
COMP 550
Algorithm and Analysis

Dynamic Programming

Based on CLRS Sec. 14



The Rod-Cutting Problem
• Buy long rods, cut them into shorter rods, and sell them 

• Input: a rod of length n, a list of prices 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} (𝑝𝑖 denotes 

the price of length-i rod) 

• Output: The maximum achievable revenue (and corresponding rod cuts)
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length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30

8 ways to cut a rod of 

length 4 (from CLRS)



Determine a Recursive Structure
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• Let 𝑐𝑢𝑡(𝑛) be the maximum revenue of cutting a rod of length 𝑛

• Express 𝑐𝑢𝑡(𝑛) w.r.t smaller 𝑐𝑢𝑡(⋅) and 𝑝𝑖 values

𝑐𝑢𝑡 𝑛 = 𝒎𝒂𝒙

𝑐𝑢𝑡 𝑛 − 1 + 𝑝1

𝑐𝑢𝑡 𝑛 − 2 + 𝑝2

.

.

.
𝑐𝑢𝑡 0 + 𝑝𝑛

𝑝1 𝑐𝑢𝑡(𝑛 − 1)

𝑝1 𝑐𝑢𝑡(𝑛 − 2)

𝑝𝑛
𝑐𝑢𝑡(0)
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Recursive Algorithm
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𝑅(𝑛): Recursive calls made for given value of 𝑛.

𝑅 𝑛 = 1 + ෍

𝑗=0

𝑛−1

𝑅(𝑗)

𝑅 𝑛 = 2𝑛



Bottom-Up DP
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• What should be the table dimension and size?

• 1D array: 𝑐𝑢𝑡[0: 𝑛]

• What are the base cases?

• 𝐶𝑢𝑡 0 = 0

• No price to sell 0-length rod.

0

1 2 3 4 5 6 7 8 9 10Length i

Cut(i)

0



Bottom-Up DP
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• Fill up the table iteratively using the 

recurrence relation 

0

1 2 3 4 5 6 7 8 9 10Length i

Cut(i)

length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30

0

1

𝐶𝑢𝑡 1 = max( 𝐶𝑢𝑡 0 + 𝑝1)



Bottom-UP DP
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• Fill up the table iteratively using the 

recurrence relation 

0

1 2 3 4 5 6 7 8 9 10Length i

Cut(i)

length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30

0

1

𝐶𝑢𝑡 2 = max( 𝐶𝑢𝑡 1 + 𝑝1, 𝐶𝑢𝑡 0 + 𝑝2)

5



Bottom-UP DP
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• Fill up the table iteratively using the 

recurrence relation 

0 8

1 2 3 4 5 6 7 8 9 10Length i

Cut(i)

length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30

0

1

𝐶𝑢𝑡 3 = max( 𝐶𝑢𝑡 2 + 𝑝1, 𝐶𝑢𝑡 1 + 𝑝2, 𝐶𝑢𝑡 0 + 𝑝3)

5



Bottom-UP DP
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The inner loop executes for 1+2+…+n times

Running Time: Θ(𝑛2) 



Determining Rod Cuts

COMP550@UNC 10

• Determine the rod lengths that produce the maximum revenue

• Two ways:

• Store the best cut for each length (one additional table needed)

• Trace back the computation to determine the best cut



Determining Rod Cuts
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Longest Common Subsequence (LCS)
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• Input: Two sequences, 𝑋 = ⟨𝑥1, … , 𝑥𝑚 and 𝑌 = ⟨𝑦1, … , 𝑦𝑛

• Output: A common subsequence of 𝑋 and 𝑌 whose length is the 

maximum. 

springtime  ncaa tournament basketball

printing  north carolina  krzyzewski

• Subsequence need not be consecutive but must be in order



Longest Common Subsequence (LCS)
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• Application:

• Measuring similarity between DNA 

sequences of different organisms

• DNA sequences for with letters: A, T, C, G

Source: 
https://medlineplus.gov/geneti
cs/understanding/basics/dna/



Naïve Algorithm
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• For every subsequence of X, check whether it’s a 

subsequence of Y .

• Running Time: Θ(𝑛2𝑚).

• 2m subsequences of X to check.

• Each subsequence takes Θ(n) time to check: 

scan Y for first letter, for second, and so on
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Determine A Recursive Structure
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• Let 𝑐[𝑖, 𝑗] be the length of the LCS of 𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• 𝑋𝑖 is a prefix of 𝑋

• Can we express 𝑐[𝑖, 𝑗] w.r.t 𝑐[⋅,⋅] of smaller sequences?

A T A G A C𝑋𝑖

A T C𝑌𝑗

• If 𝑥𝑖 = 𝑦𝑗 , then 

LCS of 𝑋𝑖 and 𝑌𝑗 must end in 𝑥𝑖 and 𝑐[𝑖, 𝑗] = 𝑐[𝑖 − 1, 𝑗 − 1] + 1 

c
A T A G A𝑋𝑖−1

A T𝑌𝑗−1

c + 1=
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Determine A Recursive Structure
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• Let 𝑐[𝑖, 𝑗] be the length of the LCS of 𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• 𝑋𝑖 is a prefix of 𝑋

A T A G A C𝑋𝑖

A T C T𝑌𝑗

• If 𝑥𝑖 ≠ 𝑦𝑗 , then 

The end of LCS is either ≠ 𝑥𝑖 or ≠ 𝑦𝑗, and 𝑐 𝑖, 𝑗 = max( 𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1 )

c

A T A G A𝑋𝑖−1

𝑌𝑗

c

=

A T C T

max
A T A G A C𝑋𝑖

𝑌𝑗−1

c
A T C
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Determine A Recursive Structure
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• Let 𝑐[𝑖, 𝑗] be the length of the LCS of 𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• 𝑋𝑖 is a prefix of 𝑋

A T A G A C𝑋𝑖

𝑌𝑗

• If 𝑖 = 0 or 𝑗 = 0, then 𝑐 𝑖, 𝑗 = 0

c = 0
∅

Empty string



Determine A Recursive Structure
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• Let 𝑐[𝑖, 𝑗] be the length of the LCS of 𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• 𝑋𝑖 is a prefix of 𝑋

𝑐[𝑖, 𝑗] =

0

max( 𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1  ) , if 𝑥𝑖 ≠ 𝑦𝑗

, if 𝑥𝑖 = 𝑦𝑗

, if 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1



Determine A Recursive Structure
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• Optimal substructure property

• We can give the following theorem based on the same idea

• CLRS gives this Theorem before providing the recursive solution

Theorem 

Let Z = z1, . . . , zk be any LCS of X and Y.

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm  yn, then either zk  xm and Z is an LCS of Xm-1 and Y .

3.                               or  zk  yn and Z is an LCS of X and Yn-1.

Please go through the proof before next class and 

let me know if we need to cover this in class



Bottom-Up DP
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𝒄[𝒊, 𝒋]: length of the LCS of 

𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• The original sequences are 𝑋 = ⟨𝑥1, … , 𝑥𝑚 and 𝑌 = 𝑦1, … , 𝑦𝑛

• So, our goal is to determine 𝒄[𝒎, 𝒏] 

• What should be our table dimension and size?

• 2D table c[0:m,0:n]



Bottom-Up DP
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𝒄[𝒊, 𝒋]: length of the LCS of 

𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• From recurrence, the base case is when “i=0” or “j=0”

0 0 0 0 0 0

0

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G



Bottom-Up DP
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𝒄[𝒊, 𝒋]: length of the LCS of 

𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• Which order should the table be populated? (What are the dependencies?) 

0 0 0 0 0 0

0

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G



Bottom-Up DP
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𝑏[𝑖, 𝑗] points to table entry whose 
subproblem we used in solving LCS 
of Xi and Yj.

c[m,n] contains the length of an 
LCS of X and Y.

Running Time: Θ(𝑚 ⋅ 𝑛)

LCS-LENGTH (X, Y)
1.  m = length[X]

2.  n = length[Y]

3.  for i = 1 to m

4.      c[i,0] = 0

5.  for j = 0 to n

6.      c[0,j] = 0

7.  for i = 1 to m

8.      for j ← 1 to n

9.  if xi = yj
10.             c[i, j ] ← c[i−1, j−1] + 1

11.             b[i, j ] ← “↖”

12.  else if c[i−1, j ] ≥ c[i, j−1]

13.             c[i, j ] ← c[i− 1, j ]

14.             b[i, j ] ← “↑”

15.   else 

16.             c[i, j ] ← c[i, j−1]

17.             b[i, j ] ← “←”

18. return c and b



Bottom-Up DP
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LCS-LENGTH (X, Y)
1.  m = length[X]

2.  n = length[Y]

3.  for i = 1 to m

4.      c[i,0] = 0

5.  for j = 0 to n

6.      c[0,j] = 0

7.  for i = 1 to m

8.      for j ← 1 to n

9.  if xi = yj
10.             c[i, j ] ← c[i−1, j−1] + 1

11.             b[i, j ] ← “↖”

12.  else if c[i−1, j ] ≥ c[i, j−1]

13.             c[i, j ] ← c[i− 1, j ]

14.             b[i, j ] ← “↑”

15.   else 

16.             c[i, j ] ← c[i, j−1]

17.             b[i, j ] ← “←”

18. return c and b

0 0 0 0 0 0

0

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G
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LCS-LENGTH (X, Y)
1.  m = length[X]

2.  n = length[Y]

3.  for i = 1 to m

4.      c[i,0] = 0

5.  for j = 0 to n

6.      c[0,j] = 0

7.  for i = 1 to m

8.      for j ← 1 to n

9.  if xi = yj
10.             c[i, j ] ← c[i−1, j−1] + 1

11.             b[i, j ] ← “↖”

12.  else if c[i−1, j ] ≥ c[i, j−1]

13.             c[i, j ] ← c[i− 1, j ]

14.             b[i, j ] ← “↑”

15.   else 

16.             c[i, j ] ← c[i, j−1]

17.             b[i, j ] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G
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LCS-LENGTH (X, Y)
1.  m = length[X]

2.  n = length[Y]

3.  for i = 1 to m

4.      c[i,0] = 0

5.  for j = 0 to n

6.      c[0,j] = 0

7.  for i = 1 to m

8.      for j ← 1 to n

9.  if xi = yj
10.             c[i, j ] ← c[i−1, j−1] + 1

11.             b[i, j ] ← “↖”

12.  else if c[i−1, j ] ≥ c[i, j−1]

13.             c[i, j ] ← c[i− 1, j ]

14.             b[i, j ] ← “↑”

15.   else 

16.             c[i, j ] ← c[i, j−1]

17.             b[i, j ] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G
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LCS-LENGTH (X, Y)
1.  m = length[X]

2.  n = length[Y]

3.  for i = 1 to m

4.      c[i,0] = 0

5.  for j = 0 to n

6.      c[0,j] = 0

7.  for i = 1 to m

8.      for j ← 1 to n

9.  if xi = yj
10.             c[i, j ] ← c[i−1, j−1] + 1

11.             b[i, j ] ← “↖”

12.  else if c[i−1, j ] ≥ c[i, j−1]

13.             c[i, j ] ← c[i− 1, j ]

14.             b[i, j ] ← “↑”

15.   else 

16.             c[i, j ] ← c[i, j−1]

17.             b[i, j ] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G
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LCS-LENGTH (X, Y)
1.  m = length[X]

2.  n = length[Y]

3.  for i = 1 to m

4.      c[i,0] = 0

5.  for j = 0 to n

6.      c[0,j] = 0

7.  for i = 1 to m

8.      for j ← 1 to n

9.  if xi = yj
10.             c[i, j ] ← c[i−1, j−1] + 1

11.             b[i, j ] ← “↖”

12.  else if c[i−1, j ] ≥ c[i, j−1]

13.             c[i, j ] ← c[i− 1, j ]

14.             b[i, j ] ← “↑”

15.   else 

16.             c[i, j ] ← c[i, j−1]

17.             b[i, j ] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G
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LCS-LENGTH (X, Y)
1.  m = length[X]

2.  n = length[Y]

3.  for i = 1 to m

4.      c[i,0] = 0

5.  for j = 0 to n

6.      c[0,j] = 0

7.  for i = 1 to m

8.      for j ← 1 to n

9.  if xi = yj
10.             c[i, j ] ← c[i−1, j−1] + 1

11.             b[i, j ] ← “↖”

12.  else if c[i−1, j ] ≥ c[i, j−1]

13.             c[i, j ] ← c[i− 1, j ]

14.             b[i, j ] ← “↑”

15.   else 

16.             c[i, j ] ← c[i, j−1]

17.             b[i, j ] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖ 1←

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G
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LCS-LENGTH (X, Y)
1.  m = length[X]

2.  n = length[Y]

3.  for i = 1 to m

4.      c[i,0] = 0

5.  for j = 0 to n

6.      c[0,j] = 0

7.  for i = 1 to m

8.      for j ← 1 to n

9.  if xi = yj
10.             c[i, j ] ← c[i−1, j−1] + 1

11.             b[i, j ] ← “↖”

12.  else if c[i−1, j ] ≥ c[i, j−1]

13.             c[i, j ] ← c[i− 1, j ]

14.             b[i, j ] ← “↑”

15.   else 

16.             c[i, j ] ← c[i, j−1]

17.             b[i, j ] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖ 1←

0 1↖

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G
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LCS-LENGTH (X, Y)
1.  m = length[X]

2.  n = length[Y]

3.  for i = 1 to m

4.      c[i,0] = 0

5.  for j = 0 to n

6.      c[0,j] = 0

7.  for i = 1 to m

8.      for j ← 1 to n

9.  if xi = yj
10.             c[i, j ] ← c[i−1, j−1] + 1

11.             b[i, j ] ← “↖”

12.  else if c[i−1, j ] ≥ c[i, j−1]

13.             c[i, j ] ← c[i− 1, j ]

14.             b[i, j ] ← “↑”

15.   else 

16.             c[i, j ] ← c[i, j−1]

17.             b[i, j ] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖ 1←

0 1↖ 1← 1← 1← 1↑

0 1↑ 1↑ 2↖ 2← 2←

0 1↑ 2↖ 2↑ 2↑ 3↖

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G



Bottom-Up DP

COMP550@UNC 32

PRINT-LCS (b, X, i, j)

1.  if i = 0 or j = 0

2.  return

3.  if b[i, j] = “↖”

4.  PRINT-LCS(b, X, i−1, j−1)

5.     print xi
6.  else if b[i, j] = “↑”

7.  PRINT-LCS(b, X, i−1, j)

8.  else 

9.     PRINT-LCS(b, X, i, j−1)

•Initial call is PRINT-LCS(b, X, m, n)

•When b[i, j ] = “↖”, we have extended LCS by one character. 

So LCS = entries with “↖” in them

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖ 1←

0 1↖ 1← 1← 1← 1↑

0 1↑ 1↑ 2↖ 2← 2←

0 1↑ 2↖ 2↑ 2↑ 3↖

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Print: 𝑻𝑪𝑮

Running Time: 𝑂(𝑚 + 𝑛)



Thank You!
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