COMP 550
Algorithm and Analysis

Dynamic Programming

Based on CLRS Sec. 14



Coin Change

* You have unlimited quantities of pennies (1 cent), nickels (5 cents),
dimes (10 cents), and quarters (25 cents)

* You need to provide change of x cents. How to determine the minimum
number of coins to equal x?

* Fill the table for x = 61.

Quarters (25¢) 2 50¢
Dimes (10¢) 1 10¢
Nickels (5¢) 0 0¢

Pennies (1¢) 1 1¢
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Coin Change

* You have unlimited quantities of pennies (1 cent), nickels (5 cents),

dimes (10 cents), and quarters (25 cents)

« And there is one new coin denominations: 26 cents

 How to provide change of 61 cents?

Fictitious (26¢) 2 (52¢) 1(26¢)
Quarters (25¢) 0 (0¢) 1(25¢)
Dimes (10¢) 0 (0¢) 1 (10¢)
Nickels (5¢) 1 (5¢) 0 (0¢)

Pennies (1¢) 4 (4¢) 0 (1¢)
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Coin Change

* Greedy doesn't work here
« How to solve this problem?

« We'll return to this problem later.

* Instead, let's consider the problem of calculating Fibonacci number



Calculate Fibonacci Number

* i-th Fibonacci number is defined as

[ 0, i=0
Fi=< 1, 1 =1
Fi_4+ Fi_,, i>1

\

* Fibonacci sequence:

0,1,1,2,3,5,8,13,21, 34,55



Calculate Fibonacci Number

« We can compute n-th Fibonacci number recursively [ 0 i=0

Recursive-Fib(n)  F; = Li=1
if (n — @) Fi_]_‘l'Fi_z, i > 1

return 0 , ,
if (n = 1) Runnmg Time?

return 1
return Recursive-Fib(n-1)+ Recursive-Fib(n-2)

« Assume that the running time is T (n)
Tm)=Tn—1)+Tn-2)+06(1)
« T(n)is 0(2"): This is a loose upper bound

uvih WN B

« In fact, E, and T, has a similar recurrence:

T(n) = O(F,) = 0(¢p™), ¢ is the golden ratio



Calculate Fibonacci Number

Recursive-Fib(n)

) o
3. if (n = 1) - \\
4, return 1
5. return Recursive-Fib(n-1)+ Recursive-Fib(n-2) // Fib(3) \\
ad T \ I/ \\
L/ Fib(3) | \ | Fib(1) |\
\
/ ‘ \ ,
\
I | \ :
Fib(2) Fib1) | | | FibQ1) Fib(0) Fib(1) Fib(0) |/
,, (rew) J (F20) (@) \(reor
‘ / \ e
\ [ Fiby | { Fib(@) | T N __~-
\ P Duplicated computation
\\ -




Calculate Fibonacci Number

 Computing Fibonacci number shouldn't be this inefficient

« We need to avoid duplicated calculations!

« Tdea: store the result of Fib(n) in a table after its computation and
look up later if it is again needed
* Look in the table first to check whether Fib(n) is already calculated



Top-Down Recursion with Memoization

* We can compute n-th Fibonacci number recursively

////Memoized-Fib(n)
1. Fib[@:n] = array with elements initialized to NIL
2. Fib[@] = ©
Not a typo. 3. Fib[1] = 1
4. return Memoized-Recursive-Fib(n, Fib)

Don't compute
if already done Memoized-Recursive-Fib(n, Fib)

T ~ if Fib[n] #NIL
return Fib[n]

2

3. 1 Fib[n] = Memoized-Recursive-Fib(n-1, Fib)
Store after ,////—‘ + Memoized-Recursive-Fib(n-2, Fib)

4

computing return Fib[n]




Top-Down Recursion with Memoization

N

Memoized-Recursive-Fib(n, Fib)
if Fib[n] #NIL
return Fib[n]
Fib[n] = Memoized-Recursive-Fib(n-1, Fib)
+ Memoized-Recursive-Fib(n-2, Fib)
return Fib[n]

Running Time: O(n)

| Fib(1) |

| Fibt) | { Fibo) |

Already computed




Bottom-Up Dynamic Programming

 Start with the base case: the smallest subproblem

« The answer is easy

* Iteratively compute the larger subproblems (smallest to largest)

* Fill up a cell of a table after each computation

Bottom-Up-Fib(n)
Fib[@:n] (n+1l)-element array
Fib[0O]
Fib[1]
for 1 = 2 to n
Fib[i] = Fib[i-1] + Fib[i-2]
return Fib[n]

%)
1

Running Time: O(n)
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Dynamic Programming: How

» Identify a recurrence relation for your (optimal) solution

 Top-down recursive approach:
« Store result in a table

* Before solving a subproblem recursively, check whether that

subproblem is already solved by checking the table entry

 After solving a subproblem, store its result in the table



Dynamic Programming: How

» Identify a recurrence relation for your (optimal) solution

* Bottom-up iterative approach:
 Start with a base case (smallest subproblem)

* Iteratively solve the next largest subproblem that can be solved using
already solved subproblems
* Need to determine an ordering of subproblems

« Store results in a table



Dynamic Programming: When

* The problem has optimal substructure property

« We can solve large problems by solving smaller subproblems

* There are overlapping subproblems
* Recursive algorithm would solve the same subproblem repeatedly

(making recursive algorithm inefficient)

* The total number of distinct subproblems are "small” (i.e., polynomial
w.r.t. input size)

 If the number of distinct subproblems are "exponential”, we are out of luck



Coin Change: Revisited

* You have unlimited quantities of pennies (1 cent), nickels (5 cents),

dimes (10 cents), and quarters (25 cents)

« And there is one new coin denominations: 26 cents

 How to provide change of 61 cents?

Fictitious (26¢) 2 (52¢) 1(26¢)
Quarters (25¢) 0 (0¢) 1(25¢)
Dimes (10¢) 0 (0¢) 1 (10¢)
Nickels (5¢) 1 (5¢) 0 (0¢)
Pennies (1¢) 4 (4¢) 0 (1¢)
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Coin Change

* Generalized Coin Change:
* There are m coin denominations C = {c;,c,, ..., C; }
« Make a change of n cents.

* Minimize the number of coins to provide n cents.

« We've seen that greedy doesn't work here

 The optimal solution in previous slide is < 26¢, 25¢,10¢ >
* Does this solution still have the optimal substructure property?
* Optimal solution for change of 35¢: < 25¢,10¢ >
* Optimal solution for change of 36¢: < 26¢,10¢ >

« With optimal substructure, there should be a way to solve recursively



Coin Change

* You have unlimited quantities of pennies (1 cent), nickels (5 cents),

dimes (10 cents), quarters (25 cents), and fictitious (26 cents)

* Provide change of n cents using the minimum number of coins

* Let change(x) be the minimum number of coins for x cents
« Can we write a recurrence relation for change(x)?

* First, let's consider x = 26 for simplicity.

(change(x — 26) + 1
change(x — 25) + 1
change(x) = min< change(x — 10) + 1
change(x —5) + 1
| change(x — 1) + 1




Coin Change

* Let change(x) be the minimum number of coins for x cents

(change(x — 26) + 1
change(x — 25) + 1
change(x) = min< change(x — 10) + 1
change(x —5) + 1
| change(x — 1) + 1

« How to handle x < 26 cases?
* For x = 25, we don't have change(x — 26)
« For 10 < x < 25, we don't have change(x — 26) and change(x — 25)



Coin Change

* Let change(x) be the minimum number of coins for x cents

(change(x — 26) + 1
change(x — 25) + 1
change(x) = min< change(x — 10) + 1
change(x —5) + 1
| change(x — 1) + 1

« How to handle x < 26 cases?

« Compact way: define base case to allow change(x) for negative x

0, x=0

change(x) = {Oo <0




Coin Change

OooNOOTUVT S WDN R

Recursive-Coin-Change(C, x)

if (x < 0)
return oo

if (x = 9)
return 0

min_coins = o

for each c € C
num_coins = Recursive-Coin-Change(C, x-c) + 1
min_coins = min(min_coins, num_coins)

return min_coins




Coin Change
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Coin Change
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Top-Down DP

OVoOoNOULTEE WN PR

10.

Memoized-Recursive-Coin-Change(C, x, mem)

if (x < 0) \\\\‘

~_ return Array to store results.
if (x = 9) What should be its size?
return 0

|

if mem[x] #o //mem[] initialized to oo
return mem[x]

for each c € C
num_coins = Recursive-Coin-Change(C, x-c, mem) + 1
mem[x] = min(mem[x], num_coins)

return mem[x]




Bottom-Up DP

 Create a table mem[0: n] and iteratively fill up the table from left to
right. (Why left to right?)

0/ 1]2]/3/4/5/6/7/8]9]10/11]12[13/14/15/16]17/18/19/20 21
0

Coins = {1,5,10,25,26}
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Bottom-Up DP

 Create a table mem[0: n] and iteratively fill up the table from left to
right. (Why left to right?)

change(1) = min(change(1-1)+1, change(1-5)+1, change(1-10)+1, change(1-25)+1, change(1-26)+1)
=min(0+1,00+1,0+1,00+1, 0+ 1)

=1
nnénnnnnmmmmmmmmmm
o 1

Coins = {1,5,10,25,26}
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Bottom-Up DP

 Create a table mem[0: n] and iteratively fill up the table from left to
right. (Why left to right?)

change(x) = min(change(x-1)+1, change(x-5)+1, change(x-10)+1, change(x-25)+1, chage(x-26)+1)

0/ 1]2]/3/4/5/6/7/8]9]10/11]12[13/14/15/16]17/18/19/20 21
O 1 2 3 4 1

Coins = {1,5,10,25,26}
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Bottom-Up DP

 Create a table mem[0: n] and iteratively fill up the table from left to
right. (Why left to right?)

change(x) = min(change(x-1)+1, change(x-5)+1, change(x-10)+1, change(x-25)+1, chage(x-26)+1)
011]2/3|4]5/6]7]8]9]10/11]12]13]14]15/16]17]18/19/20 21
o 1 2 3 4 1 2 3 4 5 1 2 3 4 5 2 3 4 5 6 2 3
Coins = {1,5,10,25,26}
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Bottom-Up DP

0|112[3/4/5/6/7[8]9 10/11]12/13/14/15/16/17[18119/20 21
o 1 2 3 4 1 2 3 4 5 1 2 3 4 5 2 3 4 5 6 2 3

Bottom-Up-Coin-Change(C, n)

mem[i] = min(mem[i], mem[i-c] + 1)
return mem[n]

1. mem[@:n] = an array with elements initialized to o

2. mem[@] = © // © coins for @ cents

3. for i =1 to n

4. for each c € C [Running Time: O(n - |C|)]
5. if i = ¢

6.

/.

polynomial running time! Tt

(Note: this is NOT
Lis pseudo-polynomial
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Bottom-Up DP

« Steps:
1. Determine a recurrence relation to solve the problem
2. Determine table size and dimension to store the subproblem results
« The recurrence relation will help
3. Determine an order to solve the subproblems
* Again, the recurrence relation will help
4. Solve base cases first

5. Iterate the subproblems in the determined ordering and solve each

subproblem



How to Construct Optimal Solution?

 Track back the optimal solution.

 Suppose we want change for 21 cents.

« We've constructed the table already.
« Optimal solution for 21 is 3.
« How was this "3" obtained? From one of 21 — 1,21 — 5,21 — 10,21 — 25,21 — 26

« Check which of the 21 — 1,21 -5,21 -10,21 — 25,21 — 26 has "3 —1 = 2" inits entfry

* Repeat 10¢ 10¢

1¢
— T~ )\
0|112[3]/4/5/6/7[8]910/11]12](13/14/15/16/17]18]19120 |21
o 1 2 3 4 1 2 3 4 5 1 2 3 4 5 2 3 4 5 6 2 3
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Coin Change: A Different Recurrence

* Let change(i, x) be the minimum number of coins for change ¢
using denominations C[i], C[i + 1],C[i + 2], ..., C[m] m = number of coin denom.

h = target cent value

* The solution of the main problem of changing for 61 cents is
change(1,61)

change(i,x — C[i]) + 1
change(i + 1, x)

change(i,x) = min{

« To make x cents change from C[i], C[i + 1], ..., C[m]:

* Case 1: We take a coin of C[i] and make change of x — CJ[i] using coins
of C[i],C[i + 1], ...,C[m]

* Case 2: We do not take a coin of C[i] and make change of x using coins
of Cli +1],C[i + 2], ..., C[m]
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Coin Change: A Different Recurrence

* Let change(i, x) be the minimum number of coins for change of
x cents using denominations in C[i], C[i + 1],C[i + 2], ..., C[m]

m = number of coin denom.

n = target cent value

0, x=0
00, x<0Qori>m

- Base cases: change(i, x) ={

* O coins for a change of O cents
* No solution for a change of -ve cents

* No solution if no denominations are left to consider
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Coin Change: A Different Recurrence

m = number of coin denom.

{ Determine change(i, x) } h = target cent value

Another-Recursive-Coin-Change(C, m, n, i, x)
if (x <@ or i >m
return oo
if (x = 9)
return 0
taken = Another-Recursive-Coin-Change(C, m, n, i, x-C[i]) + 1
not_taken = Another-Recursive-Coin-Change(C, m, n, i+1, Xx)
min_coins = min(taken, not_taken)
return min_coins

coNO VT~ WDN R
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Second Bottom-Up DP

« Step 1. Determine a recurrence relation

change(i,x — C[i]) + 1

change(i, x) = mm{ change(i +1,x)




Second Bottom-Up DP

change(i,x — C[i]) + 1

« Step 2: Determine table size and dimension
change(i + 1,x)

change(i,x) = min{

 Each subproblem is represented by a pair.

For » We can use a 2D table to store the result of change(i,x).
I
PP (num coins) ranges from 1 to(m+1)x (target) ranges from O to n

x=0 x =1 X =2 X=3 x = n-1 X =N

o Ol W N -
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Second Bottom-Up DP

change(i,x — C[i]) + 1
change(i + 1,x)

QUZSTiOH' change(i,x) = min{

» Filling which cell is our main goal if we want to change n cents?
« Cell (1,n)

x=0 x =1 X =2 X=3 x = n-1 X =N

I
o Ol W N -




Second Bottom-Up DP

change(i,x — C[i]) + 1
change(i + 1,x)

change(i,x) = min{

« Step 3: Determine an ordering of subproblems
« Consider the cell (i = 2,x = 3). Assume C[2]=2.
* From the recurrence (2,3) depends on (2,1) and (3,3)

x=0 x =1 X =2 X=3 x = n-1 X =N

U R T R T I |
o Ol W N -
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Second Bottom-Up DP

change(i, x)

_ . |change(i,x — C[i]) +1
B m1n{ change(i + 1,x)

« Step 3: Determine an ordering of subproblems
« Fill table from bottom to up and left to right

o Ol WD

x=0 x =1 X =2 X=3 x = n-1 X =N
B~ ~pr——— >
B s e it RS —
= —— ===t — - _ _ ——

— = = = — — L — R B
NI e —— — S .
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Second Bottom-Up DP

change(i,x — C[i]) + 1
change(i + 1, x)

" ) = mi
« Step 4: Solve base cases change(, ) mm{

* O coin for O cents

e o coins for m+1 cents

o
X
i
—
X
]
N
X
I
w
X
11
-
—
X
I
>

O[O OO |O|O|
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Second Bottom-Up DP

change(i,x — C[i]) + 1
change(i + 1, x)

« Step 5: I'teratively fill up the table change(i,x) = min{

Example: C = {1, 6, 10}, n = 12 cents

A~ wnn =T
OO0 |O|+




Second Bottom-Up DP

« Step 5: I'teratively fill up the table change(i, x) = min {Cha?ﬁq;é; ex(i_+CE]92)+ 1

Example: C = {1, 6, 10}, n = 12 cents

X 1 2 3 4 5 6 7 8 9 10 11 12
1 0 1 2 3 4 1 2 3 4 1 2 3
2 0] 00 (o) 00 &%) 1 (o) 00 &%) 1 (o) 2
3 0] 00 %0 oo o) o %0 oo o) 1 %0 o)
4 0 0 0 oo o) 0 0 oo o) 0 oo o)




 Step 5: Iteratively fill up the table change(i, x) = min{

Second Bottom-Up DP

change(i,x — C[i]) + 1
change(i + 1, x)

coNO VT~ WDNBR

Another-DP-Coin-Change(C, m, n)
mem[1:m][@:n] = a new array with each cell initialized to «
for i =1 tom
mem[i][@] = @ //© coins to return @ cents
for x = 2 to n

mem[m+1][x] = oo

for i = m downto 1 [Running Time: O(n - ICI)]

for x =1 to n
if(x - C[i] < 9)
mem[i][x] = mem[i+1][X]
else
mem[i][x] = min(mem[1i][x-C[i]] + 1 , mem[i+1][x])
return mem[1][n]




Thank You!
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