
COMP 550
Algorithm and Analysis

Dynamic Programming

Based on CLRS Sec. 14

The Rod-Cutting Problem
• Buy long rods, cut them into shorter rods, and sell them

• Input: a rod of length n, a list of prices 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛} (𝑝𝑖 denotes

the price of length-i rod)

• Output: The maximum achievable revenue (and corresponding rod cuts)

COMP550@UNC 2

length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30

8 ways to cut a rod of

length 4 (from CLRS)

Determine a Recursive Structure

COMP550@UNC 3

• Let 𝑐𝑢𝑡(𝑛) be the maximum revenue of cutting a rod of length 𝑛

• Express 𝑐𝑢𝑡(𝑛) w.r.t smaller 𝑐𝑢𝑡(⋅) and 𝑝𝑖 values

𝑐𝑢𝑡 𝑛 = 𝒎𝒂𝒙

𝑐𝑢𝑡 𝑛 − 1 + 𝑝1

𝑐𝑢𝑡 𝑛 − 2 + 𝑝2

.

.

.
𝑐𝑢𝑡 0 + 𝑝𝑛

𝑝1 𝑐𝑢𝑡(𝑛 − 1)

𝑝1 𝑐𝑢𝑡(𝑛 − 2)

𝑝𝑛
𝑐𝑢𝑡(0)

4

Recursive Algorithm

COMP550@UNC

𝑅(𝑛): Recursive calls made for given value of 𝑛.

𝑅 𝑛 = 1 + ෍

𝑗=0

𝑛−1

𝑅(𝑗)

𝑅 𝑛 = 2𝑛

Bottom-Up DP

COMP550@UNC 5

• What should be the table dimension and size?

• 1D array: 𝑐𝑢𝑡[0: 𝑛]

• What are the base cases?

• 𝐶𝑢𝑡 0 = 0

• No price to sell 0-length rod.

0

1 2 3 4 5 6 7 8 9 10Length i

Cut(i)

0

Bottom-Up DP

COMP550@UNC 6

• Fill up the table iteratively using the

recurrence relation

0

1 2 3 4 5 6 7 8 9 10Length i

Cut(i)

length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30

0

1

𝐶𝑢𝑡 1 = max(𝐶𝑢𝑡 0 + 𝑝1)

Bottom-UP DP

COMP550@UNC 7

• Fill up the table iteratively using the

recurrence relation

0

1 2 3 4 5 6 7 8 9 10Length i

Cut(i)

length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30

0

1

𝐶𝑢𝑡 2 = max(𝐶𝑢𝑡 1 + 𝑝1, 𝐶𝑢𝑡 0 + 𝑝2)

5

Bottom-UP DP

COMP550@UNC 8

• Fill up the table iteratively using the

recurrence relation

0 8

1 2 3 4 5 6 7 8 9 10Length i

Cut(i)

length 𝑖 1 2 3 4 5 6 7 8 9 10

price 𝑝𝑖 1 5 8 9 10 17 17 20 24 30

0

1

𝐶𝑢𝑡 3 = max(𝐶𝑢𝑡 2 + 𝑝1, 𝐶𝑢𝑡 1 + 𝑝2, 𝐶𝑢𝑡 0 + 𝑝3)

5

Bottom-UP DP

COMP550@UNC 9

The inner loop executes for 1+2+…+n times

Running Time: Θ(𝑛2)

Determining Rod Cuts

COMP550@UNC 10

• Determine the rod lengths that produce the maximum revenue

• Two ways:

• Store the best cut for each length (one additional table needed)

• Trace back the computation to determine the best cut

Determining Rod Cuts

COMP550@UNC 11

Longest Common Subsequence (LCS)

COMP550@UNC 12

• Input: Two sequences, 𝑋 = ⟨𝑥1, … , 𝑥𝑚 and 𝑌 = ⟨𝑦1, … , 𝑦𝑛

• Output: A common subsequence of 𝑋 and 𝑌 whose length is the

maximum.

springtime ncaa tournament basketball

printing north carolina krzyzewski

• Subsequence need not be consecutive but must be in order

Longest Common Subsequence (LCS)

COMP550@UNC 13

• Application:

• Measuring similarity between DNA

sequences of different organisms

• DNA sequences for with letters: A, T, C, G

Source:
https://medlineplus.gov/geneti
cs/understanding/basics/dna/

Naïve Algorithm

COMP550@UNC 14

• For every subsequence of X, check whether it’s a

subsequence of Y .

• Running Time: Θ(𝑛2𝑚).

• 2m subsequences of X to check.

• Each subsequence takes Θ(n) time to check:

scan Y for first letter, for second, and so on

15

Determine A Recursive Structure

COMP550@UNC

• Let 𝑐[𝑖, 𝑗] be the length of the LCS of 𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• 𝑋𝑖 is a prefix of 𝑋

• Can we express 𝑐[𝑖, 𝑗] w.r.t 𝑐[⋅,⋅] of smaller sequences?

A T A G A C𝑋𝑖

A T C𝑌𝑗

• If 𝑥𝑖 = 𝑦𝑗 , then

LCS of 𝑋𝑖 and 𝑌𝑗 must end in 𝑥𝑖 and 𝑐[𝑖, 𝑗] = 𝑐[𝑖 − 1, 𝑗 − 1] + 1

c
A T A G A𝑋𝑖−1

A T𝑌𝑗−1

c + 1=

16

Determine A Recursive Structure

COMP550@UNC

• Let 𝑐[𝑖, 𝑗] be the length of the LCS of 𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• 𝑋𝑖 is a prefix of 𝑋

A T A G A C𝑋𝑖

A T C T𝑌𝑗

• If 𝑥𝑖 ≠ 𝑦𝑗 , then

The end of LCS is either ≠ 𝑥𝑖 or ≠ 𝑦𝑗, and 𝑐 𝑖, 𝑗 = max(𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1)

c

A T A G A𝑋𝑖−1

𝑌𝑗

c

=

A T C T

max
A T A G A C𝑋𝑖

𝑌𝑗−1

c
A T C

17

Determine A Recursive Structure

COMP550@UNC

• Let 𝑐[𝑖, 𝑗] be the length of the LCS of 𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• 𝑋𝑖 is a prefix of 𝑋

A T A G A C𝑋𝑖

𝑌𝑗

• If 𝑖 = 0 or 𝑗 = 0, then 𝑐 𝑖, 𝑗 = 0

c = 0
∅

Empty string

Determine A Recursive Structure

COMP550@UNC 18

• Let 𝑐[𝑖, 𝑗] be the length of the LCS of 𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• 𝑋𝑖 is a prefix of 𝑋

𝑐[𝑖, 𝑗] =

0

max(𝑐 𝑖 − 1, 𝑗 , 𝑐 𝑖, 𝑗 − 1) , if 𝑥𝑖 ≠ 𝑦𝑗

, if 𝑥𝑖 = 𝑦𝑗

, if 𝑖 = 0 or 𝑗 = 0

𝑐 𝑖 − 1, 𝑗 − 1 + 1

Determine A Recursive Structure

COMP550@UNC 19

• Optimal substructure property

• We can give the following theorem based on the same idea

• CLRS gives this Theorem before providing the recursive solution

Theorem

Let Z = z1, . . . , zk be any LCS of X and Y.

1. If xm = yn, then zk = xm = yn and Zk-1 is an LCS of Xm-1 and Yn-1.

2. If xm  yn, then either zk  xm and Z is an LCS of Xm-1 and Y .

3. or zk  yn and Z is an LCS of X and Yn-1.

Please go through the proof before next class and

let me know if we need to cover this in class

Bottom-Up DP

COMP550@UNC 20

𝒄[𝒊, 𝒋]: length of the LCS of

𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• The original sequences are 𝑋 = ⟨𝑥1, … , 𝑥𝑚 and 𝑌 = 𝑦1, … , 𝑦𝑛

• So, our goal is to determine 𝒄[𝒎, 𝒏]

• What should be our table dimension and size?

• 2D table c[0:m,0:n]

Bottom-Up DP

COMP550@UNC 21

𝒄[𝒊, 𝒋]: length of the LCS of

𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• From recurrence, the base case is when “i=0” or “j=0”

0 0 0 0 0 0

0

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 22

𝒄[𝒊, 𝒋]: length of the LCS of

𝑋𝑖 = 𝑥1, … , 𝑥𝑖 and 𝑌𝑗 = 𝑦1, … , 𝑦𝑗

• Which order should the table be populated? (What are the dependencies?)

0 0 0 0 0 0

0

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 23

𝑏[𝑖, 𝑗] points to table entry whose
subproblem we used in solving LCS
of Xi and Yj.

c[m,n] contains the length of an
LCS of X and Y.

Running Time: Θ(𝑚 ⋅ 𝑛)

LCS-LENGTH (X, Y)
1. m = length[X]

2. n = length[Y]

3. for i = 1 to m

4. c[i,0] = 0

5. for j = 0 to n

6. c[0,j] = 0

7. for i = 1 to m

8. for j ← 1 to n

9. if xi = yj
10. c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “↖”

12. else if c[i−1, j] ≥ c[i, j−1]

13. c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else

16. c[i, j] ← c[i, j−1]

17. b[i, j] ← “←”

18. return c and b

Bottom-Up DP

COMP550@UNC 24

LCS-LENGTH (X, Y)
1. m = length[X]

2. n = length[Y]

3. for i = 1 to m

4. c[i,0] = 0

5. for j = 0 to n

6. c[0,j] = 0

7. for i = 1 to m

8. for j ← 1 to n

9. if xi = yj
10. c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “↖”

12. else if c[i−1, j] ≥ c[i, j−1]

13. c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else

16. c[i, j] ← c[i, j−1]

17. b[i, j] ← “←”

18. return c and b

0 0 0 0 0 0

0

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 25

LCS-LENGTH (X, Y)
1. m = length[X]

2. n = length[Y]

3. for i = 1 to m

4. c[i,0] = 0

5. for j = 0 to n

6. c[0,j] = 0

7. for i = 1 to m

8. for j ← 1 to n

9. if xi = yj
10. c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “↖”

12. else if c[i−1, j] ≥ c[i, j−1]

13. c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else

16. c[i, j] ← c[i, j−1]

17. b[i, j] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 26

LCS-LENGTH (X, Y)
1. m = length[X]

2. n = length[Y]

3. for i = 1 to m

4. c[i,0] = 0

5. for j = 0 to n

6. c[0,j] = 0

7. for i = 1 to m

8. for j ← 1 to n

9. if xi = yj
10. c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “↖”

12. else if c[i−1, j] ≥ c[i, j−1]

13. c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else

16. c[i, j] ← c[i, j−1]

17. b[i, j] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 27

LCS-LENGTH (X, Y)
1. m = length[X]

2. n = length[Y]

3. for i = 1 to m

4. c[i,0] = 0

5. for j = 0 to n

6. c[0,j] = 0

7. for i = 1 to m

8. for j ← 1 to n

9. if xi = yj
10. c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “↖”

12. else if c[i−1, j] ≥ c[i, j−1]

13. c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else

16. c[i, j] ← c[i, j−1]

17. b[i, j] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 28

LCS-LENGTH (X, Y)
1. m = length[X]

2. n = length[Y]

3. for i = 1 to m

4. c[i,0] = 0

5. for j = 0 to n

6. c[0,j] = 0

7. for i = 1 to m

8. for j ← 1 to n

9. if xi = yj
10. c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “↖”

12. else if c[i−1, j] ≥ c[i, j−1]

13. c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else

16. c[i, j] ← c[i, j−1]

17. b[i, j] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 29

LCS-LENGTH (X, Y)
1. m = length[X]

2. n = length[Y]

3. for i = 1 to m

4. c[i,0] = 0

5. for j = 0 to n

6. c[0,j] = 0

7. for i = 1 to m

8. for j ← 1 to n

9. if xi = yj
10. c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “↖”

12. else if c[i−1, j] ≥ c[i, j−1]

13. c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else

16. c[i, j] ← c[i, j−1]

17. b[i, j] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖ 1←

0

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 30

LCS-LENGTH (X, Y)
1. m = length[X]

2. n = length[Y]

3. for i = 1 to m

4. c[i,0] = 0

5. for j = 0 to n

6. c[0,j] = 0

7. for i = 1 to m

8. for j ← 1 to n

9. if xi = yj
10. c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “↖”

12. else if c[i−1, j] ≥ c[i, j−1]

13. c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else

16. c[i, j] ← c[i, j−1]

17. b[i, j] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖ 1←

0 1↖

0

0

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 31

LCS-LENGTH (X, Y)
1. m = length[X]

2. n = length[Y]

3. for i = 1 to m

4. c[i,0] = 0

5. for j = 0 to n

6. c[0,j] = 0

7. for i = 1 to m

8. for j ← 1 to n

9. if xi = yj
10. c[i, j] ← c[i−1, j−1] + 1

11. b[i, j] ← “↖”

12. else if c[i−1, j] ≥ c[i, j−1]

13. c[i, j] ← c[i− 1, j]

14. b[i, j] ← “↑”

15. else

16. c[i, j] ← c[i, j−1]

17. b[i, j] ← “←”

18. return c and b

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖ 1←

0 1↖ 1← 1← 1← 1↑

0 1↑ 1↑ 2↖ 2← 2←

0 1↑ 2↖ 2↑ 2↑ 3↖

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Bottom-Up DP

COMP550@UNC 32

PRINT-LCS (b, X, i, j)

1. if i = 0 or j = 0

2. return

3. if b[i, j] = “↖”

4. PRINT-LCS(b, X, i−1, j−1)

5. print xi
6. else if b[i, j] = “↑”

7. PRINT-LCS(b, X, i−1, j)

8. else

9. PRINT-LCS(b, X, i, j−1)

•Initial call is PRINT-LCS(b, X, m, n)

•When b[i, j] = “↖”, we have extended LCS by one character.

So LCS = entries with “↖” in them

0 0 0 0 0 0

0 0↑ 0↑ 0↑ 1↖ 1←

0 1↖ 1← 1← 1← 1↑

0 1↑ 1↑ 2↖ 2← 2←

0 1↑ 2↖ 2↑ 2↑ 3↖

0

1

2

3

4

𝑋

A

T

C

G

1 2 3 4 50

𝑌 T G C A G

Print: 𝑻𝑪𝑮

Running Time: 𝑂(𝑚 + 𝑛)

Thank You!

COMP550@UNC 33

	Slide 1: COMP 550 Algorithm and Analysis Dynamic Programming Based on CLRS Sec. 14
	Slide 2: The Rod-Cutting Problem
	Slide 3: Determine a Recursive Structure
	Slide 4
	Slide 5: Bottom-Up DP
	Slide 6: Bottom-Up DP
	Slide 7: Bottom-UP DP
	Slide 8: Bottom-UP DP
	Slide 9: Bottom-UP DP
	Slide 10: Determining Rod Cuts
	Slide 11: Determining Rod Cuts
	Slide 12: Longest Common Subsequence (LCS)
	Slide 13: Longest Common Subsequence (LCS)
	Slide 14: Naïve Algorithm
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Determine A Recursive Structure
	Slide 19: Determine A Recursive Structure
	Slide 20: Bottom-Up DP
	Slide 21: Bottom-Up DP
	Slide 22: Bottom-Up DP
	Slide 23: Bottom-Up DP
	Slide 24: Bottom-Up DP
	Slide 25: Bottom-Up DP
	Slide 26: Bottom-Up DP
	Slide 27: Bottom-Up DP
	Slide 28: Bottom-Up DP
	Slide 29: Bottom-Up DP
	Slide 30: Bottom-Up DP
	Slide 31: Bottom-Up DP
	Slide 32: Bottom-Up DP
	Slide 33: Thank You!

