
COMP 550
Algorithm and Analysis

Minimum Spanning Tree

Based on CLRS Sec. 21

Some slides are adapted from ones by Prof. Jim Anderson 



Minimum-Cost Communication Network
• We want to set up a communication network on 𝑛 locations so that each pair of 

locations are connected

• The cost of a direct link is proportional to their distance

• Construct the network as cheaply as possible
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Minimum-Cost Communication Network
• The number of direct link should be as small as possible

• Property 1: Acyclic. (The cheapest network is a tree)
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A tree has no cycle (unlike this)

Source: https://www.dailymail.co.uk/news/article-2255706/Amazing-images-bikes-left-long-trees-them.html



Minimum-Cost Communication Network
• The number of direct link should be as small as possible

• Property 2: Barely connected (formally, minimally connected). Removal of any 

link disconnects some location from the network

• Property 2: Maximally acyclic. Addition of any link creates a cycle
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Spanning Tree
• 𝑇 = (𝑉𝑇 , 𝐸𝑇) is a spanning tree of a connected graph 𝐺 = 𝑉, 𝐸  if 𝑇 

connects (‘’spans’’) all vertices in 𝐺

• 𝐺 is an undirected graph 
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A graph 𝐺 A spanning tree of 𝐺

Weight/Cost of a spanning tree = σ weight of each tree edge



Minimum Spanning Tree (MST)
• A graph 𝐺 can have many spanning trees

• Minimum Spanning Tree (MST): spanning tree with minimum weight/cost

COMP550@UNC 6

a

b c d

e

h g f

i

4

8

8

11
7

2

1 2

6
4 14

9

10

7

a

b c d

e

h g f

i

8

8

11

1 2

6
10

7

a

b c d

e

h g f

i

4

8

2

1 2

4

9

7
Tree Weight = 53 Tree Weight = 37



The MST Problem 
• Input: An undirected weighted graph 𝐺 = (𝑉, 𝐸) with weight function 

𝑤: 𝐸 → 𝐑

• Output: An MST of 𝐺

• Question: What about MST of an undirected unweighted graph? 
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Optimal Substructure
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• Does MST have optimal substructure property?

• Does MST of a graph 𝐺 contain MST of 𝐺’s subgraph?

• Yes!

Lemma. Let 𝑇1 and 𝑇2 be two trees after removing an edge (𝑢, 𝑣) from an MST 𝑇 of graph 

𝐺. Then, 𝑇1 and 𝑇2 are MSTs of the subgraphs induced by nodes of 𝑇1 and 𝑇2, respectively.
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Optimal Substructure
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Lemma. Let 𝑇1 and 𝑇2 be two trees after removing an edge (𝑢, 𝑣) from an MST 𝑇 of graph 

𝐺. Then, 𝑇1 and 𝑇2 are MSTs of the subgraphs induced by nodes of 𝑇1 and 𝑇2, respectively.
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Remove 𝑐, 𝑑  
from 𝑇

Proof: W.l.o.g., assume that 𝑇1 is not an MST of the subgraph induced by 𝑇1.

Assume 𝑇1
′ is an MST of that subgraph.

Then, we can create an MST 𝑇′ of 𝐺 by connecting 𝑇1
′ and 𝑇2 by (𝑢, 𝑣). 𝑇′ has smaller 

weight than 𝑇, contradiction.



• A cut 𝑆, 𝑉 − 𝑆  of an undirected graph is a 

partition of 𝑉

• An edge crosses cut 𝑆, 𝑉 − 𝑆  if its one 

endpoint is in 𝑆 and the other in 𝑉 − 𝑆

• An edge is a light edge crossing a cut is 

its weight is the minimum crossing that 

cut

Cut
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Example: 𝑆 = {𝑎, 𝑏, 𝑑, 𝑒} and 𝑉 − 𝑆 =

𝑐, 𝑓, 𝑔, ℎ, 𝑖

• Edges 𝑎, ℎ , 𝑏, ℎ , 𝑏, 𝑐 , 𝑐, 𝑑 , (𝑑, 𝑓) 

cross the cut.

• (𝑐, 𝑑) is the light edge for this cut



Cut Property
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Lemma. Let 𝑆, 𝑉 − 𝑆  be a cut of a graph 𝐺 and (𝑢, 𝑣) be a light edge crossing the 

cut. Then, there is an MST that has (𝑢, 𝑣) as one of its edge. 
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There is an MST that has the edge (𝑐, 𝑑) as one of its edge

This property is basically a greedy-choice property



Cut Property
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Lemma. Let 𝑆, 𝑉 − 𝑆  be a cut of a graph 𝐺 and (𝑢, 𝑣) be a light edge crossing the 

cut. Then, there is an MST that has (𝑢, 𝑣) as one of its edge. 

Proof: Let 𝑇′ be an MST the does not have 𝑢, 𝑣  as one of its 
edge.

• W.l.o.g., assume that 𝑢 ∈ 𝑆 and 𝑣 ∈ 𝑉 − 𝑆

• There is a path 𝑃 from 𝑢 to 𝑣 in 𝑇′

• Let 𝑞 be the first node in 𝑉 − 𝑆 in the 𝑃

• Let 𝑝 be the node just before 𝑞 in 𝑃 (so, 𝑝 ∈ 𝑆)

• Thus, edge 𝑝, 𝑞  crosses the cut (𝑆, 𝑉 − 𝑆)

• Since (𝑢, 𝑣) is a light edge of this cut, 𝑤 𝑝, 𝑞 ≥ 𝑤(𝑢, 𝑣)

• We can create a spanning tree by exchanging 𝑝, 𝑞  with 𝑢, 𝑣

• The new tree’s cost is no more than 𝑇′. The new tree is also an 
MST

𝑆 𝑉 − 𝑆

𝑢 𝑣

𝑝 𝑞



MST Algorithms
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We will see two algorithms based on the cut property

1. Prim’s algorithm

2. Kruskal’s algorithm



Prim’s Algorithm
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• Start with a node 𝑠 and greedily grow a tree outward

• Always maintain a partially-constructed tree

• At each step, extend the partial tree by adding a node by the cheapest 
possible edge
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Prim’s Algorithm
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• Start with a node 𝑠 and greedily grow a tree outward

• Always maintain a partially-constructed tree

• At each step, extend the partial tree by adding the cheapest possible edge 
that does not form a cycle
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Prim’s Algorithm
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• Start with a node 𝑠 and greedily grow a tree outward

• Always maintain a partially-constructed tree

• At each step, extend the partial tree by adding the cheapest possible edge 
that does not form a cycle
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Prim’s Algorithm
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• Start with a node 𝑠 and greedily grow a tree outward

• Always maintain a partially-constructed tree

• At each step, extend the partial tree by adding the cheapest possible edge 
that does not form a cycle
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Prim’s Algorithm
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• Start with a node 𝑠 and greedily grow a tree outward

• Always maintain a partially-constructed tree

• At each step, extend the partial tree by adding the cheapest possible edge 
that does not form a cycle

Example:
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Prim’s Algorithm
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• Start with a node 𝑠 and greedily grow a tree outward

• Always maintain a partially-constructed tree

• At each step, extend the partial tree by adding the cheapest possible edge 
that does not form a cycle

Example:
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Prim’s Algorithm
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• Correctness is due to the cut property

• Similar to Dijkstra’s 
shortest-path algorithm

Greedily take a node that can be added 
using cheapest-possible edge from the 

partial tree

Update newly discovered cheaper edge 
to reach 𝑣 from the partial tree

𝑄: Min Priority Queue, orders 
elements based on 𝑣. 𝑘𝑒𝑦



Time Complexity
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• Like Dijkstra’s algorithm, running time 
depends on priority queue implementation
• Assume that we use Binary Heap

• Line 6-7 can be done in 𝑂(𝑉) time by 
Build-Min-Heap procedure
• Actually, Build-Min-Heap() isn’t needed. Why?

• Line 9 takes 𝑂(𝑉 lg 𝑉) time
• Total 𝑉 calls to Extract-Min

• Extract-Min takes 𝑂(lg 𝑉) time per call 

• Line 14 takes 𝑂(𝐸 lg 𝑉) time
• The inner loop executes 𝑂 𝐸  times in total 

(exactly 2|𝐸| times)

• Each call of Decrease-Key take 𝑂(lg 𝑉) time

Running time: 𝑂 𝑉 + 𝐸 lg 𝑉  using 
Binary Heap

This is 𝑂(𝐸 lg 𝑉) if 𝐸 = Ω(𝑉) 



Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
not create a cycle

Example:
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are single-node trees



Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
not create a cycle
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Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
not create a cycle

Example:
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Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
not create a cycle

Example:
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Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
not create a cycle

Example:
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are single-node trees

Edge (c,f) combines 
yellow and green trees 
into a single tree 
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assume that majority 
color is retained)



Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
not create a cycle

Example:
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Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
not create a cycle

Example:
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Assuming (a,h) wins 
tie-breaker, (a,h) 
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green trees into a 
single yellow tree 



Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
not create a cycle

Example:
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Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
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Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
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Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST
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Kruskal’s Algorithm
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• Instead of maintaining a partial tree, maintain a forest that eventually 
becomes MST

• Start with a forest of all |𝑉| nodes and no edges

• Consider edges in increasing order of weights and add an edge if it does 
not create a cycle
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Kruskal’s Algorithm Implementation 
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• Need to maintain a set of trees

• Example: 𝑎 , 𝑏 , 𝑐, 𝑖 , 𝑓, 𝑔, ℎ , 𝑑 , {𝑒} in the 
state of Kruskal’s execution in the right

• After picking an edge, need to determine 
which set the endpoints belong to

• Example: (𝑐, 𝑓) is picked by the Kruskal’s 
algorithm. We need to determine that they 
belong to sets {𝑐, 𝑓} and {𝑓, 𝑔, ℎ}, respectively

• Need to union to sets into one set

• Example: After adding edge (𝑐, 𝑓), the new 
combined set is {𝑐, 𝑓, 𝑔, ℎ, 𝑖}
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• Three operations:

• Make-Set(v): make a set of node 
𝑣

• Find-Set(v): find the set of 
node 𝑣

• Union(u,v): Combine the sets 
of 𝑢 and 𝑣



Kruskal’s Algorithm Implementation 
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"𝐴" contains edges of the MST

Does not create cycle if 𝑢 and 
𝑣 are in different set. 



Time Complexity
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• Running time depends on running time of 
Make-Set(v), Find-Set(v), Union(u,v), 
and Sorting of edges

• Sorting takes 𝑂(𝐸 lg 𝐸) = 𝑂(𝐸 lg 𝑉) time (since 
𝐸 = 𝑂( 𝑉 2)

Make-Set(v) Find-Set(v) Union(u,v) Sorting

#
calls

Running 
time per 

call

Total 
runnin
g time

#
calls

Running 
time per 

call

Total 
running 

time

#
calls

Running 
time per 

call

Total 
running 

time

Trivial (linked-
list)

𝑂(𝑉) 𝑂(1) 𝑂(𝑉) 𝑂(𝐸) 𝑂(𝑉) 𝑂(𝑉𝐸) 𝑂(𝐸) 𝑂(𝑉) 𝑂(𝑉𝐸) 𝑂(𝐸 lg 𝑉)

Total running time with trivial implementation = 𝑂(𝑉𝐸)



Time Complexity
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• Running time can be improved if we use 
Disjoint-Set data structures (CLRS Sec. 19)

• With Disjoint-Set, a sequence of 𝑘 Make-Set, 
Union, and Find-Set takes 𝑂 𝑘 ⋅ 𝛼 𝑛 , here 
𝑛 = the number of items
• Here, 𝛼(𝑛) is a very slow growing function

• For simplicity, we use 𝑂(𝑘 lg 𝑛) instead

Make-Set(v) + Union(v) + Find-Set(V) Sorting

#calls Total running time

Disjoint-Set 𝑂(𝑉 + 𝐸) 𝑂 𝑉 + 𝐸 lg 𝑉

(which is 𝑂(𝐸 lg 𝑉) if 𝐸 = Ω(𝑉))

𝑂(𝐸 lg 𝑉)

Total running time with Disjoint-Set = 𝑂(𝐸 lg 𝑉)



Disjoint-Set
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a

b d

c

representative

Can speed up sequence of the operations by means of two heuristics

Unionx y x

y

• Each set is represented as a rooted tree

• The root node is the representative of the set
• Find-Set() returns the representative

• Make-Set(): Create a single-node tree

• Find-Set(): Traverse by parent pointer until root is reached.

   Then, the root is returned

parent 
pointer

Slide Courtesy: Prof. Anderson



Disjoint-Set
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1)  Union by Rank
• Store rank of tree in rep. 

• Rank    tree size.
• Make root with smaller rank point to root with larger rank.

2)  Path Compression
• During Find-Set, “flatten” tree.

b

c

d

a b c

d

Find-set(a)

a

Slide Courtesy: Prof. Anderson



Conclusion
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• MST can be computed in 𝑂(𝐸 lg 𝑉) time by Prim’s and Kruskal’s algorithm

• Both are greedy algorithms

• Karger, Klein, and Tarjan gave an algorithm that runs in 𝑂(𝐸 lg 𝑉) at worst 

case, but 𝑂(𝑉 + 𝐸) in average case

• https://cs.brown.edu/research/pubs/pdfs/1995/Karger-1995-RLT.pdf

• Bernard Chazelle gave an 𝑂(𝐸 𝛼( 𝐸 , 𝑉 )-time algorithm (known best so far!)

• 𝛼(⋅,⋅) is the slow growing function mentioned in disjoint set data structure

• It is still open whether MST can be solved in 𝑂(𝑉 + 𝐸) worst-case running time.

https://cs.brown.edu/research/pubs/pdfs/1995/Karger-1995-RLT.pdf


Thank You!
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