
COMP 550
Algorithm and Analysis

Greedy Algorithms

Based on CLRS Sec. 15.1 and 15.2

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Coin Change
• You have unlimited quantities of pennies (1 cent), nickels (5 cents),

dimes (10 cents), and quarters (25 cents)

• You need to provide change of 𝑥 cents. How to determine the minimum

number of coins to equal x?

• Fill the table for 𝑥 = 61.

COMP550@UNC 2

Coin Number Value

Quarters (25¢)

Dimes (10¢)

Nickels (5¢)

Pennies (1¢)

Coin Change
• You have unlimited quantities of pennies (1 cent), nickels (5 cents),

dimes (10 cents), and quarters (25 cents)

• You need to provide change of 𝑥 cents. How to determine the minimum

number of coins to equal x?

• Fill the table for 𝑥 = 61 cents.

COMP550@UNC 3

Coin Number Value

Quarters (25¢) 2 50¢

Dimes (10¢) 1 10¢

Nickels (5¢) 0 0¢

Pennies (1¢) 1 1¢

4

Coin Change

COMP550@UNC

• What strategy did you use to solve this?

• Mine is a greedy strategy

• Pick 25¢ until the remaining value is less than 25¢

• After that, pick 10¢ until the remaining value is less than 10¢

• After that, pick 5¢ until the remaining value is less than 5¢

• After that, pick 1¢ until the remaining value is less than 1¢

5

Greedy Algorithm for Coin Change

COMP550@UNC

• Input: A list of coins 𝐶, and a 𝑡𝑎𝑟𝑔𝑒𝑡

• Output: List of coins that equals 𝑡𝑎𝑟𝑔𝑒𝑡

Iterative-Coin-Change(C, target)
1. Let A be an empty list
2. Sort C in descending order (not
 needed if presorted)
3. while (target ≠ 0)
4. c = C[1] //largest coin in C
5. if (c ≤ target)
6. A.append(c)
7. target = target – c
8. else
9. C.remove(c)
10. return C

Make a greedy choice

Set up a subproblem to
solve in the next
iterations

6COMP550@UNC

• Input: A list of coins 𝐶, and a 𝑡𝑎𝑟𝑔𝑒𝑡

• Output: List of coins that equals 𝑡𝑎𝑟𝑔𝑒𝑡

Coin-Change(C, target)
1. Let A be an empty list
2. Sort C in descending order (not needed if presorted)
3. return Recursive-Coin-Change(C, A, target)

Recursive-Coin-Change(C, A, target)
1. c = C[1] //largest coin in C
2. if (c ≤ target)
3. A.append(c)
4. return Recursive-Coin-Change(C, A, target-c)
5. else
6. return Recursive-Coin-Change(C.remove(c), A, target)

Greedy Algorithm for Coin Change

7

Greedy Strategies

COMP550@UNC

• The choice that seems best at the moment is the one we pick

• Locally optimal choice leads to a globally optimal solution

• This strategy will work if

• The problem has optimal substructure property

• There is a greedy choice with greedy-choice property

8

Optimal Substructure

COMP550@UNC

• Optimal substructure property

• Optimal solution of a problem contains optimal solutions of its

subproblems

• Does coin change problem has optimal substructure property?

• Optimal solution for change of 61¢ was < 25¢, 25¢, 10¢, 1¢ >

• What is the optimal solution for 36¢?

• < 25¢, 10¢, 1¢ >

9

Greedy-Choice Property

COMP550@UNC

• Greedy-Choice Property

• An item picked by a greedy choice is guaranteed be in an optimal

solution

• Does the coin change problem satisfy greedy-choice property?

• The largest coin less than or equal to target value is part of an

optimal solution

• If target is 61¢, then there is an optimal solution with at least one

25¢

10

Activity-Selection Problem

COMP550@UNC

• Also known as Interval Scheduling problem

• Input: Set S of n activities, 𝑎1, 𝑎2, … , 𝑎𝑛.

• 𝑠𝑖 = start time of activity i.

• 𝑓𝑖 = finish time of activity i.

• Activity 𝑎𝑖 takes place during [𝑠𝑖 , 𝑓𝑖)

• Output: Subset A of maximum number of compatible activities.

• Two activities are compatible, if their intervals don’t overlap.

Example: Activities in each line are compatible.

Activity-Selection Problem
• Example:

COMP550@UNC 11

𝑖 1 2 3 4 5 6 7 8 9 10 11

𝑠𝑖 1 3 0 5 3 5 6 8 8 2 12

𝑓𝑖 4 5 6 7 8 9 10 11 12 13 14

𝒂𝟏

𝒂𝟐

𝒂𝟑

𝒂𝟒

𝒂𝟓

𝒂𝟔

𝒂𝟕

𝒂𝟖

𝒂𝟗

𝒂𝟏𝟎

𝒂𝟏𝟏

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Activity-Selection Problem
• Example:

COMP550@UNC 12

𝑖 1 2 3 4 5 6 7 8 9 10 11

𝑠𝑖 1 3 0 5 3 5 6 8 8 2 12

𝑓𝑖 4 5 6 7 8 9 10 11 12 13 14

𝒂𝟏

𝒂𝟐

𝒂𝟑

𝒂𝟒

𝒂𝟓

𝒂𝟔

𝒂𝟕

𝒂𝟖

𝒂𝟗

𝒂𝟏𝟎

𝒂𝟏𝟏

0 1 2 3 4 5 6 7 8 9 10 11 12 13

One solution: {𝑎3, 𝑎9, 𝑎11}

Here, solution means the
set satisfies constraints of
the problem, each pair in
{𝑎3, 𝑎9, 𝑎11} are compatible

Activity-Selection Problem
• Example:

COMP550@UNC 13

𝑖 1 2 3 4 5 6 7 8 9 10 11

𝑠𝑖 1 3 0 5 3 5 6 8 8 2 12

𝑓𝑖 4 5 6 7 8 9 10 11 12 13 14

𝒂𝟏

𝒂𝟐

𝒂𝟑

𝒂𝟒

𝒂𝟓

𝒂𝟔

𝒂𝟕

𝒂𝟖

𝒂𝟗

𝒂𝟏𝟎

𝒂𝟏𝟏

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Another solution:
{𝑎1, 𝑎4, 𝑎8, 𝑎11}

Is there a larger set?

No, this is an optimal
solution

Activity-Selection Problem
• Example:

COMP550@UNC 14

𝑖 1 2 3 4 5 6 7 8 9 10 11

𝑠𝑖 1 3 0 5 3 5 6 8 8 2 12

𝑓𝑖 4 5 6 7 8 9 10 11 12 13 14

𝒂𝟏

𝒂𝟐

𝒂𝟑

𝒂𝟒

𝒂𝟓

𝒂𝟔

𝒂𝟕

𝒂𝟖

𝒂𝟗

𝒂𝟏𝟎

𝒂𝟏𝟏

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Another optimal solution:
{𝑎2, 𝑎4, 𝑎9, 𝑎11}

Activity-Selection Problem

COMP550@UNC 15

• What should a greedy algorithm look like for this problem?

Iterative-Activity-Selection(S)
1. A = an empty list (to store result)
2. while (S ≠ ∅)
3. a = An activity from S according
 to a greedy choice
4. A = A ∪ { a }
5. Sa = all activities in S that
 overlap with a
6. S = S \ Sa
7. return A

Recursive-Activity-Selection(S)
1. If S = ∅
2. return ∅
3. a = An activity from S according
 to a greedy choice
4. Sa = all activities in S that
 overlap with a (including a)
5. return Recursive-Activity-
 Selection(S \ Sa) ∪ { a }

Activity-Selection Problem

COMP550@UNC 16

• Can we figure out a greedy choice (leading to an optimal solution)?

• Recall: For greedy algorithm to work, item picked by greedy choice

must be part of an optimal solution

• Option 1: Shortest interval (pick the shortest interval that does not

overlap with previously-selected intervals)

• Question: Does it lead to an optimal solution?

Activity-Selection Problem

COMP550@UNC 17

• Option 1: Shortest interval (pick the shortest interval that does not

overlap with previously-selected intervals)

• Question: Does it lead to an optimal solution?

• Proof of non-optimality

• [4,7) is the shortest interval. If [4,7) is picked, none other can be picked

• [1,5) and [6,11) is optimal subset of activities.

1 5

4 7

6 11

COMP550@UNC 18

Activity-Selection Problem
• Option 2: Least number of conflicts (pick the activity that does not

overlap with the least)

• Non-optimal (Can you give an example showing this?)

• Option 3: Earliest start time (pick the earliest-starting activity)

• Non-optimal (Can you give an example showing this?)

• Option 4: Earliest finish time (pick the earliest-finishing activity)

• Optimal

COMP550@UNC 19

Why Earliest Finish Time Works?
• Need to argue that “Earliest Finish Time” satisfies greedy-choice property

• An activity picked by earliest-finish-time greedy choice is always in an

optimal solution.

• Can you write a theorem statement for this?

Theorem 15.1. Consider any non-empty set of activities 𝑆𝑘 . Let 𝑎𝑚 be an

activity in 𝑆𝑘 with the earliest finish time. Then, 𝑎𝑚 is included in some

maximum subset of mutually compatible activities in 𝑆𝑘 (In other words,

𝑎𝑚 is included in an optimal solution).

COMP550@UNC 20

Why Earliest Finish Time Works?

Proof by exchange argument.

Key idea:

• My solution is no worse than yours

• Exchanging an item from an arbitrary optimal solution with your greedy choice makes

the new solution no worse

Theorem 15.1. Consider any non-empty set of activities 𝑆𝑘 . Let 𝑎𝑚 be an activity

in 𝑆𝑘 with the earliest finish time. Then, 𝑎𝑚 is included in some maximum subset

of mutually compatible activities in 𝑆𝑘.

COMP550@UNC 21

Why Earliest Finish Time Works?

Proof by exchange argument.

• Let 𝑂𝑃𝑇 be a maximum subset of mutually compatible

activities.

• Let 𝑎𝑗 be the activity in OPT with the earliest finish time, i.e.,

among all activities in OPT, 𝑎𝑗 has the earliest finish time.

• If 𝑎𝑗 = 𝑎𝑚, we are done. So, assume 𝑎𝑗 ≠ 𝑎𝑚.

Theorem 15.1. Consider any non-empty set of activities 𝑆𝑘 . Let 𝑎𝑚 be an activity

in 𝑆𝑘 with the earliest finish time. Then, 𝑎𝑚 is included in some maximum subset

of mutually compatible activities in 𝑆𝑘.

𝑂𝑃𝑇𝑎𝑚

𝑎𝑗

COMP550@UNC

Why Earliest Finish Time Works?

Proof by exchange argument.

• Activities in 𝑂𝑃𝑇 other than 𝑎𝑗 must start after 𝑎𝑗 ends.

• Since 𝑓𝑚 ≤ 𝑓𝑗 , 𝑎𝑚 does not overlap with activities in 𝑂𝑃𝑇 ∖ 𝑎𝑗

• So, we can exchange 𝑎𝑗 with 𝑎𝑚 and create a new subset

 𝑂𝑃𝑇′ = 𝑂𝑃𝑇 ∖ 𝑎𝑗 ∪ {𝑎𝑚} of mutually compatible activities.

• |𝑂𝑃𝑇′| = OPT .

𝑂𝑃𝑇𝑎𝑚

𝑎𝑗

Theorem 15.1. Consider any non-empty set of activities 𝑆𝑘 . Let 𝑎𝑚 be an activity

in 𝑆𝑘 with the earliest finish time. Then, 𝑎𝑚 is included in some maximum subset

of mutually compatible activities in 𝑆𝑘.

22

𝑂𝑃𝑇′𝑎𝑚

𝑎𝑗

COMP550@UNC

Optimal Substructure

Proof by contradiction.

• Let 𝐴 be a solution for 𝑆 by taking 𝑎𝑚 ∪ optimal solution for 𝑆\S𝑚.

• For contradiction, assume 𝐴 is not optimal.

• Let 𝑂𝑃𝑇 be an optimal solution for 𝑆 that includes 𝑎𝑚.

• By Theorem 15.1 (greedy-choice property), such an optimal solution exists.

• Remove {𝑎𝑚} from 𝑂𝑃𝑇. This 𝑂𝑃𝑇 ∖ {𝑎𝑚} should be larger than the optimal solution

for 𝑆\S𝑚, contradiction.

Let 𝑎𝑚 be the activity with the earliest finish time and 𝑆𝑚 be the set of
activities that overlap with 𝑎 (including 𝑎). Then,

optimal solution for 𝑆 = 𝑎𝑚 ∪ optimal solution for 𝑆\S𝑚

23

COMP550@UNC 24

Greedy Algorithm for Activity Selection
Iterative-Activity-Selection(S)

1. Sort S be 𝑓𝑖 values
2. A = {𝑎1}
3. k = 1 //k denotes index of the last selected activity
4. for (i = 2 to 𝑛)
5. if (fk <= si)
6. A = A ∪ { 𝑎i }
7. k = i
8. return A

Running time: Θ(𝑛 lg 𝑛)

If input array 𝑆 is pre-sorted by finish time, then Θ(𝑛)

Correctness: Immediate from greedy-choice and optimal substructure properties

COMP550@UNC 25

Another Optimality Proof

Proof Sketch: Let 𝐺𝑟𝑒𝑒𝑑𝑦 be our solution.

• Assume 𝐺𝑟𝑒𝑒𝑑𝑦 is not optimal

• Assume 𝐺𝑟𝑒𝑒𝑑𝑦 = 𝑔1, 𝑔2, … , 𝑔𝑠

• Assume 𝑂𝑝𝑡 = 𝑜1, 𝑜2, … , 𝑜𝑡 is an optimal solution with activities such that 𝑜1 =

𝑔1, 𝑜2 = 𝑔2, … , 𝑜𝑟−1 = 𝑔𝑟−1, 𝑜𝑟 ≠ 𝑔𝑟 holds with largest 𝑟 value.

• There can be many optimal solution, we took the one that has the most

consecutive matching with 𝐺𝑟𝑒𝑒𝑑𝑦 from the first selected activity

Theorem. The algorithm returns a largest subset of compatible activities.

𝐺𝑟𝑒𝑒𝑑𝑦

𝑂𝑃𝑇

𝑔1 𝑔2 𝑔𝑟−1 𝑔𝑟

𝑜1 𝑜2 𝑜𝑟−1 𝑜𝑟

COMP550@UNC 26

Another Optimality Proof

Proof Sketch: Let 𝐺𝑟𝑒𝑒𝑑𝑦 is our solution and 𝑂𝑃𝑇 is an optimal solution.

• Case 1: 𝑟 > 𝑠. Then, 𝑔𝑟 does not exist, but greedy algorithm would pick another

activity (e.g., it could pick 𝑜𝑟 without causing overlaps)

• Case 2: 𝑟 ≤ 𝑠. Exchange 𝑜𝑠 with 𝑔𝑟 in 𝑂𝑃𝑇 (As we did in Theorem 15.1). The new OPT

shows that the old OPT does not have the largest r value, contradiction.

Theorem. The algorithm returns a largest subset of compatible activities.

𝐺𝑟𝑒𝑒𝑑𝑦

𝑂𝑃𝑇

𝑔1 𝑔2 𝑔𝑟−1 𝑔𝑟

𝑜1 𝑜2 𝑜𝑟−1 𝑜𝑟

COMP550@UNC 27

Yet Another Optimality Proof

The previous proof is based on exchange argument

Another technique to prove optimality of greedy algorithms: ‘Greedy Stays

Ahead’

Show that, for all i, the 𝑖𝑡ℎ activity by Greedy has earlier finish time than the

𝑖𝑡ℎ choice of an arbitrary optimal solution

Theorem. The algorithm returns a largest subset of compatible activities.

Thank You!

COMP550@UNC 28

	Slide 1: COMP 550 Algorithm and Analysis Greedy Algorithms Based on CLRS Sec. 15.1 and 15.2
	Slide 2: Coin Change
	Slide 3: Coin Change
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Activity-Selection Problem
	Slide 12: Activity-Selection Problem
	Slide 13: Activity-Selection Problem
	Slide 14: Activity-Selection Problem
	Slide 15: Activity-Selection Problem
	Slide 16: Activity-Selection Problem
	Slide 17: Activity-Selection Problem
	Slide 18: Activity-Selection Problem
	Slide 19: Why Earliest Finish Time Works?
	Slide 20: Why Earliest Finish Time Works?
	Slide 21: Why Earliest Finish Time Works?
	Slide 22: Why Earliest Finish Time Works?
	Slide 23: Optimal Substructure
	Slide 24: Greedy Algorithm for Activity Selection
	Slide 25: Another Optimality Proof
	Slide 26: Another Optimality Proof
	Slide 27: Yet Another Optimality Proof
	Slide 28: Thank You!

