COMP 550
Algorithm and Analysis

Dynamic Programming

Based on CLRS Sec. 14

The Rod-Cutting Problem

* Buy long rods, cut them into shorter rods, and sell them

 Input: a rod of length n, a list of prices P = {p;,p,, ..., pn} (p; denotes
the price of length-i rod)

 Qutput: The maximum achievable revenue (and corresponding rod cuts)

length i 1 2 3 4 5 6 7 8 9 10
price p; 1 5 8 9 10 17 17 20 24 30

D OO [@oj] D
8 ways to cut a rod of ® @

length 4 (from CLRS) oD OO OO OOOOD

h

Determine a Recursive Structure

* Let cut(n) be the maximum revenue of cutting a rod of length n

» Express cut(n) w.r.t smaller cut(-) and p; values

wopen CLLCCCLD

cut(in — 2) + p, cut(n — 1)

SR Seaaa

1 cut(n — 2)

L cut(0) + py, :

(C (D

Do I cut(0)

Recursive Algorithm

CUT-ROD(p, n)

1 ifn==

2 return O

3 g = —00

4 fori =1ton

5 g = max{q, p[i] + CuT-ROD(p.n — i)}
6 return g

R(n): Recursive calls made for given value of n.
n-—1
R(n)=1+ R(j)

R(n) = 2"

Bottom-Up DP

 What should be the table dimension and size?

* 1D array: cut[0:n]

 What are the base cases?
e Cut[0] =0

* No price to sell O-length rod.

Length i 0 1 2 3 4 5 6 7

cut(n) = max <

(cut(n — 1) + py
cut(n — 2) + p,

L cut(0) + py

Cut(i) 0

Bottom-Up DP

* Fill up the table iteratively using the ut(n=2) +p;

cut(n) = max <

recurrence relation

L cut(0) + py

lengthi | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10
pricep; | 1 | 5 | 8 | 9 | 10| 17 | 17 | 20 | 24 | 30

Cut(1) = max(Cut(0) + p;)

Length i 0 1 2 3 4 5 6 7 8 9 10
Cut(i) 0 1

Bottom-UP DP

* Fill up the table iteratively using the ut(n=2) +p;

cut(n) = max <

recurrence relation

L cut(0) + py

lengthi | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10
pricep; | 1 | 5 | 8 | 9 | 10| 17 | 17 | 20 | 24 | 30

Cut(2) = max(Cut(1) + py, Cut(0) + p,)

Length i 0 1 2 3 4 5 6 7 8 9 10
Cut(i) 0 1 5

e

Bottom-UP DP

* Fill up the table iteratively using the ut(n=2) +p;

cut(n) = max <

recurrence relation

L cut(0) + py

lengthi | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |10
pricep; | 1 | 5 | 8 | 9 | 10| 17 | 17 | 20 | 24 | 30

Cut(3) = max(Cut(2) + py, Cut(1) + p,, Cut(0) + p3)

Length i 0 1 2 3 4 5 6 7 8 9 10
Cut(i) 0 1 5 8

L CCO

Bottom-UP DP

BotTOM-UP-CUT-ROD (p, 1)

1
2
3
4
5
6
7
8

let #[0: n] be a new array // will remember solution values in r
rjf0] =0
for j = 1ton // for increasing rod length j

g = —0o0

fori = 1to // i is the position of the first cut

q = max{q,pli|+r[j —i]}

rljl = g // remember the solution value for length ;

return r|n]

The inner loop executes for 1+2+..+n times
Running Time: 0(n?)

COMP550@UNC

Determining Rod Cuts

 Determine the rod lengths that produce the maximum revenue

* Two ways:
« Store the best cut for each length (one additional table needed)

 Trace back the computation to determine the best cut

Determining Rod Cuts

EXTENDED-BOTTOM-UP-CUT-ROD(p, nn)

1 letr|0..n] ancle new arrays PRINT-CUT-ROD-SOLUTION(p, 1)

2 r[0] =0 1 (r,s) = EXTENDED-BOTTOM-UP-CUT-ROD(p, n)
3 forj = 1ton 2 whilen >0

4 g = —0o< 3 print s{n|

5 fori = 1toj 4 n=n-—sn|

6 ifg < pli]+r[j —i]

7 q = pli]+r[j—1i]

:

9 rljl = q

10 return r and s

i |01 23 4 5 6 7 8 9 10
ri110 1 5 8 10 13 17 18 22 25 30
si]lo 123 2 2 6 1 2 3 10

COMP550@UNC 1

Longest Common Subsequence (LCS)

» Input: Two sequences, X = (xy, ..., x,pand ¥ = (y, .., y,)

 Qutput: A common subsequence of X and Y whose length is the

maximum.

springtime ncaa fournament b7<e’rball
AN AN
prinfing north carolina krzyzewski

« Subsequence need not be consecutive but must be in order

Longest Common Subsequence (LCS)

« Application:

* Measuring similarity between DNA

sequences of different organisms

* DNA sequences for with letters: A, T, C, G

Source:
https://medlineplus.gov/geneti
cs/understanding/basics/dna/

Naive Algorithm

* For every subsequence of X, check whether it's a

subsequence of Y .

* Running Time: 0(n2™).
« 2M subsequences of X to check.

* Each subsequence takes O(n) time to check:

scan Y for first letter, for second, and so on

Determine A Recursive Structure

* Let c[i,j] be the length of the LCS of X; = (xy,...,xpand ¥; = (y,, ...,y
* X; is a prefix of X

* Can we express c[i,j] w.r.t c[,-] of smaller sequences?

Xi\lA|TlA|6|A|C Xi | A|T|A]G]|A

Yl a|lT]cC Yi 1| AT

« If Xi =Y then
LCS of X; and ¥; must end in x; and c[i,j] = c[i—1,j —1] + 1

Determine A Recursive Structure

* Let c[i,j] be the length of the LCS of X; = (x4, ..., xpand ¥; = (y,, ..., ¥))

* X; is a prefix of X

C
= — , |[A|T|c]|T
Xi|A|T|I|A|G|A]|C L
C = max - _
GlalTlc|T X; |A|T|A|G6|A]|C
- - C
i, |A|T]|C

« If Xi F Yj, then
The end of LCS is either # x; or # y;, and c[i, j] = max(c[i — 1,j],c[i,j — 1])

Determine A Recursive Structure

* Let c[i,j] be the length of the LCS of X; = (x4, ..., xpand ¥; = (y,, ..., ¥))

* X; is a prefix of X

3}
1
=)

Empty string

« Ifi=00rj=0,thenc[i,j]=0

Determine A Recursive Structure

* Let c[i,j] be the length of the LCS of X; = (x4, ..., xpand ¥; = (y,, ..., ¥))

* X; is a prefix of X

0 ,ifi=0o0rj=0
cli,jl =4 cli—-1,j—1]+1 i X =y,
max(c[i _ 1,j],C[i,j— 1]) , I X -'Fy]

Determine A Recursive Structure

 Optimal substructure property
« We can give the following theorem based on the same idea

« CLRS gives this Theorem before providing the recursive solution

Theorem

Let Z=(z, ..., z,) be any LCS of X and Y.

1.If x,= vy, then z, = x_,=y,and Z, ; isan LCS of X, ;and Y, ;.
2. If x,, # y,, then either z, # x,, and Zis an LCS of X, ;and Y.
3. or z.#Yy,and ZisanLCS of Xand Y, ;.

Please go through the proof before next class and
let me know if we need to cover this in class

Bottom-Up DP

c[i,j]: length of the LCS of » {
cli,j] =
Xi = (xg, ., xpand ¥; = (yy, ...,)

0
cli-1,j—1]+1

,ifi=0o0rj=0
,ifxizyj

max(cl[i — 1,j],c[i,j —1]) ifx # Yj

 The original sequences are X = (x;, ..., x,)and Y = (y,, ..., y,)

* So, our goal is to determine c[m, n|

« What should be our table dimension and size?

« 2D table ¢[0:m,0:n]

Bottom-Up DP

c[i,j]: length of the LCS of 0 ifi=0orj=0
C[l’]] - C[i—l,j—l]‘l‘l ,lf .X'i=yj
X; = (X 0 Xyp) and Y, = V1, ...,yj> max(eli = 1,],cli/ = 11) | if x; % y,

* From recurrence, the base case is when "i=0" or " j=0"
Y T 6 C A G

1 2 3 4 5
0 0 0 0 0

O 4 x
H WO -, O
O] O| Ol ©of O] O

Bottom-Up DP

c[i,j]: length of the LCS of 0 fiz0orj=0
3 _ cli,jl =4 cli—1,j—1]+1 Jif x; =y,
Xi = (xg, ., xpand ¥; = (yy, ...,) max(cli— 1j]elii = 11) | if x; # y,

« Which order should the table be populated? (What are the dependencies?)

Y T 6 C A G

1 2 3 4 5
0 0 0 0 0

4

O 4 »
A W N -~ O
ol O] O] Ol O] O

Bottom-Up DP

LCS-LENGTH (X, Y)

1. m = length[X] 0 ,ifi=00rj=0
2. n = length[Y] cli—-1,j—-1]1+1 i x; = y;

3. for 1 =1tom max(c[i —1,j],c[i,j —1]) Jif X %y

4. c[i,0] = @

5. for j =0 ton

6. c[0,7] = ©

7. for 1 =1 tom

8. for j « 1 ton . .

9. if x; =y, b[i, j] points to table entry whose
10. c[i, j 1« cl[i1, j-] + 7 subproblem we used in solving LCS
11. b[i, j] « “\” . .

12. else if c[i-1, 7] 2 c[i, j-1] of X,and yJ

13. clt, j] <cli=1, 7] c[m,n] contains the length of an
14. b['l_, 7] «

15 else LCS of Xand Y.

16. cli, J]« cli, j-1] : N

17. b[l, :]] « € { Runr"ng Tlme- @(m ° Tl) J

18. return c and b

Bottom-Up DP

LCS-LENGTH (X, Y)

O o0 NOYUTAN WN R

R R R RPRRRKPRPRRR
CON O UN WIN RO

m = Length[X]
n = Length[Y]
for 1 =1 tom

c[i1,0] = ©
for j = 0 ton
C[@Jj] = 0

for 1 =1 tom

for j « 1 ton

c[i, J]+«
b[i, 7] «
else if c[i-1, j] 2 c[i, j-1]

c[i, J 1
b[1, j]

else

c[i, j]
b[i, j]
. return c and b

&«

&

c[i-1, j-1] + 1
ﬂ'\))

C[i_ 1: .]]
€4

C[i) j_l]
€€

0 ,ifi=0o0rj=0
cli,jl =9 cli—1,i—11+1 Jif x; =y
max(c[i - 1,j],C[i,j - 1]) , If Xi F Vj
Y T G C A
X 0] 1 2 3 4 5
0 0 0 0 0 0
A 1] O
T 2|0
c 3|09
6 4|0

Bottom-Up DP

LCS-LENGTH (X, Y)

1. m = length[X]

2. n = length[Y]

3. for 1 =1tom

4. c[i,0] = ©

5. for j =0 ton

6. c[0,7] = ©

7. for 1 =1tom

8. for j « 1 ton

9. if x; = y;

10. c[i, 7] « c[11, j-1] + 1
11. L, 1.1 « “\”

12. else if c[1-1, 7] 2 c[1, j-1]
13. C[iJ .7] < C[i_ 1, .]]

14. b[1, j] « “™

15. else]

16. C[iJ .7] < C[i) j_l]

17. b[1, j] « “<”

18. return c and b

0 ,ifi=0o0rj=0
cli,jl =9 cli—1,i—11+1 Jif x; =y
max(c[i - 1,j],C[i,j - 1]) , If Xi F Vj
v @ e :
X 0] 1 2 4 5
0 0 0 0 0 0
@1 O | o
T 2| 0
c 3|0
6 4| 0

Bottom-Up DP

LCS-LENGTH (X, Y)

1. m = length[X]

2. n = length[Y]

3. for 1 =1tom

4. c[i,0] = ©

5. for j =0 ton

6. c[0,7] = ©

7. for 1 =1tom

8. for j « 1 ton

9. if x; = y;

10. c[i, 7] « c[11, j-1] + 1
11. L, 1.1 « “\”

12. else if c[1-1, 7] 2 c[1, j-1]
13. C[iJ .7] < C[i_ 1, .]]

14. b[1, j] « “™

15. else]

16. C[iJ .7] < C[i) j_l]

17. b[1, j] « “<”

18. return c and b

0 ,ifi=0o0rj=0
cli,jl =9 cli—1,i—11+1 Jif x; =y
max(c[i - 1,j],C[i,j - 1]) , If Xi F y]
y T @ cC A
X 0] 1 2 3 4 5
0 0 0 0 0 0 0,
@1 o | or | o
T 2|0
c 3|0
6 4|0

Bottom-Up DP

LCS-LENGTH (X, Y)

1. m = length[X]

2. n = length[Y]

3. for 1 =1tom

4. c[i,0] = ©

5. for j =0 ton

6. c[0,7] = ©

7. for 1 =1tom

8. for j « 1 ton

9. if x; = y;

10. c[i, 7] « c[11, j-1] + 1
11. L, 1.1 « “\”

12. else if c[1-1, 7] 2 c[1, j-1]
13. C[iJ .7] < C[i_ 1, .]]

14. b[1, j] « “™

15. else]

16. C[iJ .7] < C[i) j_l]

17. b[1, j] « “<”

18. return c and b

0 ,ifi=0o0rj=0
cli,jl =9 cli—1,i—11+1 Jif x; =y
max(c[i - 1,j],C[i,j - 1]) , If Xi F y]
Y T 6 @ A
X 0 1 2 3 4 5
0 0] 0] 0] 0] 0
@1 0 [or | or | o
T 2 0
¢c 3|0
G 4 0

Bottom-Up DP

LCS-LENGTH (X, Y)

1. m = length[X] 0 ,ifi=00rj=0
2. n = length[Y] cli,jl =4 cli—1.i—11+1 if x; =y

3. for 1 =1 tom max(c[i — 1,j],c[i,j —1]) ifx £y

4. c[i1,0] = ©

5. for j =0 ton

6. c[0,7] = ©

7. for 1 =1 tom Y v 6 € @ 6
8. for j « 1 ton X 0 1 2 3 4 o
9. if X; =Y,

10. c[i, 5]« c[id, j-] + 1 o| 9]0 01010
11. b, 7 1 « “ @ 1[0 o100 m

12. else if c[i-1, j] = c[1i, j-1]

13. cli, 5 1«cli-1,] T 20

14. b[i, 7] « “1” 0

15. else c 3

16. cli, j] « c[i, j-1] G 4| 0

17. b[1, j] « “<”

18. return c and b

Bottom-Up DP

LCS-LENGTH (X, Y)

1. m = length[X] 0 ,ifi=00rj=0
2. n = length[Y] cli,jl =4 cli—1.i—11+1 if x; =y

3. for 1 =1tom max(c[i — 1,j],c[i,j —1]) ifx £y

4. c[i,0] = ©

5. for j =0 ton

6. c[0,7] = ©

7. for i1 =1 tom Y T G ¢ A @
8. for j « 1 ton X 0 1 2 3 4 o

9. if X; =Y,

10. c[i, 5]« c[id, j-] + 1 o 0|0} 010100

11. bli, 7 1 « “ @ 1[0 ot |00 ||
12. else if c[i1-1, j] 2 c[1, j-1]

13. cli, 5 1«cli-1,] T 20

14. b[i, 7] « “1” 0

15. C 3

16. c[i, j-1] G 4| O

17. €’

18. return c and b

Bottom-Up DP

LCS-LENGTH (X, Y)

1. m = length[X] 0 ,ifi=00rj=0
2. n = length[Y] cli,jl =4 cli—1.i—11+1 if x; =y

3. for 1 =1tom max(c[i — 1,j],c[i,j —1]) ifx £y

4. c[i,0] = ©

5. for j =0 ton

6. c[0,7] = ©

7. for 1 =1 tom v @ G C A

8. for j « 1 to n 0 1 2 3 4 5
9. if X; =Y,

10. cli, j 1« o0 0101070
12 cli1-1, 7

13 c[i, j] « 0 | 1IN

14 b[1, J] « 0

15 else

16 c[i, j] « 0

17 b[1, j] «

18. return c and b

Bottom-Up DP

LCS-LENGTH (X, Y)

1. m = length[X] 0 ,ifi=00rj=0
2. n = length[Y] cli,jl =9 cli—1.i—-11+1 Jif x =y,

3. for 1 =1 tom max(c[i — 1,j],c[i,j —1]) Jif x; % yj

4. c[i1,0] = ©

5. for j =0 ton

6. c[0,7] = © v

7. for i1 =1 tom T 6 ¢ A

8. for j « 1 to n X 0 1 2 3 4 B

9. if x; = y;

10. c[i, 51« cl[i-1, §-1] + 1 o 9|0 0|00

11. b[i, j 1« “\” A 1| 0 o |of|of | IN |1«
12. else if c[1-1, j] 2 c[1, j-1]

13. c[i, 71 «c[i-1, F] T 2| 0 | 1IN |1l |1 |1 | 1T

14. b[i, j]« “1” c 3 0 1T | 1T | 2N | 2« | 2«
15. else

16. cli, 7 1 « c[i, j-1] G 4| 0O |11 | 2x | 2T | 27 | 3N
17. b[i, j] « “<”

18. return c and b

Bottom- Up DP

PRINT-LCS (b, X, 1, 7) T 6 C A
1. ifi=0o0r j=20 X O 1 2 3 4 5
2. return
3. if b[i, jJ] = “\” 0 12191919 °9
4. PRINT-LCS(b, X, i-1, j-1) A 1| O [of|of | oF | IN]| 1«
5. print x T 2|0 <:> e | 1« | 1< | 17
6. else if b[i, j] = “1” 0

L c 3 11\ 11 2 | 26
7. PRINT-LCS(b, X, i-1, 7) \
s elce 6 4| 0 | 11 \2\ T 21 /@
9. PRINT-LCS(b, X, i, j-1) \L—

Initial call is PRINT-LCS(b, X, m, n) { Print: TCG J
*When b[i, j] = “~”, we have extended LCS by one character.
So LCS = entries with “x” in them {Running Time: O(m + n)}

Thank You!

	Slide 1: COMP 550 Algorithm and Analysis Dynamic Programming Based on CLRS Sec. 14
	Slide 2: The Rod-Cutting Problem
	Slide 3: Determine a Recursive Structure
	Slide 4
	Slide 5: Bottom-Up DP
	Slide 6: Bottom-Up DP
	Slide 7: Bottom-UP DP
	Slide 8: Bottom-UP DP
	Slide 9: Bottom-UP DP
	Slide 10: Determining Rod Cuts
	Slide 11: Determining Rod Cuts
	Slide 12: Longest Common Subsequence (LCS)
	Slide 13: Longest Common Subsequence (LCS)
	Slide 14: Naïve Algorithm
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Determine A Recursive Structure
	Slide 19: Determine A Recursive Structure
	Slide 20: Bottom-Up DP
	Slide 21: Bottom-Up DP
	Slide 22: Bottom-Up DP
	Slide 23: Bottom-Up DP
	Slide 24: Bottom-Up DP
	Slide 25: Bottom-Up DP
	Slide 26: Bottom-Up DP
	Slide 27: Bottom-Up DP
	Slide 28: Bottom-Up DP
	Slide 29: Bottom-Up DP
	Slide 30: Bottom-Up DP
	Slide 31: Bottom-Up DP
	Slide 32: Bottom-Up DP
	Slide 33: Thank You!

