

COMP 550 Algorithm and Analysis

Dynamic Programming

Based on CLRS Sec. 14

- You have unlimited quantities of pennies (1 cent), nickels (5 cents),
 dimes (10 cents), and quarters (25 cents)
- You need to provide change of x cents. How to determine the minimum number of coins to equal x?
- Fill the table for x = 61.

Coin	Number	Value
Quarters (25¢)	2	50¢
Dimes (10¢)	1	10¢
Nickels (5¢)	0	O¢
Pennies (1¢)	1	1¢

- You have unlimited quantities of pennies (1 cent), nickels (5 cents),
 dimes (10 cents), and quarters (25 cents)
 - And there is one new coin denominations: 26 cents
- How to provide change of 61 cents?

Coin	Greedy	Optimal
Fictitious (26¢)	2 (52¢)	1 (26¢)
Quarters (25¢)	0 (0¢)	1 (25¢)
Dimes (10¢)	0 (0¢)	1 (10¢)
Nickels (5¢)	1 (5¢)	0 (0¢)
Pennies (1¢)	4 (4¢)	0 (1¢)

- Greedy doesn't work here
 - How to solve this problem?
 - We'll return to this problem later.
- Instead, let's consider the problem of calculating Fibonacci number

• i-th Fibonacci number is defined as

$$F_i = \begin{cases} 0, & i = 0 \\ 1, & i = 1 \\ F_{i-1} + F_{i-2}, & i > 1 \end{cases}$$

• Fibonacci sequence:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55

• We can compute n-th Fibonacci number recursively

```
Recursive-Fib(n)

1. if (n = 0)

2. return 0

3. if (n = 1)

4. return 1

5. return Recursive-Fib(n-1)+ Recursive-Fib(n-2)
```

• Assume that the running time is T(n)

$$T(n) = T(n-1) + T(n-2) + \Theta(1)$$

- T(n) is $O(2^n)$: This is a loose upper bound
- In fact, F_n and T_n has a similar recurrence:

$$T(n) = \Theta(F_n) = \Theta(\phi^n)$$
, ϕ is the golden ratio

- · Computing Fibonacci number shouldn't be this inefficient
 - We need to avoid duplicated calculations!
- Idea: store the result of Fib(n) in a table after its computation and look up later if it is again needed
 - Look in the table first to check whether Fib(n) is already calculated

Top-Down Recursion with Memoization

We can compute n-th Fibonacci number recursively

```
Memoized-Fib(n)
                      Fib[0:n] = array with elements initialized to NIL
                     Fib[0] = 0
               3.
                  Fib[1] = 1
   Not a typo.
                     return Memoized-Recursive-Fib(n, Fib)
Don't compute
if already done
                  Memoized-Recursive-Fib(n, Fib)
                    if Fib[n] \neq NIL
                         return Fib[n]
                     Fib[n] = Memoized-Recursive-Fib(n-1, Fib)
               3.
 Store after
                                  + Memoized-Recursive-Fib(n-2, Fib)
                      return Fib[n]
  computing
```

Top-Down Recursion with Memoization

Bottom-Up Dynamic Programming

- Start with the base case: the smallest subproblem
 - The answer is easy
- Iteratively compute the larger subproblems (smallest to largest)
 - Fill up a cell of a table after each computation

```
Bottom-Up-Fib(n)

1. Fib[0:n] = (n+1)-element array

2. Fib[0] = 0

3. Fib[1] = 1

4. for i = 2 to n

5. Fib[i] = Fib[i-1] + Fib[i-2]

6. return Fib[n]
```

Dynamic Programming: How

- · Identify a recurrence relation for your (optimal) solution
- Top-down recursive approach:
 - Store result in a table
 - Before solving a subproblem recursively, check whether that subproblem is already solved by checking the table entry
 - · After solving a subproblem, store its result in the table

Dynamic Programming: How

- · Identify a recurrence relation for your (optimal) solution
- Bottom-up iterative approach:
 - Start with a base case (smallest subproblem)
 - Iteratively solve the next largest subproblem that can be solved using already solved subproblems
 - Need to determine an ordering of subproblems
 - · Store results in a table

Dynamic Programming: When

- The problem has optimal substructure property
 - · We can solve large problems by solving smaller subproblems
- There are overlapping subproblems
 - Recursive algorithm would solve the same subproblem repeatedly (making recursive algorithm inefficient)
- The total number of distinct subproblems are "small" (i.e., polynomial w.r.t. input size)
 - If the number of distinct subproblems are "exponential", we are out of luck

Coin Change: Revisited

- You have unlimited quantities of pennies (1 cent), nickels (5 cents),
 dimes (10 cents), and quarters (25 cents)
 - And there is one new coin denominations: 26 cents
- How to provide change of 61 cents?

Coin	Greedy	Optimal
Fictitious (26¢)	2 (52¢)	1 (26¢)
Quarters (25¢)	0 (0¢)	1 (25¢)
Dimes (10¢)	0 (0¢)	1 (10¢)
Nickels (5¢)	1 (5¢)	0 (0¢)
Pennies (1¢)	4 (4¢)	O (1¢)

- Generalized Coin Change:
 - There are m coin denominations $C = \{c_1, c_2, ..., c_m\}$
 - Make a change of n cents.
 - Minimize the number of coins to provide n cents.
- · We've seen that greedy doesn't work here
- The optimal solution in previous slide is < 26¢, 25¢, 10¢ >
 - Does this solution still have the optimal substructure property?
 - Optimal solution for change of 35\$: < 25\$, 10\$ >
 - Optimal solution for change of 36¢: < 26¢, 10¢ >
- With optimal substructure, there should be a way to solve recursively

- You have unlimited quantities of pennies (1 cent), nickels (5 cents),
 dimes (10 cents), quarters (25 cents), and fictitious (26 cents)
- \bullet Provide change of n cents using the minimum number of coins
- Let change(x) be the minimum number of coins for x cents
 - Can we write a recurrence relation for change(x)?
 - First, let's consider $x \ge 26$ for simplicity.

$$change(x) = \min \begin{cases} change(x-26) + 1 \\ change(x-25) + 1 \\ change(x-10) + 1 \\ change(x-5) + 1 \\ change(x-1) + 1 \end{cases}$$

• Let change(x) be the minimum number of coins for x cents

$$change(x) = \min \begin{cases} change(x-26) + 1 \\ change(x-25) + 1 \\ change(x-10) + 1 \\ change(x-5) + 1 \\ change(x-1) + 1 \end{cases}$$

- How to handle x < 26 cases?
 - For x = 25, we don't have change(x 26)
 - For $10 \le x < 25$, we don't have change(x 26) and change(x 25)
 - ...

• Let change(x) be the minimum number of coins for x cents

$$change(x) = \min \begin{cases} change(x-26) + 1 \\ change(x-25) + 1 \\ change(x-10) + 1 \\ change(x-5) + 1 \\ change(x-1) + 1 \end{cases}$$

- How to handle x < 26 cases?
 - Compact way: define base case to allow change(x) for negative x

$$change(x) = \begin{cases} 0, & x = 0 \\ \infty, & x < 0 \end{cases}$$

```
Recursive-Coin-Change(C, x)
      if (x < 0)
         return ∞
3. if (x = 0)
        return 0
5.
    min coins = \infty
     for each c \in C
         num_coins = Recursive-Coin-Change(C, x-c) + 1
         min_coins = min(min_coins, num_coins)
8.
     return min_coins
9.
```


Top-Down DP

```
Memoized-Recursive-Coin-Change(C, x, mem)
      if (x < 0)
         return ∞
                                               Array to store results.
    if (x = 0)
                                               What should be its size?
         return 0
      if mem[x] \neq \infty //mem[] initialized to \infty
         return mem[x]
      for each c \in C
         num\_coins = Recursive-Coin-Change(C, x-c, mem) + 1
         mem[x] = min(mem[x], num_coins)
      return mem[x]
10.
```

• Create a table mem[0:n] and iteratively fill up the table from left to right. (Why left to right?)

Coins = {1,5,10,25,26}

• Create a table mem[0:n] and iteratively fill up the table from left to right. (Why left to right?)

```
change(1) = min(change(1-1)+1, change(1-5)+1, change(1-10)+1, change(1-25)+1, change(1-26)+1)
= min(0+1, \infty+1, \infty+1, \infty+1, \infty+1)
= 1
```


• Create a table mem[0:n] and iteratively fill up the table from left to right. (Why left to right?)

 $change(x) = \min(change(x-1)+1, change(x-5)+1, change(x-10)+1, change(x-25)+1, change(x-26)+1)$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
0	1	2	3	4	1																

Coins = {1,5,10,25,26}

• Create a table mem[0:n] and iteratively fill up the table from left to right. (Why left to right?)

 $change(x) = \min(change(x-1)+1, change(x-5)+1, change(x-10)+1, change(x-25)+1, change(x-26)+1)$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
0	1	2	3	4	1	2	3	4	5	1	2	3	4	5	2	3	4	5	6	2	3

Coins = {1,5,10,25,26}

```
    0
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21

    0
    1
    2
    3
    4
    1
    2
    3
    4
    5
    1
    2
    3
    4
    5
    2
    3
    4
    5
    6
    2
    3
```

Note: this is NOT polynomial running time! It is pseudo-polynomial

• Steps:

- 1. Determine a recurrence relation to solve the problem
- 2. Determine table size and dimension to store the subproblem results
 - The recurrence relation will help
- 3. Determine an order to solve the subproblems
 - Again, the recurrence relation will help
- 4. Solve base cases first
- 5. Iterate the subproblems in the determined ordering and solve each subproblem

How to Construct Optimal Solution?

- Track back the optimal solution.
- Suppose we want change for 21 cents.
 - We've constructed the table already.
 - Optimal solution for 21 is 3.
 - How was this "3" obtained? From one of 21 1, 21 5, 21 10, 21 25, 21 26
 - Check which of the 21 1, 21 5, 21 10, 21 25, 21 26 has "3 1 = 2" in its entry

Coin Change: A Different Recurrence

- Let change(i,x) be the minimum number of coins for change of x cents using denominations C[i], C[i+1], C[i+2], ..., C[m] m = number of coin denom. <math>n = target cent value
- The solution of the main problem of changing for 61 cents is
 change(1,61)

$$change(i,x) = \min \begin{cases} change(i,x-C[i]) + 1 \\ change(i+1,x) \end{cases}$$

- To make x cents change from C[i], C[i+1], ..., C[m]:
 - <u>Case 1</u>: We take a coin of C[i] and make change of x C[i] using coins of C[i], C[i+1], ..., C[m]
 - <u>Case 2</u>: We do not take a coin of C[i] and make change of x using coins of C[i+1], C[i+2], ..., C[m]

Coin Change: A Different Recurrence

• Let change(i, x) be the minimum number of coins for change of x cents using denominations in C[i], C[i+1], C[i+2], ..., C[m]

• Base cases:

$$change(i,x) = \begin{cases} 0, & x = 0\\ \infty, & x < 0 \text{ or } i > m \end{cases}$$

m = number of coin denom. n = target cent value

- O coins for a change of O cents
- No solution for a change of -ve cents
- No solution if no denominations are left to consider

Coin Change: A Different Recurrence

Determine change(i, x)

m = number of coin denom. n = target cent value

```
Another-Recursive-Coin-Change(C, m, n, i, x)

1. if (x < 0 or i > m)

2. return ∞

3. if (x = 0)

4. return 0

5. taken = Another-Recursive-Coin-Change(C, m, n, i, x-C[i]) + 1

6. not_taken = Another-Recursive-Coin-Change(C, m, n, i+1, x)

7. min_coins = min(taken, not_taken)

8. return min_coins
```

• Step 1: Determine a recurrence relation

$$change(i, x) = \min \begin{cases} change(i, x - C[i]) + 1 \\ change(i + 1, x) \end{cases}$$

• Step 2: Determine table size and dimension

$$change(i, x) = \min \begin{cases} change(i, x - C[i]) + 1 \\ change(i + 1, x) \end{cases}$$

- · Each subproblem is represented by a pair.
- We can use a 2D table to store the result of change(i,x).
- i (num coins) ranges from 1 to m+1 x (target) ranges from 0 to n

	x = 0	× = 1	x = 2	x = 3
i = 1				
i = 2				
i = 3				
i = 4				
i = 5				
↓. i = 6				

m+1

For

simplicity

• Question:

- $change(i, x) = \min \begin{cases} change(i, x C[i]) + 1 \\ change(i + 1, x) \end{cases}$
- Filling which cell is our main goal if we want to change n cents?
- Cell (1,n)

	x = 0	× = 1	x = 2	x = 3	x = n-1
i = 1					
i = 2					
i = 3					
i = 4					
i = 5					
↓ i = 6					

$$change(i, x) = \min \begin{cases} change(i, x - C[i]) + 1 \\ change(i + 1, x) \end{cases}$$

- Step 3: Determine an ordering of subproblems
 - Consider the cell (i = 2, x = 3). Assume C[2]=2.
 - From the recurrence (2,3) depends on (2,1) and (3,3)

$$change(i,x) = \min \begin{cases} change(i,x-C[i]) + 1 \\ change(i+1,x) \end{cases}$$

- Step 3: Determine an ordering of subproblems
 - Fill table from bottom to up and left to right

- Step 4: Solve base cases
 - 0 coin for 0 cents
 - ∞ coins for m+1 cents

	x = 0	x = 1	x = 2	x = 3
i = 1	0			
i = 2	0			
i = 3	0			
i = 4	0			
i = 5	0			
↓ i = 6	0	∞	8	8

$change(i, x) = \min$	(change(i, x - C[i]) + 1 change(i + 1, x)
$change(t,x) = \min_{x \in \mathcal{X}} \frac{1}{x}$	(change(i+1,x)

x = n-1 x = n

∞	∞

• Step 5: Iteratively fill up the table

$$change(i, x) = \min \begin{cases} change(i, x - C[i]) + 1\\ change(i + 1, x) \end{cases}$$

Example: $C = \{1, 6, 10\}, n = 12 \text{ cents}$

iX	1	2	3	4	5	6	7	8	9	10	11	12
1	0											
2	0											
3	0											
4	0	∞	8	8	8	8	∞	8	8	8	8	∞

• Step 5: Iteratively fill up the table

$$change(i, x) = \min \begin{cases} change(i, x - C[i]) + 1\\ change(i + 1, x) \end{cases}$$

Example: $C = \{1, 6, 10\}, n = 12 \text{ cents}$

ix	1	2	3	4	5	6	7	8	9	10	11	12
1	0	1	2	3	4	1	2	3	4	1	2	3
2	0	8	8	8	8	1	8	8	∞	1	8	2
3	0	8	8	8	8	8	8	∞	∞	1	∞	∞
4	0	8	8	8	8	8	8	∞	∞	8	×	∞

• Step 5: Iteratively fill up the table

```
change(i,x) = \min \begin{cases} change(i,x-C[i]) + 1\\ change(i+1,x) \end{cases}
```

```
Another-DP-Coin-Change(C, m, n)
      mem[1:m][0:n] = a new array with each cell initialized to <math>\infty
2.
     for i = 1 to m
          mem[i][0] = 0 //0 coins to return 0 cents
3.
     for x = 2 to n
4.
          \mathsf{mem}[\mathsf{m+1}][\mathsf{x}] = \infty
5.
                                                        Running Time: \Theta(n \cdot |C|)
6.
     for i = m downto 1
          for x = 1 to n
7.
              if(x - C[i] < 0)
8.
                 mem[i][x] = mem[i+1][x]
9.
10.
             else
11.
                 mem[i][x] = min(mem[i][x-C[i]] + 1 , mem[i+1][x])
12.
     return mem[1][n]
```

Thank You!