recursively sort left and right side of 𝑘

Combine step: Nothing to do!

COMP550@UNC 10

Quick Sort
Running time: Worst-case Θ(𝑛2), Average-case Θ(𝑛 lg 𝑛)

Very efficient on average: small constant factor hidden in Θ(𝑛 lg 𝑛)

In-place sorting can be done by Quick Sort

• No extra O(n) memory is required for sorting (No additional array needed)

• Which sorting algorithm needs extra array?

COMP550@UNC 11

Announcement
Midterm 2: November 13, 2023 (in class)

Final Exam: Dec. 14th, Thursday, 4:00 PM

• We have three options for final exam

• Dec. 14th, Thursday, 4:00 PM (M/W/F 3:35 PM)

• Dec. 15th, Friday, 8:00 AM (M/W/F 3:35 PM)

• Dec. 14th, Friday, 4:00 PM (Classes not otherwise…)

Sorting Algorithms

COMP550@UNC 12

Algorithm Running Time

Insertion Sort 𝑂 𝑛2

Selection Sort Θ(𝑛2)

Merge Sort Θ(𝑛 lg 𝑛)

Heap Sort 𝑂(𝑛 lg 𝑛)

Quick Sort 𝑂(𝑛2)

Seems like the worst-case running time is stuck at Θ(𝑛 lg 𝑛)

Can we do better?

Sorting Algorithms: Lower Bound

COMP550@UNC 13

• Comparison sorts cannot run faster than Θ 𝑛 lg 𝑛

• In other words, comparison sorts require Ω(𝑛 lg 𝑛) time

• Comparison sort: a sort that orders elements based on comparing

elements.

• We can say A is greater than B only if

• We’ve compared A to B or

• We’ve compared A to something known to be greater than B.

Decision Trees

COMP550@UNC 14

• Numbers are indices not elements.

• Leaves indicate the sorted order of the

original elements.

• Go left iff the first (left) element is

smaller.

• Path length indicates the number of

comparisons needed to reach a solution.

• Tree height = worst-case running

time

Decision Tree for sorting a 3-item array

1:2

2:3 1:3

1:3 2:31,2,3

1,3,2 3,1,2

2,1,3

2,3,1 3,2,1











>

>

>>

Decision Trees

COMP550@UNC 15

Proof:

Goal: Lower bound the tree height

• Decision tree must have at least 𝑛! leaves

• A binary tree of height ℎ has at most 2ℎ

leaves.

• Let 𝑙 be the number of leaves.

𝑛! ≤ 𝑙 ≤ 2ℎ

Theorem 8.1: Any comparison sort algorithm requires Ω(𝑛 lg 𝑛)
comparisons in the worst case.

Decision Tree for sorting a 3-item array

1:2

2:3 1:3

1:3 2:31,2,3

1,3,2 3,1,2

2,1,3

2,3,1 3,2,1











>

>

>>

Decision Trees

COMP550@UNC 16

Proof
𝑛! ≤ 𝑙 ≤ 2ℎ

⟹ {Transitive Property}
𝑛! ≤ 2ℎ

⟹ {Take log in each side}
log 𝑛! ≤ ℎ

⟹ {Eq. 3.28, Sec. 3.3}
Ω(𝑛 log 𝑛) ≤ ℎ

There exists a permutation that
requires at least Ω(𝑛 log 𝑛) to reach.

Theorem 8.1: Any comparison sort algorithm requires Ω(𝑛 lg 𝑛)
comparisons in the worst case.

Decision Tree for sorting a 3-item array

1:2

2:3 1:3

1:3 2:31,2,3

1,3,2 3,1,2

2,1,3

2,3,1 3,2,1











>

>

>>

Non-comparison Sorts

COMP550@UNC 17

• We’ve seen that, for any comparison sort

Worst-case running time ≥ 𝑐𝑛 lg 𝑛 (for some 𝑐 and all 𝑛 ≥ 𝑛0)

• Can we sort without making comparisons?

• If so, can they have better worst-case running time?

• Answer of both is yes

• But we need to make assumption about input

• Example: Counting Sort, Radix Sort, Bucket Sort

Counting Sort

COMP550@UNC 18

• Key assumption: numbers to be sorted are integers in

{0, 1, 2, … , 𝑘}.

• Input: 𝐴[1: 𝑛], where 𝐴 𝑗 ∈ {0, 1, 2, … , 𝑘} for 𝑗 = 1, 2, … , 𝑛.

Array 𝐴 and values 𝑛 and 𝑘 are given as parameters.

• Output: 𝐵[1: 𝑛] sorted.

• Auxiliary Storage: 𝐶[0. . 𝑘]

• Runs in linear time if 𝑘 = 𝑂(𝑛).

Counting Sort

COMP550@UNC 19

2 5 3 0 2 3 0 3A
Array to sort, 𝐴 𝑖 ∈ {0, 1, … , 5}

2 0 2 3 0 1C
Array C after line 5

1 2 3 4 5 6 7 8

0 1 2 3 4 5

2 2 4 7 7 8C
Array C after line 8

0 1 2 3 4 5

1 2 3 4 5 6 7 8

Counting Sort

COMP550@UNC 20

2 5 3 0 2 3 0 3A
1 2 3 4 5 6 7 8

2 2 4 7 7 8C

0 1 2 3 4 5

B

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3A
1 2 3 4 5 6 7 8

2 2 4 6 7 8C

0 1 2 3 4 5

3B

Before 1st iteration of for loop in lines 11-13

After 1st iteration of for loop in lines 11-13

1 2 3 4 5 6 7 8

Counting Sort

COMP550@UNC 21

2 5 3 0 2 3 0 3A
1 2 3 4 5 6 7 8

2 2 4 6 7 8C

0 1 2 3 4 5

3B

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3A
1 2 3 4 5 6 7 8

1 2 4 6 7 8C

0 1 2 3 4 5

0 3B

Before 2nd iteration of for loop in lines 11-13

After 2nd iteration of for loop in lines 11-13

1 2 3 4 5 6 7 8

Counting Sort

COMP550@UNC 22

2 5 3 0 2 3 0 3A
1 2 3 4 5 6 7 8

1 2 4 6 7 8C

0 1 2 3 4 5

0 3B

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3A
1 2 3 4 5 6 7 8

1 2 4 5 7 8C

0 1 2 3 4 5

0 3 3B

Before 3rd iteration of for loop in lines 11-13

After 3rd iteration of for loop in lines 11-13

Counting Sort

COMP550@UNC 23

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3A
1 2 3 4 5 6 7 8

0 0 2 2 3 3 3 5B

After all iterations

Question: What about array 𝐶
at the end?

What does each element in C
mean?

Counting Sort

COMP550@UNC 24

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3A
1 2 3 4 5 6 7 8

0 0 2 2 3 3 3 5B

After all iterations

Question: What is about array
𝐶 at the end?

What does each element in C
mean?

Counting Sort: Time Complexity

COMP550@UNC 25

Lines 2-3: 𝚯(𝒌)

Lines 7-8: 𝚯(𝒌)

Lines 4-5: 𝚯(𝒏)

Lines 11-13: 𝚯(𝒏)

Running time: Θ 𝑛 + 𝑘

𝑘 = 𝑂 𝑛 ⟹ Running time: Θ(𝑛)

Counting Sort

COMP550@UNC 26

• Counting Sort is stable

• Same value elements appear in the same order in the output array

as in the input array

1 2 3 4 5 6 7 8

2 5 3 0 2 3 0 3A
1 2 3 4 5 6 7 8

0 0 2 2 2 3 3 5B

Radix Sort

COMP550@UNC 27

Key idea: sort on the “least significant digit” first and on the

remaining digits in sequential order. The sorting method used to

sort each digit must be “stable”. Why?

Start by sorting the least significant digit.

Radix Sort: Time Complexity

COMP550@UNC 28

• 𝑛 numbers, each number has 𝑑 digits, each digit can have 𝑘 possible

values

• For example, in the previous example, 𝑑 = 3 and 𝑘 = 10

• If counting sort is used for each pass, then each pass takes Θ 𝑛 + 𝑘

time (i.e., line 2 takes Θ 𝑛 + 𝑘 time)

• Running time of radix sort: Θ(𝑑 ⋅ 𝑛 + 𝑘) time

• 𝑑 = Θ(1) and 𝑘 = Θ 𝑛 ⟹ Running time is linear

Start by sorting the least significant digit.

Bucket Sort

COMP550@UNC 29

• Assumes input is generated by a random process that distributes

the elements uniformly over [0, 1).

• Idea:

• Divide [0, 1) into n equal-sized buckets.

• Distribute the n input values into the buckets.

• Sort each bucket.

• Then go through the buckets in order, listing elements in each one.

Bucket Sort

COMP550@UNC 30

Bucket Sort: Time Complexity

COMP550@UNC 31

All lines except line 7 takes 𝑂(𝑛) time:

• Line 1: Θ 1 time

• Lines 2-3: Θ(𝑛) time

• Lines 4-6: Θ 𝑛 time

• Line 8: Θ 𝑛 time

• Line 9: Θ 1 time

Line 7 takes 𝑂 𝑛𝑖
2 time.

• 𝑛𝑖 is a random variable

• 𝑛𝑖 denotes #of items in bucket 𝑖

Bucket Sort: Time Complexity

COMP550@UNC 32

Running Time, 𝑇 𝑛 = Θ 𝑛 + σ𝑖=1
𝑛 𝑂(𝑛𝑖

2)

Worst-case: 𝑇 𝑛 = 𝑂 𝑛2

• All items in a single bucket

Best-case: 𝑇 𝑛 = Θ(𝑛)

• One item in each bucket

Average-case:

 𝐸 𝑇 𝑛 = 𝐸[Θ 𝑛 + σ𝑖=𝑜
𝑛−1 𝑂(𝑛𝑖

2)]

Assuming, uniform distribution

𝐸 𝑇 𝑛 = Θ(𝑛)

Thank You!

COMP550@UNC 33

	Slide 1: COMP 550 Algorithm and Analysis Sorting Algorithms Based on CLRS Secs. 6-8
	Slide 2: Sorting Algorithms
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Priority Queue
	Slide 8: Quick Sort
	Slide 9: Quick Sort
	Slide 10: Quick Sort
	Slide 11: Announcement
	Slide 12: Sorting Algorithms
	Slide 13: Sorting Algorithms: Lower Bound
	Slide 14: Decision Trees
	Slide 15: Decision Trees
	Slide 16: Decision Trees
	Slide 17: Non-comparison Sorts
	Slide 18: Counting Sort
	Slide 19: Counting Sort
	Slide 20: Counting Sort
	Slide 21: Counting Sort
	Slide 22: Counting Sort
	Slide 23: Counting Sort
	Slide 24: Counting Sort
	Slide 25: Counting Sort: Time Complexity
	Slide 26: Counting Sort
	Slide 27: Radix Sort
	Slide 28: Radix Sort: Time Complexity
	Slide 29: Bucket Sort
	Slide 30: Bucket Sort
	Slide 31: Bucket Sort: Time Complexity
	Slide 32: Bucket Sort: Time Complexity
	Slide 33: Thank You!

