COMP 550
Algorithm and Analysis

Minimum Spanning Tree

Based on CLRS Sec. 21

Some slides are adapted from ones by Prof. Jim Anderson

Minimum-Cost Communication Network

« We want to set up a communication network on n locations so that each pair of

locations are connected
 The cost of a direct link is proportional to their distance

« Construct the network as cheaply as possible

® ©

(@) ©
& ®

Minimum-Cost Communication Network

« The number of direct link should be as small as possible

* Property 1. Acyclic. (The cheapest network is a tree)

A tree has no cycle (unlike this)

Source: https://www.dailymail.co.uk/news/article-2255706/Amazing-images-bikes-left-long-trees-them.html
COMP550@UNC 3

Minimum-Cost Communication Network

* The number of direct link should be as small as possible

* Property 2: Barely connected (formally, minimally connected). Removal of any

link disconnects some location from the network

* Property 2: Maximally acyclic. Addition of any link creates a cycle

Spanning Tree

« T = (Vr,E7) is a spanning tree of a connected graph ¢ = (V,E) if T

connects ("spans”) all vertices in G

* G is an undirected graph

08@7@
6
10
N——©) f

A spanning tree of G

{ Weight/Cost of a spanning tree =), weight of each tree edge J

Minimum Spanning Tree (MST)

* A graph G can have many spanning trees
« Minimum Spanning Tree (MST): spanning tree with minimum weight/cost

8-

f

Tree Weight = 37]

[
8 M~ 7/
@ 4b C d9
11 4
@\@ ;
8 10 N
——@— W@

©
©

The MST Problem

 Input: An undirected weighted graph G = (V, E) with weight function
w:E >R

« Output: An MST of G

 Question: What about MST of an undirected unweighted graph?

Optimal Substructure

* Does MST have optimal substructure property?
* Does MST of a graph G contain MST of G's subgraph?
* Yes|

Lemma. Let T; and T, be two trees after removing an edge (u,v) from an MST T of graph
G. Then, T, and T, are MSTs of the subgraphs induced by nodes of T; and T,, respectively.

Subgraph induced by
vertices {c,d,e, f, g}

Optimal Substructure

Lemma. Let T; and T, be two trees after removing an edge (u,v) from an MST T of graph
G. Then, T; and T, are MSTs of the subgraphs induced by nodes of T; and T,, respectively.

Remove (c,d)
from T

Proof: W.l.o.g., assume that T; is not an MST of the subgraph induced by T;.
Assume T is an MST of that subgraph.

Then, we can create an MST T’ of G by connecting T{ and T, by (u,v). T’ has smaller
weight than T, contradiction.

Cut

« A cut (S5,V —35) of an undirected graph is a

partition of V

* An edge crosses cut (S,V —S) if its one
endpoint is in S and the other inV — S Example: S = {a,b,d,e}and V — S =

i f,9,hi}

 Edges (a, h), (b, h),(b,c),(c,d),(d,f)

* An edge is a light edge crossing a cut is

its weight is the minimum crossing that
cross the cut.

* (¢,d) is the light edge for this cut

cut

Cut Property

Lemma. Let (S,V — S) be a cut of a graph G and (u, v) be a light edge crossing the
cut. Then, there is an MST that has (u, v) as one of its edge.

There is an MST that has the edge (c,d) as one of its edge

This property is basically a greedy-choice property

Cut Property

Lemma. Let (S,V —S) be a cut of a graph G and (u, v) be a light edge crossing the
cut. Then, there is an MST that has (u, v) as one of its edge.

Proof: Let T' be an MST the does not have (u, v) as one of its
edge. P q

« W.log., assume thatueSandveV —-S§
* Thereisapath P fromutovinT’

* Let g be the first node inV —Sin the P
* Let p be the node just before q in P (so, p € S) b-

« Thus, edge (p, q) crosses the cut (S,V —5) ul|l VY

« Since (u,v) is a light edge of this cut, w(p, q) = w(u, v)

« We can create a spanning tree by exchanging (p, q) with (u,v) S O
V-5

 The new tree's cost is no more than T'. The new tree is also an
MST

MST Algorithms

We will see two algorithms based on the cut property
1. Prim’s algorithm
2. Kruskal's algorithm

Prim's Algorithm

« Start with a node s and greedily grow a tree outward
* Always maintain a partially-constructed tree

* At each step, extend the partial tree by adding a node by the cheapest
possible edge

Example:

Prim's Algorithm

« Start with a node s and greedily grow a tree outward
* Always maintain a partially-constructed tree

* At each step, extend the partial tree by adding the cheapest possible edge
that does not form a cycle

Example:

Prim's Algorithm

« Start with a node s and greedily grow a tree outward
* Always maintain a partially-constructed tree

* At each step, extend the partial tree by adding the cheapest possible edge
that does not form a cycle

Example:

Prim's Algorithm

« Start with a node s and greedily grow a tree outward
* Always maintain a partially-constructed tree

* At each step, extend the partial tree by adding the cheapest possible edge
that does not form a cycle

Example:

Prim's Algorithm

« Start with a node s and greedily grow a tree outward
* Always maintain a partially-constructed tree

* At each step, extend the partial tree by adding the cheapest possible edge
that does not form a cycle

Example:

Prim's Algorithm

« Start with a node s and greedily grow a tree outward
* Always maintain a partially-constructed tree

* At each step, extend the partial tree by adding the cheapest possible edge
that does not form a cycle

Example:

Prim's Algorithm

* Similar to Dijkstra's

Q: Min Priority Queue, orders shortest-path algorithm
elements based on v. key

MST-PRIM(G. w, r)

| for each vertex u € G.V
2 ukey=o

3 u.m=NIL

4r.key =0
sO0=0
ofor cach vertex u € G. IV
7 INSERT(Q, u) Greedily take a node that can be added
swhile Q = O using cheapest-possible edge from the
9 u=EXTRACT-MIN(Q) “TTadd u to the tree t partial tree
10 for each vertex v 1n// update keys of wuws non-tre
G. Adjlu] neighbors
1 if v &€ Qand w(u, v) < vkey
12 VU= U (Upda’re newly discovered cheaper edge
13 v.key = w(u, v) - to reach v from the partial free
14 DECREASE-KEY(O. v, w(u, v))

« Correctness is due to the cut property

Time Complexity

MST-PRIM(G, w,) Like DiijTl"G'S algorithm, running time
jorench wnenn = ¥ depends on priority queue implementation
j,r/’;:;ﬂ: :ONIL « Assume that we use Binary Heap
SQ — @ . ° _ ° °
T vertex € (1 Lm.e 6 7.can be done in O(V) time by
| ANSERT(Q. 1 Build-Min-Heap procedure
swhile O =
9 u=EXTRACT-MIN(Q) //add u to the tree * Actually, Build-Min-Heap() isn't needed. Why?
10 for each vertex v 1n// update keys of u’s non-tre .)

G Adju] neighbors * Line 9 takes O(V1gV) time
11 if v &€ O and w(u, v) < v.key .
12 b= « Total V calls to Extract-Min
. i)féé;;i:é]:‘,)mwg 2. wlat) « Extract-Min takes O(lgV) time per call

* Line 14 takes O(EIgV) time
Running time: 0((V + E)lg V) using « The inner loop executes O(E) times in total
Binary Heap (exactly 2|E| times)

This is O(E1gV) if |E| = Q(V) * Each call of Decrease-Key take O(IgV) time

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All blue colored nodes

are single-node trees
Example:

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees
Example:

(h,g) forms a yellow-
colored tree

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees
Example:

(c.i) forms a green-
colored tree

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees
Example:

(9.f) extends the
yellow free

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees

Example:

Edge (c,f) combines
yellow and green frees
into a single tree
(colored yellow,
assume that majority
color is retained)

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees
Example:

(a,b) forms a green-
colored tree

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does
hot create a cycle All colored nodes
are single-node trees

Example:

Assuming (a,h) wins
tie-breaker, (a,h)
combines yellow and
green trees into a
single yellow tree

Kruskal's Algorithm

 Instead of maintaining a partial free, maintain a forest that eventually
becomes MST

 Start with a forest of all |V| nodes and no edges

« Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees

Example:

Cannot add this edge

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees
Example:

(c,d) extends the
yellow tree

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees
Example:

(d,e) extends the
yellow tree

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees
Example:

(d,e) extends the
yellow tree

Kruskal's Algorithm

* Instead of maintaining a partial tree, maintain a forest that eventually
becomes MST

» Start with a forest of all |[V| nodes and no edges

» Consider edges in increasing order of weights and add an edge if it does

not create a cycle All colored nodes

are single-node trees
Example:

(d,e) extends the
yellow tree

Kruskal's Algorithm Implementation

8 7

 Need to maintain a set of trees

« Example: {a},{b},{c,i},{f, g, h},{d},{e} in the
state of Kruskal's execution in the right

« After picking an edge, need to determine
which set the endpoints belong to

1 T

« Example: (¢, f) is picked by the Kruskal's
algorithm. We need to determine that they
belong to sets {c, f} and {f, g, h}, respectively * Make-Set(v): make a set of node

* Three operations:

v
* Need to union to sets into one set . Find-Set(v): find the set of
- Example: After adding edge (c, f), the new node v
combined set is {c, f, g, h, i} e Union(u,v): Combine the sets

of u and v

Kruskal's Algorithm Implementation
MST-KRUSKM "A" contains edges of the MST

2for each vertex v € GV
3 MAKE-SET(v)
4create a single list of the edges in G. E
ssort the list of edges into monotonically increasing order by weight
W
ofor each edge (u, v) taken from the sorted list in order
7 if FIND-SET(u) # FIND-SET(v)
3 A=AU {(u,)} Does not create cycle if uand
9 UNION(x, v) v are in different set.
[0return A

Time Complexity

MST-KRUSKAL(G, w)
* Running time depends on running time of 14=0

2for each vertexveE GV

Make-Set(v), Find-Set(v), Union(u,v), : MAKESEI)

4create a single list of the edges in G E

an d SO r‘.hng Of edges ssort the list of edges into monotonically increasing order by weight
w
" S : : ofor each edge (u, v) taken from the sorted list in order
* Sor"“ ng Takes 0 (E lg E) - 0 (E lg V) T' me (Sl nce 7 if FIND-SET(«) # FIND-SET(v)
— 2 g A=AU {(u,)
|E| 0 (l Vl) 9 UNION(;, V)

loreturn A4

| Make-Set(v) Find-Set(v)

Running Total # Running Total # Runnmg Total
calls time per runnin calls time per running calls time per running
call g time call Time call Time

Trivial (linked- 0(V) 0(1) o) O() 0) O(VE) O(E) O0() OE) O(ElgV)
list)

[Total running time with trivial implementation = O(VE)]

COMP550@UNC 36

Time Complexity

MST-KRUSKAL(G, w)
* Running time can be improved if we use =0
Disjoint-Set data structures (CLRS Sec. 19)

MAKE-SET(v)
4create a single list of the edges in G E

o WlTh DISJOIHT-SZT, a Sequence Of k Make‘seT, Sffrt the list of edges into monotonically increasing order by weight

. . ofor each edge (u, v) taken from the sorted list in order

Unlon, Cmd F' nd-SZT TC(kQS 0 (k . a(n)) , her'e 7 if FIND-SET(1) # FIND-SET(v)

%]

n = the number of items NI NPANING
loreturn A

 Here, a(n) is a very slow growing function
* For simplicity, we use 0(klgn) instead

T | Make-Set(v) + Union() + Find-Set(V)

#calls Total running time

Disjoint-Set O(V +E) O((V+E)IgV) O(ElgV)
(whichis O(E1gV) if E = Q(V))

[Total running time with Disjoint-Set = O(E 1gV)]

COMP550@UNC 37

Disjoint-Set
* Each set is represented as a rooted tree

» The root node is the representative of the set e representative
* Find-Set() returns the representative Q @

* Find-Set(): Traverse by parent pointer until root is reached. G

parent
pointer

« Make-Set(): Create a single-node tree

Then, the root is returned

Unlon

Can speed up sequence of the operations by means of two heuristics

Slide Courtesy: Prof. Anderson

Disjoint-Set
1) Union by Rank

- Store rank of tree in rep.
* Rank =~ tree size.

* Make root with smaller rank point to root with larger rank.

2) Path Compression
* During Find-Set, "flatten” tree.

Find-set(a)

e OO

Slide Courtesy: Prof. Anderson

Conclusion

MST can be computed in O(E 1gV) time by Prim's and Kruskal's algorithm
* Both are greedy algorithms
Karger, Klein, and Tarjan gave an algorithm that runs in O(E 1gV) at worst

case, but O(V + E) in average case
Bernard Chazelle gave an O(E a(|E|, |V|)-time algorithm (known best so farl!)
* a(-) is the slow growing function mentioned in disjoint set data structure

It is still open whether MST can be solved in O(V + E) worst-case running time.

https://cs.brown.edu/research/pubs/pdfs/1995/Karger-1995-RLT.pdf

Thank You!

	Slide 1: COMP 550 Algorithm and Analysis Minimum Spanning Tree Based on CLRS Sec. 21
	Slide 2: Minimum-Cost Communication Network
	Slide 3: Minimum-Cost Communication Network
	Slide 4: Minimum-Cost Communication Network
	Slide 5: Spanning Tree
	Slide 6: Minimum Spanning Tree (MST)
	Slide 7: The MST Problem
	Slide 8: Optimal Substructure
	Slide 9: Optimal Substructure
	Slide 10: Cut
	Slide 11: Cut Property
	Slide 12: Cut Property
	Slide 13: MST Algorithms
	Slide 14: Prim’s Algorithm
	Slide 15: Prim’s Algorithm
	Slide 16: Prim’s Algorithm
	Slide 17: Prim’s Algorithm
	Slide 18: Prim’s Algorithm
	Slide 19: Prim’s Algorithm
	Slide 20: Prim’s Algorithm
	Slide 21: Time Complexity
	Slide 22: Kruskal’s Algorithm
	Slide 23: Kruskal’s Algorithm
	Slide 24: Kruskal’s Algorithm
	Slide 25: Kruskal’s Algorithm
	Slide 26: Kruskal’s Algorithm
	Slide 27: Kruskal’s Algorithm
	Slide 28: Kruskal’s Algorithm
	Slide 29: Kruskal’s Algorithm
	Slide 30: Kruskal’s Algorithm
	Slide 31: Kruskal’s Algorithm
	Slide 32: Kruskal’s Algorithm
	Slide 33: Kruskal’s Algorithm
	Slide 34: Kruskal’s Algorithm Implementation
	Slide 35: Kruskal’s Algorithm Implementation
	Slide 36: Time Complexity
	Slide 37: Time Complexity
	Slide 38: Disjoint-Set
	Slide 39: Disjoint-Set
	Slide 40: Conclusion
	Slide 41: Thank You!

