
COMP 550
Algorithm and Analysis

Greedy Algorithms
(Huffman Encoding)

Based on CLRS Sec. 15.3

Some slides are adapted from ones by prior instructors Prof. Plaisted and Prof. Osborne

• Lossless

Big file →Small file → Perfect copy

• Example: ZIP, PNG, JBIG.

• How to do this?

• Lossy

Big file →Small file → Imperfect copy

• Example: JPEG, MP3

• Idea: Targeted data deletion.

• Delete parts of data that people

won’t notice.

COMP550@UNC 2

Data Compression

Original Restored

Compressed

RestoredOriginal

Compressed

Fixed-Length Encoding
• Let’s consider compression of text files

• How is text commonly represented?

• Fixed length encoding (e.g., ASCII, Unicode)

• 8 bits in ASCII

• Assuming ASCII, how many bits represent this text (ignore whitespace)?

• Number of characters: 30

• Bits required: 30 × 8 = 240

COMP550@UNC 3

she sells seashells by the seashore

Fixed-Length Encoding
• Assuming ASCII, how many bits represent this text (ignore whitespace)?

• Number of characters: 30

• Bits required: 30 × 8 = 240

• There are 10 different characters in this text

• At least 4 bits per character are required under fixed-length encoding

scheme

• Bits required: 30 × 4 = 120

COMP550@UNC 4

she sells seashells by the seashore

Variable-Length Encoding
• Drawbacks of fixed-length codes

• Wasted space

• Same number of bits used to represent all characters

• Potential solution: use variable-length codes

• Variable number of bits when frequency of occurrence

is known

• Short codes for characters that occur frequently

COMP550@UNC 5

Letter %

E 13

T 9.1

A 8.2

O 7.5

I 7

N 6.7

all others

English letter frequencies (Wikipedia)

6

Variable-Length Encoding

COMP550@UNC

Letter Freq Bit code Bit count Bits required

E 7 10 2 7x2=14

T 1 00 2 1x2=2

A 2 011 3 2x3=6

O 1 110 3 1x3=3

S 8 0101 4 8x4=32

H 4 0100 4 4x4=16

L 4 11100 5 4x5=20

Y 1 11101 5 1x5=5

B 1 11110 5 1x5=5

R 1 11111 5 1x5=5

she sells seashells by the seashore

Number of bits = 108

A
ve

ra
ge

 F
re

qu
e
nc

y
ac

ro
ss

 a
ll
 t

e
x
t

High

Low

Letter %

E 13

T 9.1

A 8.2

O 7.5

I 7

N 6.7

all others

B
it

 C
od

e
 L

e
ng

th

Low

High

7

Variable-Length Encoding

COMP550@UNC

Letter Freq Bit code Bit count Bits required

S 8 10 2 8x2=16

E 7 00 2 7x2=14

H 4 011 3 4x3=12

L 4 110 3 4x3=12

A 2 0101 4 2x4=8

R 1 0100 4 1x4=4

B 1 11100 5 1x5=5

Y 1 11101 5 1x5=5

T 1 11110 5 1x5=5

O 1 11111 5 1x5=5

Number of bits = 86

she sells seashells by the seashore

F
re

qu
e
nc

y
in

 t
h
e
 g

iv
e
n

te
x
t

High

Low

B
it

 C
od

e
 L

e
ng

th

Low

High

8COMP550@UNC

• One issue: Where a character ends and another begins?

• Not a problem under fixed-length encoding

Variable-Length Encoding

011100100011101010011…

Fixed length

Variable length

9

Prefix-Free Codes

COMP550@UNC

• No codeword is a prefix of another codeword

Letter Freq Bit code Bit count Bits required

S 8 10 2 8x2=16

E 7 00 2 7x2=14

H 4 011 3 4x3=12

L 4 110 3 4x3=12

A 2 0101 4 2x4=8

R 1 0100 4 1x4=4

B 1 11100 5 1x5=5

Y 1 11101 5 1x5=5

T 1 11110 5 1x5=5

O 1 11111 5 1x5=5

No other codeword
starts with 10

Code: 0110011011011111

HELLO

10

Prefix-Free Codes

COMP550@UNC

• The following codes do not satisfy prefix-free property

• Decode the code 1010

• Can be anyone among “ESES, LL, LES, ESL”

Letter Bit code

S 0

E 1

H 01

L 10

11

Prefix-Free Codes

COMP550@UNC

Letter Freq Bit code

S 8 10

E 7 00

H 4 011

L 4 110

A 2 0101

R 1 0100

B 1 11100

Y 1 11101

T 1 11110

O 1 11111

0

0

0

0

0

0

0

00 1 1

1

1

1

1

1

1

1

E

R A

H

S

L

B Y T O

Prefix-free codes form a binary tree

12

Optimal Encoding

COMP550@UNC

• Problem: Determine optimal prefix-free codes for a given text

• Optimal = Minimize the number of bits to store the text

• Minimize: σ frequecy of a char × Number of bits for the char

• Key property:

• Less frequent characters are further down the tree

Huffman Encoding
1. Tabulate character frequencies

2. Each char:frequency tuple forms a single-node tree

COMP550@UNC 13

S:8 E:7 H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7 H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

2

Huffman Encoding

COMP550@UNC 14

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7 H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

22

Huffman Encoding

COMP550@UNC 15

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7 H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

223

Huffman Encoding

COMP550@UNC 16

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7 H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

223

4

Huffman Encoding

COMP550@UNC 17

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7 H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

223

4

7

Huffman Encoding

COMP550@UNC 18

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7 H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

223

4

7

8

Huffman Encoding

COMP550@UNC 19

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7 H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

223

4

7

8

14

Huffman Encoding

COMP550@UNC 20

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

223

4

7

8

14

16

Huffman Encoding

COMP550@UNC 21

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

223

4

7

8

14

16

30

Huffman Encoding

COMP550@UNC 22

3. Merge the two trees with the smallest roots. The new root is the sum of

the two frequencies below it. Repeat until there’s one tree.

S:8 E:7H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

223

4

7

8

14

16

30

Huffman Encoding

COMP550@UNC 23

4. Label left edges “0” and right edges “1”

S:8 E:7H:4 L:4 A:2 R:1 B:1 Y:1 T:1 O:1

223

4

7

8

14

16

30

0

0 0 0

0

0

0 0

1

1

1 1

1
1

1

110

Huffman Encoding

COMP550@UNC 24

Codes are given by the path from root to leaf

Letter Bit code

S 00

E 10

H 010

L 011

A 1100

R 1101

B 11100

Y 11101

T 11110

O 11111

COMP550@UNC 25

Huffman Encoding
• Input: A set 𝐶 of 𝑛 characters each with an attribute 𝑓𝑟𝑒𝑞

• Output: A tree corresponding to optimal code

𝑂(lg 𝑛) when we
use MIN-Priority
Queue

Running time 𝑂(𝑛 lg 𝑛)

COMP550@UNC 26

Correctness
• To show that Huffman encoding builds an optimal prefix-free code:

• The greedy choice of merging two trees with the smallest root satisfies

the greedy-choice property

• Constructing optimal prefix-free codes has the optimal substructure

property

COMP550@UNC 27

Greedy-Choice Property
There is an optimal solution containing the greedy choice (lowest frequency

characters are siblings at the maximum depth)

Proof (sketch) by exchange argument:

• Take a tree 𝑇 representing an arbitrary optimal prefix-free code

• Transform the tree 𝑇 to a tree 𝑇′ that has the greedy choice made by Huffman algorithm

• Show that 𝑇′ is no worse than 𝑇

Lowest
frequency
characters

Show that exchanging x and a does not cause more bits to encode

Same for 𝑦 and 𝑏

COMP550@UNC 28

Optimal Substructure Property

Goal: Replace the least frequency character 𝑥 and 𝑦 and a new node 𝑧 with

 𝑧. 𝑓𝑟𝑒𝑞 = 𝑥. 𝑓𝑟𝑒𝑞 + 𝑦. 𝑓𝑟𝑒𝑞

Optimal solution of problem = optimal solution of subproblem + (𝑥 and 𝑦 as children of 𝑧)

Making the least frequency characters siblings and solving the new subproblem

results in an optimal prefix-free code.

Proof sketch: Assume that

Optimal solution of problem ≠ optimal solution of subproblem + (𝑥 and 𝑦 as children of 𝑧)

• By the greedy-choice property, we know there is an optimal solution 𝑂𝑃𝑇 where 𝑥 and

𝑦 are siblings.

• Removing x and y from 𝑂𝑃𝑇 and replacing their parents in 𝑂𝑃𝑇 by 𝑧 results in a

better solution for the subproblem, contradiction

COMP550@UNC 29

Encoding & Decoding
• Encoding:

• Create a hashmap or dictionary or array (indexed by characters)

to store bit code of each character

• Scan each character in the text, look for its code, and

concatenate

• Decoding:

• Go left/right the tree representing prefix-free code according to

the current bit

• If leaf is reached, concatenate that character to current text

Thank You!

COMP550@UNC 30

	Slide 1: COMP 550 Algorithm and Analysis Greedy Algorithms (Huffman Encoding) Based on CLRS Sec. 15.3
	Slide 2
	Slide 3: Fixed-Length Encoding
	Slide 4: Fixed-Length Encoding
	Slide 5: Variable-Length Encoding
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13: Huffman Encoding
	Slide 14: Huffman Encoding
	Slide 15: Huffman Encoding
	Slide 16: Huffman Encoding
	Slide 17: Huffman Encoding
	Slide 18: Huffman Encoding
	Slide 19: Huffman Encoding
	Slide 20: Huffman Encoding
	Slide 21: Huffman Encoding
	Slide 22: Huffman Encoding
	Slide 23: Huffman Encoding
	Slide 24: Huffman Encoding
	Slide 25: Huffman Encoding
	Slide 26: Correctness
	Slide 27: Greedy-Choice Property
	Slide 28: Optimal Substructure Property
	Slide 29: Encoding & Decoding
	Slide 30: Thank You!

