COMP 550
Algorithm and Analysis

Greedy Algorithms
(Huffman Encoding)

Based on CLRS Sec. 15.3

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

Data Compression

* Lossy * Lossless

Big file =Small file = Imperfect copy | Big file =Small file —» Perfect copy

Original '_>> I_:}Restor-ed Original ::> I::} Restored
Compressed Compressed
* Example: JPEG, MP3 » Example: ZIP, PNG, JBIG.
 Idea: Targeted data deletion. . How to do this?

* Delete parts of data that people

won't notice.

Fixed-Length Encoding

« Let's consider compression of text files

« How is text commonly represented?
* Fixed length encoding (e.g., ASCITI, Unicode)
« 8 bits in ASCIIT

« Assuming ASCIT, how many bits represent this text (ignore whitespace)?

{ she sells seashells by the seashore J

* Number of characters: 30

* Bits required: 30 x 8 = 240

Fixed-Length Encoding

« Assuming ASCII, how many bits represent this text (ignore whitespace)?

{ she sells seashells by the seashore J

 Number of characters: 30

* Bits required: 30 x 8 = 240

* There are 10 different characters in this text

At least 4 bits per character are required under fixed-length encoding

scheme

* Bits required: 30 x 4 = 120

Variable-Length Encoding

* Drawbacks of fixed—lengTh codes English letter frequencies (Wikipedia)
« Wasted space
E 13
« Same number of bits used to represent all characters 91
A 8.2
* Potential solution: use variable-length codes 0 75
* Variable number of bits when frequency of occurrence rI\| 27

is known all others

 Short codes for characters that occur frequently

Variable-Length Encoding
[she sells seashells by the seashore }

= e : 13
“ 7x2=14 T 9.1
- § T 1 00 2 1x2=2 A 8.2
5 > A 2 011 3 2x3=6 0 75
S 9 0 1 110 3 1x3=3 I 7
T S s 8 o101 4 8x4=32 N 6.7
- o H 4 0100 4 4x4=16 all others
= § L 4 11100 5 4x5=20
< Y 1 11101 5 1x5=5
B 1 11110 5 1x5=5
R 1 11111 5 1x5=5

High Low

 Number of bits = 108 |

COMP550@UNC 6

Variable-Length Encoding

[she sells seashells by the seashore }

L .
- High

v 8x2=16

e E 7 00 2 7x2=14

£ E H 4 011 3 4x3=12
3 _§‘ L 4 110 3 4x3=12
o = A 2 0101 4 2x4=8
S > R 1 0100 4 1x4=4
& S B 1 11100 5 1x5=5
S y 1 11101 5 1x5=5

= T 1 11110 5 1x5=5

0 1 11111 5 1x5=5

Low

Number of bits = 86|

COMP550@UNC

Variable-Length Encoding

* One issue: Where a character ends and another begins?

* Not a problem under fixed-length encoding

011100100011101010011...
Fixed length [0)

Variable length ’)

Prefix-Free Codes

* No codeword is a prefix of another codeword

s 8 2 8x2=16

E 00 2 7x2=14

No other codeword H 4 011 3 4x3=12
starts WITh 10 L 4 110 3 4x3=12

A 2 0101 4 2x4=8

R 1 0100 4 1x4=4

Code: 0110011011011111 B 1 11100 5 1x5-5
Y 1 11101 5 1xb=hH

HELLO T 1 11110 5 1xb5=5

@, 1 11111 5 1xb=H

COMP550@UNC

Prefix-Free Codes

* The following codes do not satisfy prefix-free property

S 0
E 1

H 01
L 10

* Decode the code 1010
« Can be anyone among "ESES, LL, LES, ESL"

Prefix-Free Codes

Prefix-free codes form a binary tree

1
. s 8 10
0 < > E 7 00
H 4 011
1 L 4 110
A 2 0101
R 1 0100
1 B 1 11100
y 1 11101
1 0/\1 T 1 11110
a n o) 1 11111

COMP550@UNC 1

Optimal Encoding

* Problem: Determine optimal prefix-free codes for a given text

« Optimal = Minimize the number of bits to store the text

* Minimize:), frequecy of a char X Number of bits for the char

» Key property:

* Less frequent characters are further down the tree

Huffman Encoding

1. Tabulate character frequencies

2. Each char:frequency tuple forms a single-node tree

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

sa 7] we bal (w2 ma) (B4 v

Huffman Encoding

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

sal er] wal ve a2 mt

Huffman Encoding

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

sa) 7] wa ue

Huffman Encoding

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

sa) 7] wa ue

Huffman Encoding

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

sa) 7] wa ue

Huffman Encoding

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

COMP550@UNC 18

Huffman Encoding

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

COMP550@UNC 19

Huffman Encoding

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

COMP550@UNC 20

Huffman Encoding

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

I 7

30

8 3

sa M) (Lal E7 Az mi 83 b Th on

2 2

COMP550@UNC 21

Huffman Encoding

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there's one tree.

sa) Wl (Lal E7 a mi 83 b Th on

COMP550@UNC 22

Huffman Encoding

4. Label left edges "0" and right edges "1"

COMP550@UNC

23

Huffman Encoding

Codes are given by the path from root to leaf

S 00
10
010
011
1100
1101
11100
11101
11110
11111

0] 0 4 1

3 2

0

8 2
1 1 0 1

0 1 0
L4 [E7| [a2 vit] (1] (o0

O 4 < ™ X > rC I mM

COMP550@UNC 24

Huffman Encoding

* Input: A set C of n characters each with an attribute freq

 Qutput: A tree corresponding to optimal code

HUFFMAN(CO)

in=|C|

20=C

sfori=1ton— 1 O(Ign) when we

4 allocate a new node z » Dpinp

s x=EXTRACT-MIN(O) use MIN-Priority

6 y=EXTRACT-MIN(Q) Queue

7 z.left = x

8§ z.wright=y . .

9 z.freq = x.freq + y.freq Runnmg time O (Tl lg Tl)

10 INSERT(Q, 2)
lireturn EXTRACT-MIN(Q) /I the root of the tree 1s the only node
left

Correctness

* To show that Huffman encoding builds an optimal prefix-free code:
« The greedy choice of merging two trees with the smallest root satisfies
the greedy-choice property
 Constructing optimal prefix-free codes has the optimal substructure

property

Greedy-Choice Property

There is an optimal solution containing the greedy choice (lowest frequency

characters are siblings at the maximum depth)

Proof (sketch) by exchange argument:

Take a tree T representing an arbitrary optimal prefix-free code
Transform the tree T to a tree T' that has the greedy choice made by Huffman algorithm

Show that T’ is no worse than T

T { g8 "
Lowest / - - a > / Same for yand b
tharacters | [l 13 | \ / " "

Show that exchanging x and a does not cause more bits to encode

Optimal Substructure Property

Making the least frequency characters siblings and solving the new subproblem

results in an optimal prefix-free code.

Goal: Replace the least frequency character x and y and a new node z with

z.freq = x.freq + y.freq
Optimal solution of problem = optimal solution of subproblem + (x and y as children of z)

Proof sketch: Assume that

Optimal solution of problem # optimal solution of subproblem + (x and y as children of z)

By the greedy-choice property, we know there is an optimal solution OPT where x and
y are siblings.

« Removing x and y from OPT and replacing their parents in OPT by z results in a

better solution for the subproblem, contradiction

Encoding & Decoding

 Encoding:
 Create a hashmap or dictionary or array (indexed by characters)
to store bit code of each character
e Scan each character in the text, look for its code, and
concatenate
 Decoding:
* Go left/right the tree representing prefix-free code according to
the current bit

« TIf leaf is reached, concatenate that character to current text

Thank You!

	Slide 1: COMP 550 Algorithm and Analysis Greedy Algorithms (Huffman Encoding) Based on CLRS Sec. 15.3
	Slide 2
	Slide 3: Fixed-Length Encoding
	Slide 4: Fixed-Length Encoding
	Slide 5: Variable-Length Encoding
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Huffman Encoding
	Slide 14: Huffman Encoding
	Slide 15: Huffman Encoding
	Slide 16: Huffman Encoding
	Slide 17: Huffman Encoding
	Slide 18: Huffman Encoding
	Slide 19: Huffman Encoding
	Slide 20: Huffman Encoding
	Slide 21: Huffman Encoding
	Slide 22: Huffman Encoding
	Slide 23: Huffman Encoding
	Slide 24: Huffman Encoding
	Slide 25: Huffman Encoding
	Slide 26: Correctness
	Slide 27: Greedy-Choice Property
	Slide 28: Optimal Substructure Property
	Slide 29: Encoding & Decoding
	Slide 30: Thank You!

