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Abstract

The viability of a multi-device control language is largely reliant on its ability to satisfy certain

general requirements, such as being able to directly interface with the underlying hardware, possessing

a sufficiently high level of abstraction to allow complex control structures, being platform independent,

supporting concurrent operation, and possessing formal, provable characteristics. Under the ONR-funded

research program on Ocean SAmpling MObile Networks (SAMON), C3L was designed as a program-

ming language which would satisfy these and other requirements. The current version of C3L was defined

under the ESP MURI prgram, as a device-oriented decision and control language that possesses useful

formal characteristics. This thesis presents the complete formal operational semantics for the C3L lan-

guage. The semantics are demonstrated in proofs of characteristics of the C3L language, including event

fairness and prefix-closed controllability. Also presented are a discussion of the static analyses used to

ensure that the semantics are properly followed in the language, and an application demo using the C3L

language. The application demo consists of an analysis of a locality-based cluster head election algorithm

implemented in C3L, and a statistical analysis of the results generated by the algorithm.

Key Words: Programming language semantics, operational semantics, multi-device control, control

theory
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Chapter 1

Introduction

The problem of dynamic command and control in multiple device systems is an extremely complex one,

incorporating issues of inter-device communication, group formation, and modeling of environments and

devices, among other issues. C3L (Command Control Communications Language) represents an attempt

to develop a programming language particularly suited to this problem domain.

The original goal of C3L development was to create a language for command and control of multiple

unmanned undersea vehicles (UUVs). This line of research was initiated at Penn State ARL in 1997 [1].

Under the ESP MURI, the language was updated and extended for use in sensor network applications,

resulting in what is now C3L. This extension of the language was largely completed in late 2003, leading to

[2]. The specific contributions of this thesis to this line of research are the development and presentation

of the formal operational semantics for the language, the static analysis and proofs derived from these

semantics that are presented in this thesis, and the simulation results and validation presented in Section

6.

Despite its origins as a robot control language, the variety of applications for which C3L is suited,

make it more appropriate to consider C3L as a device control language, although it certainly still has very

clear applications in the robot control domain. Some applications of such a device control language are

maintenance of dynamic ad hoc networks, agent-based network intrusion detection systems, and traffic

management systems. Each of these applications, as well as many other applications for which C3L is

well-suited, can be considered mission critical. In order to have some assurance that devices controlled

by C3L programs will function correctly in actual use, it is useful to build some formal properties of

execution into the language itself.

In order to discuss the formal properties of a program written in a given programming language,

one must use the semantics of the language. The semantics of a programming language, loosely, are a
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set of formal mathematical rules that describe the meaning of a program written in the language. The

semantics of a language is generally developed with consideration to the syntax of the language, which

is the set of rules that determines whether a given sequence represents a well-formed program in the

context of the language. If a language has a correct and complete semantics, then the semantic rules can

be used to prove characteristics of the program’s behavior.

Chapter 2, presents some of the motivating characteristics for the creation of the C3L language, as well

as a comparison with other languages used for multiple device control. It also presents a brief comparison

of the different classes of programming language semantics, and our reasons for choosing to specify the

operational semantics for C3L, instead of another type of semantics. Chapter 3, goes into further detail

regarding the nature of the C3L language, its goals, and its characteristics. Chapter 4 presents the

semantics for the language, and discuss the static analyses used to check program correctness. Chapter

5 presents proofs showing that the properties of event fairness and prefix-closed controllability hold for

all programs written in C3L. In Chapter 6, an application developed in C3L is presented, along with an

analysis of simulation results, and Chapter 7 presents future research directions for the language.
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Chapter 2

Comparisons and Motivations

The motivations discussed in this chapter are twofold. First, general motivating characteristics for

a device control language are specified, and C3L is compared with other existing control languages.

This serves to motivate the creation of the C3L Language. Second, the motivating characteristics for

programming language semantics, and a comparison of several types of semantics, are presented. This

section serves to motivate the development of the semantics for the C3L language, and the choice of

operational semantics for this project.

2.1 Robot Control Languages

C3L is designed to be suitable for use in a wide variety of multiple device command and control applica-

tions. That said, C3L has its roots in the more specific domain of Robot Control Languages (RCLs), and

as such, it is useful to consider how C3L stands in relation to other RCLs, and to gauge the ways in which

C3L is more or less capable than other languages in the problem space of robot control. To this end,

the remainder of this section is dedicated to a survey of other types of multiple device control models,

including agent control languages, multi-layered hybrid control, and concurrent constraint programming.

C3L expresses a generic model of decentralized collaboration and behavior based dynamic control of

networked devices. The motivating characteristics of such a language are described below and it is com-

pared with other decentralized computational paradigms. The following list of motivating characteristics

was taken from [3]. This list of desired characteristics was used in the development of [4]:

• Minimum abstraction level low enough to support real-time machine programming and high enough

for platform independence, task planning, and human supervision: If the mimimum abstraction

level of a language is too high, the programmer does not have sufficient access to the low-level
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structures to control what the machine would actually execute at runtime, and if it is too low,

the language does not carry enough semantic information to allow intuitive description and under-

standing of programs written in the language.

• Construction of group behaviors via semantic aggregation for generating and revising plans: Most

multiple device control applications use groups of devices working together to achieve some specified

goal. One example of such an application is distributed tracking in a sensor network. A language

that would be appropriate for such an application must have the appropriate functionality to allow

group formation and coalition.

• Communication constructs suitable for distributed coordination: In order for distributed devices

to cooperate on a task, there must be a means for devices to communicate with one another and

coordinate their actions. Ideally, the communication constructs would be inherent in the language,

for both ease of use and reliability purposes.

• Ability to control a wide range of robots (implies platform independence as well as code mobility

and dynamic migration of responsibility): A programming language that is limited to a specific

hardware platform has little usefulness in many real world applications, such as a network of sensor

nodes, wherein different nodes have different sensor packages. Dynamic migration of responsibility

is useful to avoid having a single point-of-failure in the network.

• Accommodation of physical constraints: This requirement regards the fault tolerance of a network

of devices. A device should be able to function intelligently even if its abilities are for some reason

constrained, and similarly, a network devices should be able to adapt if a device is constrained or

disabled.

• Modular system design to allow dynamic reconfiguration of device clusters: This is not a necessary

property of a device control language, although it is very desirable. As discussed above, dynamic

reconfiguration of device clusters can help to avoid having single points-of-failure in a network of

devices. Also, it allows for the repurposing of devices to meet changing mission plans (for example,

converting some devices from tracking to pursuit of a target), or changing network conditions (for

example, replacing a disabled device in a group). Also, it can be used purely for performance

reasons, such as the example presented in Chapter 6, wherein the group elects a new supervisor

node based on its proximity to the target.

• Support for concurrency and synchronization control: A network of devices should intuitively be

able to perform tasks simultaneously. Also, in tasks which require multiple devices to act in concert,
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the ability to force multiple devices to coordinate on some task at a specific time or times is often

important.

• Support for reactive and deliberative computation: Devices controlled by a device control language

should be able both to respond intelligently to unexpected events from the environment, and also

to perform meaningful tasks in the absence of any such events.

• Ability to consistently integrate and reconfigure heterogeneous elements at multiple levels of com-

mand and control: A device control language should not only be platform independent, it should

also allow devices with different hardware platforms to interact within the same network. The lan-

guage should provide a meaningful way for these devices to communicate and cooperate, despite

differences at the hardware level.

• A dynamic systems model which supports the development of formal performance metrics: The

language should have the capability of dynamically reporting on the status of networked devices,

allowing for analysis of device and network behavior.

• Adaptation and learning to provide robustness and intelligence: A device network should be able

to adapt to changing environmental conditions.

A domain-specific augmentation of a general purpose programming language results from the addition

of syntactic support for various methods, classes, data structures, control elements, etc. to an existing

programming language such as LISP, C++, or Java. A Robot Control Language developed in this

way has all the advantages and disadvantages associated with the parent language. Generally, this

class of languages has greater flexibility and computational power than the others, owing to its general

purpose nature. Also, such languages are platform-independent, provided a suitable compiler is available.

However, these languages have significantly more overhead than other Robot Control Languages. Also,

in complex problem domains, use of one of these languages may result in highly complex and nonintuitive

code, which makes them difficult to write in and understand. Furthermore, it is difficult, if not impossible,

to ensure the formal properties of such a language, owing to the complexity of the language and the

interaction of the augmentations and the base language. Some examples of domain-specific augmentations

of general purpose languages are PRS [6], TDL [7], and Rodney Brooks’s Behavior Language [8].

Agent control consists primarily of two subproblems: agent coordination, and agent communication.

Agent coordination represents the aspect of a multi-agent system that governs agent interaction and

behaviors. There are two primary schools of thought in regard to developing a dependable agent coor-

dination system. The first is to use strict protocols, providing a sort of global control over the agents.

5



The second is to incorporate control within each agent, and allow agents to interact via message passing.

Languages such as FIPA [10] and KQML [11] use the former approach; C3L uses the latter.

In general, agent control languages are very suitable for abstract design and control of agents, and

devices specified using one of these languages are generally flexible and adaptive. However, these lan-

guages are generally computationally inefficient, often do not offer the same degree of flexibility and

efficiency of mathematical computation as other languages, provide little ability to directly control tim-

ing issues, and are sufficiently removed from low-level programming constructs so as to make actual

physical implementation problematic.

Another class of multi-device control languages are the multi-layered hybrid control languages. Desh-

pande, Göllü, and Semenzato in their SHIFT language [17] identified the problem of description and

simulation of dynamic networks of hybrid automata. They defined such networks as systems of compo-

nents that can be created, interconnected, and destroyed over time, where the components themselves

exhibit hybrid behavior, in the sense that they act in continuous-time punctuated by instantaneous

discrete-time transitions. They also identified state variables, events, and dynamically reconfigurable

interaction networks as components in a model of such a system. The SHIFT language is presented as

a way of describing this model. C3L is similar to SHIFT in that it treats the system as a network of

discrete devices (components in SHIFT), maps the state space using state variables (in C3L, parameter

variables describe the plant state, and memory variables are one component of the controller state de-

scription), uses discrete-time events to transition between states, and supports dynamically configurable

networks via group constructs which can be modified inside event handlers. C3L provides some addi-

tional functionality particularly relevant to the problem spaces of mobile sensor networks and mission

planning. In SHIFT, components can only communicate by modifying the values of specified link vari-

ables. Communication in C3L is much more robust, as a device can communicate with any arbitrary

subset of other known devices in the network by raising events and associated messages (sets of zero or

more values) to one or more groups or device names. Also, SHIFT does not expressly offer recursion or

iteration as commands in the language. C3L does offer recursion, achieved by raising controllable events,

and because recursion is achieved by placing events on the tail of input queue, it is possible to show

event fairness and prefix-closed controllability, even with the incorporation of recursion.

While SHIFT uses a hybrid automata model, other models that can be used for hybrid control of

dynamic systems are Petri nets, Communicating Sequential Processes, temporal logic, or finite state

machine models.

A fourth solution type commonly discussed in relation to the problem of multi-agent control is concur-

rent constraint programming. In their 1989 paper on Concurrent Constraint Programming [18], Saraswat
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and Rinard discuss the cc family of languages, first developed in Saraswat’s dissertation [19]. This fam-

ily of languages generalizes constraint logic programming to a concurrent computing environment, and

are characterized by the inclusions of concurrency and the atomic tell and blocking ask operations. The

atomic tell operation adds a constraint to the store, or memory, which is initially empty. The blocking ask

operation queries the store with a constraint, to see if that constraint is satisfied given the current state

of the store. Concurrency here means that multiple processes can generate asks and tells concurrently.

Computation terminates when no more information can be added to the store.

Concurrent constraint programming has since been extended to include stochastic behavior [20] and

temporal computation [21], among other concepts. Timed concurrent constraint programming provides

the minimum functionality required for implementing control of autonomous agents, and its reactive

computation model corresponds intuitively to the reactive operation of typical robotic devices, where

input is received, causing computation to occur, and then output is produced, often in the form of device

action.

Inter-device communication in ccp is performed using the common store, in opposition to the event-

driven message passing in C3L. The common store model may present difficulties in implementation

of a network of autonomous devices, which may have limited computational resources: either each

device must maintain a current copy of the store, which results in increased network traffic and requires

synchronization across devices; or there must be a single controller for the system, which eliminates the

problem of synchronizing the store across devices, but also removes the benefits of distributed dynamic

control. Romero chooses the former in his paper [22] on mobile concurrent constraint programming, but

does not offer a solution to the problem of inconsistency across multiple stores.

2.2 Progenitors of C3L

The current version of C3L does not represent the first attempt to generate a unified multiple device

control language in this vein. Two previous attempts were made in this regard at ARL, namely, Generic

Behavior Message Passing Language (GBML) [1] and a prototype common control language [30]. C3L

inherits some syntactic structure from thesse earlier languages, and also builds upon the central theory

behind the development of these languages, hierarchical discrete event control. The roots of hierarchical

discrete event control lie in application of general discrete event control [25] to multi-device problems.

This is the origin of ideas such as plant model definitions, communication via discrete events, and a

combination of dynamic events. The notion of control used in C3L is derived from intelligent control [26]

and these discrete event control models [27, 28].
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The original work with programming languages incorporating these models was in the Ocean SAm-

pling MObile Network (SAMON) project [1, 29, 30]. SAMON was concerned with simulating and co-

ordinating the operation of multiple unmanned undersea vehicles (UUVs). This project was an early

attempt to apply the basic principles of control theory to a multi-robot application. These principles

were applied to the languages described above and they were used to control UUVs. Of note is that

the notion of a common control language was first put forward in [30], as a means of coordinating the

behaviors of multiple heterogenous devices. While expanding the scope of these earlier languages to

incorporate broader applications including agent control and sensor networks [2, 31], C3L has proven to

be useful in UUV applications [32] and others.

2.3 Programming Language Semantics

In order to prove properties of programs or device specifications written in C3L, one must be able to

generate a precise, mathematical model of the program. That is precisely what the semantics of a

programming language allows us to do.

There are three primary classes of programming language semantics: operational, denotational, and

axiomatic. Each of these represents a different approach to defining the “meaning” of a program, or a

programming language. The following discussions are derived from those presented in [33] and [34].

In the operational approach, the meaning of a program is defined by the series of computation steps

performed by the program running on some abstract machine. The semantic rules in an operational

semantics define how the state of the machine is changed by the executions of commands in the lan-

guage. Operational semantics are very closely linked to the syntax of the language, more so than either

denotational or axiomatic semantics.

In the denotational approach, the meaning of a program is a mathematical function that maps the

program input to program output. The individual steps in the execution are unimportant. Semantics

generated from the denotational approach are powerful, but based on complex mathematical constructs

such as partial orders and fixed-points of a set.

In the axiomatic approach, the meaning of a program is a logical statement regarding some property

of the input and output of a program. Axiomatic semantics are intimately related to the concept of

program proving, whereby a program’s correctness can be directly verified by consultation of its axiomatic

semantics.

In this project, the decision was made to generate the operational semantics for the C3L language.

This is because operational semantics aid in the implementation of a language, since the operational
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description itself can be thought of as an interpreter for the language, and also since the necessary

conditions for correct execution of a command are explicit in the operational rules, which is useful in

the generation of a pathology checker which tests for the well-formedness of a program. Lastly, the

operational semantics are more intuitive than either the denotational or axiomatic semantics, which is

an additional benefit.

In Sections 4 and 5, the operational semantics of C3L will be presented and specific characteristics

of the language will be established through proofs and static analysis, respectively.

9



Chapter 3

Discussion of C3L

This chapter goes in to greater detail regarding the characteristics and motivations of C3L, and also

presents the syntax of the language.

3.1 Description of C3L

C3L represents an attempt to design a device-oriented programming language which possesses the desired

characteristics set forth in Section 2.1. C3L is an event-driven distributed control language designed to

facilitate the implementation of large systems of heterogeneous autonomous devices [2]. C3L incorporates

the plant/controller model of a controlled system into the language, such that a programmer defines a

device in C3L by specifying first its plant and then its control. Communications are integrated into the

device controller so that the user is not required to interact with communications on the protocol level.

For a more detailed discussion of the features of the language, please consult [2].

3.2 Syntax of C3L

Following is the syntax of C3L presented in modified Backus-Naur form [36], using bold to indicate

terminals and italics to indicate unspecified variables. This syntax was previously stated in [2].

device ::= device label [sp][par][unc][con][grp][mem][control]end

sp ::= plant label

par ::= parameter {var}

unc ::= uncontrollable {pevent}

con ::= controllable {pevent}
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grp ::= group {label := slist }

mem ::= memory {var}

control ::= control {cevent}

pevent ::= label ([cond])({assign})

var ::= label [const] type [(value{,value})]

cevent ::= event label [(label{,label})] [authorize slist] {command} end

slist ::= { string | label } [except { string | label }] end

command ::= choice | label [(expr{,expr})] | raise label [(expr{,expr})] [direct slist] |

gadd label slist | grem label slist | assign

choice ::= choice (cond) command {cor (cond) command} end

cond ::= (cond) boolop (cond) | not(cond) | expr comp expr | label |

string in label | label in label | boolean

boolop ::= and | or

comp ::= =| <| >| ≤| ≥| ! =

assign ::= label := expr; | label[ [integer{,integer}]] := expr;

expr ::= cond | (expr mathop expr) | math([expr{, expr}]) | - expr |

value | label[[integer{,integer}]]

mathop ::= +| −| ∗| /

type := integer | real | boolean | string | type[integer]

value ::= integer | real | true | false | string | NULL

string ::= “label”

label ::= {char}

The variables integer, real, and char represent integers, real numbers, and characters which are used

as values in the language. The variable math generates a set of function names which are defined for a

particular device.

3.3 Specific Motivations for C3L

The following are the specific stated motivations for the development of C3L, as stated in [2]:

1. Dynamic Organization - Devices must be able to adapt their communication and control structures

in real-time in response to changes in their environment. Practically, this means that devices must

be able to dynamically reconfigure their control hierarchy and communication pathways.
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2. Accomodation of Uncontrollable Events - Devices must be able to process and respond to uncon-

trollable events in their environment.

3. Portability - A C3L specification of a device should be cross-platform portable, so long as the basic

functionality of the underlying hardware platform is comparable.

4. Formality - Programs written in the C3L language should have verifiable properties.

5. Expressiveness - The C3L language should be at least as expressive as a recursive language, and

should also provide capabilities for more complex programming, such as device communication and

distributed computing.

6. Extensibility - The C3L language should allow for extension and modification of the language, with

minimal changes to the existing syntax or semantics.

A further discussion of these motivations for the C3L language can be seen in [2].

3.4 Analysis of C3L Goals and Requirements

The goals set forth in Section 2.1 and the requirements of Section 3.3 provide a basis for judging the

merits of the language as specified in [2]. Following is an analysis of C3L in light of the characteristics of

a multiple device control language. Each of the desired characteristics from Section 2.1 will be considered

individually.

• The minimum abstraction level should be low enough to support real-time machine programming

and high enough for platform independence, task planning, and human supervision:

C3L can be considered in some sense to be a fourth-generation programming language [35], de-

signed explicitly for use in the command and control of autonomous devices. The structure of

programs in the C3L language is explicitly based on the specification of state transitions occurring

from controllable and uncontrollable events, which adds to the human-readability of the programs.

Also, complex behaviors such as communication are hidden from the user, which benefits human-

readability, in addition to contributing to the platform independence of the language, since low-level

constructs can be modified without any changes to the language itself. C3L programs are currently

interpreted; that is, a previously compiled C++ program (the interpreter) runs in real time, with

the C3L source as its input. This is not a necessary condition; C3L programs could be compiled

at some point, but at this point no compiler has been developed. The interpreted nature of C3L
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gives some of the benefits of the lower-level language in terms of efficiency, while being platform

independent to the degree that it requires only an existing C++ compiler to run on any hardware.

• The language should allow construction of group behaviors via semantic aggregation for generating

and revising plans:

C3L allows for group constructs, which are created at device initialization and contain a member

list containing zero or more device names or previously-defined group names that belong to the

new group, and an except list containing the same, which identifies devices or groups which are

explicitly defined to not be in the group. The groups can be modified during runtime through

commands in event handlers. Controllable events can be raised to a group or groups by supplying

a direct list, and devices can identify which devices or groups from whom to accept events by

adding them to an associated authorize list. The group constructs in C3L allow for creation and

modification of multiple-device behaviors.

• The language should possess communication constructs suitable for distributed coordination:

Communication constructs are built into C3L, and are abstracted from the user. Since the behavior

of the language does not depend on the actual implementation scheme for communication, it is

possible to use a communication scheme most suitable for a given application.

• The language should have the ability to control a wide range of devices (This implies platform

independence as well as code mobility and dynamic migration of responsibility):

As discussed previously, C3L is platform-independent to the degree that it only requires an extant

C++ compiler. Also, the group constructs in C3L allow for dynamic migration of responsibility.

C3L does not, however, implement code mobility. This is a potential future research direction for

the language.

• The language should accommodate physical device constraints:

The plant/controller model automatically addresses this issue, as the physical device constraints

must be modeled in the C3L plant.

• The language should support modular system design, in order to allow dynamic reconfiguration of

device clusters:

The group and communication constructs, as discussed above, allow for dynamic reconfigurability

of device clusters.

• The language should support concurrency and synchronization control:

Computation in a system of C3L devices is inherently concurrent and asynchronous. Within a
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single device, C3L is at this time limited to sequential computation. It is possible that parallel

computation within a single device may be considered as a future research direction.

• The language should support both reactive and deliberative computation:

C3L’s event-driven computation contains support for both controllable (deliberative) and uncon-

trollable (reactive) events.

• The language should have the ability to consistently integrate and reconfigure heterogeneous ele-

ments at multiple levels of command and control:

This is another feature of the group constructs and event-driven computation in C3L. If a device

does not have the capability or the authorization to perform a given event, it will be ignored. This

does not prevent another device with different abilities from performing the event. Different capa-

bilities are indicated in a system of C3L devices by differences in the plant models of the devices.

A network of devices controlled by C3L programs can incorporate heterogeneous devices, that is,

not all devices in the network need to have the same capabilities, or even the same plant/controller

models.

• The language should utilize a dynamic systems model which supports the development of formal

performance metrics:

The C3L model of event-driven communication and computation is naturally well-suited to simu-

lation, or to observation of a network of devices. An example of the development of metrics for a

given application can be seen in Section 6.

• The language should support constructs for adaptation and learning to provide robustness and

intelligence:

C3L events can modify group membership and state variables in order to constrain the state space in

such a way as to simulate adaptation and learning. C3L does not have a strict hierarchical command

structure, so the chain of command is robust in that it should always be possible to elect a new

supervisor, provided one is necessary. Possible future research with C3L may include new constructs

for learning and adaptation, including constructs allowing biologically-inspired computation.
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Chapter 4

Technical Results

This chaper presents the primary research product of this thesis, that being the operational semantics

for C3L. Before the semantic rules can be presented, there must be a discussion of the nature of devices

as considered in the C3L language, and a definition of the symbols used in the statement of the rules.

Following the presentation of the semantics, some of the characteristics of the language are discussed, and

several potential pathologies that can occur even in syntactically-correct C3L programs are identified, as

well as a brief discussion of which of these can be checked for as part of static analysis. An abbreviated

version of these results are included in [31].

4.1 C3L Semantics

The following is a presentation of the complete set of operational semantic rules for C3L.

Formal results in a language ensure that specifications in the language will automatically possess

desirable properties. These results are based on the foundation of a formal semantics for the language.

Following the presentation of the semantic rules are several formal results which enhance the utility of

specifications in C3L.

4.1.1 Preliminaries

C3L is an event driven language. This requires formal semantics which evaluate the input queue of a given

device. Since the input and output queues, variables, and group structures could all be modified at any

step a full description of the context of a device is necessary to describe the semantics of event response.

In addition there are several static tables of structures, such as control events and uncontrollables. These

require a formal look-up tables to incorporate in the semantic structure. Lastly, the initial state of the
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context should be well defined and hence this starting context, Γ0, is also described.

Device Context

The following are some definitions for structures which are needed to construct the device context. These

structures permit a direct and unambiguous way to describe changes in the device state during event

response.

Definition: A device queue, Q is a string of objects of the form q1q2 . . . qn. Q = qQ′ implies that q is

the first (head) element of Q and Q′ is the queue containing the remaining elements q2q3 . . . qn. Qq = Q′

implies that q is the last (tail) element of Q′ = q1q2 . . . qnq.

Definition: A look-up table, L is a string of ordered pairs of objects of the form 〈l1, v1〉〈l2, v2〉 . . . 〈ln, vn〉.

With this notation, L(li) = vi and L(li) := v′
i replaces the pair (li, vi) with (li, v′

i) in the string. Lastly,

L′ = L〈l, v〉 inplies that the pair (l, v) is the last element of L′ = 〈l1, v1〉〈12, v2〉 . . . 〈ln, vn〉〈l, v〉. We refer

to the first member of each pair as a label and the second member as a value. Note, if l /∈ {li} then

L(l) = ε, the empty object.

Definition: A device list D is a set of strings, each a device name.

Now that the internal structures of a device context are defined, the outer structure can be described.

Definition: A device context is a 5-tuple, Γ = (I,O,G, P,M), where I is the input queue which

has pairs of input event names and pairs of source names and ordered value lists as objects, O is the

output queue which has pairs of output events and pairs of device lists and ordered value lists as objects,

G is a group look-up table which contains group names as labels and device lists as values, P is a

parameter look-up table with parameter names as labels and parameter values as values, and M is a

memory variable look-up table with variable names as labels and variable values as values. Note using

the I(i) notation, the source names may be accessed Source(I(i)) and the value list may be accessed by

V alue(I(i)).

Static Device Structures

Three additional components need to be incorporated to describe the operation of the device. These

three aspects are the controllables, uncontrollables, and event responses of the device. These are all

derived from the device specification. In order to manage these structures three look-up tables need to

be generated.

Definition: The controllable look-up table, C is a look-up table with labels being the names of the

listed controllables and values being an ordered pair with the first element as the condition for the event

and the second as the sequence of assignments caused by the event. If either of these is empty this is
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denoted by ε. Pre(C(l)) denotes the condition listed for the controllable named l. Post(C(l)) denotes

the sequence of assignments listed for the controllable named l.

Definition: The uncontrollable look-up table, U is the analogous look-up table based on the un-

controllables defined in the device. Otherwise U has exactly the same structure and features as the

controllable look-up table, C.

Definition: The control event look-up table, E is a look-up table with labels being the names of

events listed in the control section of the device and values being an ordered pair of authorize list and

pairs of command sequences and ordered lists of variable names. If either of these is empty this is

denoted by ε. Auth(E(l)) denotes the authorize list listed for the event named l. Comm(E(l)) denotes

the sequence of commands listed for the event named l. V ari(E(l)) denotes the ordered list of variable

names. Note also if multiple elements matching the name of i exist, the one which also matches tlist(i),

as defined below, with its variable name list will be returned. This allows a limited polymorphism based

on message variable.

Initial Context

In addition to the static look-up tables required to encapsulate the fixed components of the device, the

initial state of the device context is also fixed. I0 is the initial input queue. This contains some, possibly

empty, sequence of events. O0 is the initial output queue and is treated as empty. G0 is a look-up table

constructed in the following way from the sequence of group declarations:

1) Create a new pair using the group name on the left-hand side of the declaration.

2) Generate the superlist of the group, starting with an empty superlist. For each element of the

declaration list:

a) if it is a string: add it to the superlist if it is not already present.

b) if it is a label, l: add each string in G(l) to the superlist if it is not already present.

3) Generate the exceptlist of the group, starting with an empty exceptlist. For each element of the

except list:

a) if it is a string: add it to the exceptlist if it is not already present.

b) if it is a label, l: add each string in G(l) to the exceptlist if it is not already present.

4) Remove all strings in the exceptlist from the superlist. The resulting list is the value of the group.

Lastly, P0 and M0 are both generated by taking each item in the parameter or memory, respectively,

list and adding an element to the empty look-up table for each parameter or variable name as a label

and the value in parenthesis for the value. If no such value is present then the value is set to NULL.

Γ0 is defined as (I0, O0, G0, P0,M0) and is the initial context of the device.
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4.1.2 Formal Semantics of C3L

Table 4.1 lists the standard symbols used in the semantics of C3L.

x ≡ label
i ≡ input event
l ≡ slist
Commands ≡ an arbitrary list of commands
n ≡ integer value
r ≡ real number value
b ≡ boolean value (true or false)
e ≡ expression (of any type)
d ≡ conditional (boolean expression)
v ≡ value (of any type)
s ≡ string value (denotes the string “xs”, where xs is a label)
ld ≡ device list (in the correct device list format, as opposed to an slist)
↪→ ≡ evaluation of commands and context into a new context

Table 4.1: Symbols used in C3L Semantics

Table 4.2 contains definitions for the function names used in the semantics. These functions do

not necessarily represent how, if at all, they are implemented, in the C3L interpreter, but they are

notationally useful in the semantics.

gset - takes two inputs, the master group list (G) and an slist (l), and returns a properly
formatted device list as defined by the slist.

tlist - takes two inputs, the memory lookup table (M) and an input event (i), and returns
the list of types of its message variables.

type - takes one input, a variable name (x), and returns the type of its associated value.
val - takes one input, a variable name (x), and returns its associated value from the P or

M lookup table.
generates - indicates that an uncontrollable event i occurs
call - indicates that a controllable event i is now called
update - takes memory look-up table, an ordered variable names list, an ordered value list,

and gives a new memory look-up table with the variables assigned the matching
values in the respective lists.

compute - takes an ordered list of expressions and evaluates them into an ordered list of values
using the current context.

Table 4.2: Function Definitions for C3L Semantics

These first five rules govern the dynamics of the input queue. The first two of these rules are the

ones which govern the reception of uncontrollable events. Uncon-not-cond describes the case when

an uncontrollable occurs but its preconditions are false, and Uncon-cond describes the case when an

uncontrollable occurs and is added to the queue. These are the only rules for which generates(i) is true,

for all other rules this predicate is assumed to be false for all i.
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(Uncon-not-cond)
〈Pre(U(i)), Γ〉 ↪→ false〈c, (I, O, G, P, M)〉 ↪→ Γ′

〈c, (I, O, G, P, M)〉 ↪→ Γ′
i ∈ U ∧ generates(i)

(Uncon-cond)

〈Pre(U(i)), (I, O, G, P, M)〉 ↪→ true

〈e1, (I, O, G, P, M)〉 ↪→ v1

〈e2, (I, O, G, P 〈p1, v1〉, M)〉 ↪→ v2

〈e3, (I, O, G, P 〈p1, v1〉〈p2, v2〉, M)〉 ↪→ v3

...

〈ek, (I, O, G, P 〈p1, v1〉〈p2, v2〉 . . . 〈pk−1, vk−1〉, M)〉 ↪→ vk

〈c, (Ii, O, G, P 〈p1, v1〉〈p2, v2〉 . . . 〈pk, vk〉, M)〉 ↪→ Γ′

〈c, (I, O, G, P, M)〉 ↪→ Γ′

i ∈ U ∧ generates(i)∧

Post(U(x)) = 〈p1, e1〉 . . . 〈pk, ek〉

The following rule, Term-rule, is the termination rule for execution in C3L. Practically, a program

is never expected to terminate, but we can treat a program which has no commands in the list and an

empty input queue as having terminated. The only caveat is that an input event may occur at some

time in the future.

(Term-rule)

〈ε, (ε, O, G, P, M)〉 ↪→ (ε, O, G, P, M)

These two rules describe the dequeueing of input events. Input-notE describes removing an event

from the input queue that will not execute a command sequence, while Input-E describes removing an

event that will execute a command sequence.

(Input-notE)
〈ε, (I, O, G, P, M)〉 ↪→ Γ′

〈ε, (iI, O, G, P, M)〉 ↪→ Γ′

i/∈E∨Source(I(i))/∈Auth(E(i))∨
tlist(i) 6= Types(E(i))

(Input-E)
〈Comm(E(i)), (I, O, G, P, update(M, V ari(E(i)), V alues(I(i)))〉 ↪→ Γ′

〈ε, (iI, O, G, P, M)〉 ↪→ Γ′

i∈E∧Source(I(i))∈Auth(E(i))∧
tlist(i) ∈ Types(E(i))

The following rules, from the Raise-nolist-nomess rule to the m-assign rule, describe the execution
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of commands in C3L. Of these, the first six rules describe the functioning of the raise command. The

Raise-nolist-nomess rule describes when an event is raised with no associated direct list or message

variables. The Raise-me-nomess rule describes when an event is raised with a direct list containing

the calling device and no message variables. The Raise-notme-nomess rule describes when an event is

raised with a direct list not containing the calling device and no message variables. The Raise-nolist-

mess rule describes when an event is raised with one or more message variables and no associated direct

list. The Raise-me-mess rule describes when an event is raised with a direct list containing the calling

device and one or more message variables. The Raise-notme-mess rule describes when an event is

raised with a direct list not containing the calling device and one or more message variables.

(Raise-nolist-nomess)
〈c, (I〈x, 〈me, ε〉〉, O〈x, 〈all, ε〉〉, G, P, M)〉 ↪→ Γ′

〈raise x c, (I, O, G, P, M)〉 ↪→ Γ′

(Raise-me-nomess)
〈c, (I〈x, 〈me, ε〉〉, O〈x, 〈(gset(G, l)−me), ε〉〉, G, P, M)〉 ↪→ Γ′

〈raise x direct l c, (I, O, G, P, M)〉 ↪→ Γ′
me ∈ gset(G, l)

(Raise-notmenot-nomess)
〈c, (I, O〈x, < gset(G, l), ε〉〉, G, P, M)〉 ↪→ Γ′

< raise x direct l c, (I, O, G, P, M)〉 ↪→ Γ′
me /∈ gset(G, l)

(Raise-nolist-mess)

〈c, (I〈x, 〈me, compute(e1, . . . , ek)〉〉,

O〈x, 〈all, compute(e1, . . . , ek)〉〉, G, P, M)〉 ↪→ Γ′

〈raise x(e1, . . . , ek) c, (I, O, G, P, M)〉 ↪→ Γ′

(Raise-me-mess)

〈c, (I〈x, 〈me, compute(e1, . . . , ek)〉〉,

O〈x, 〈(gset(G, l)−me), compute(e1, . . . , ek)〉〉, G, P, M)〉 ↪→ Γ′

〈raise x(e1, . . . , ek) direct l c, (I, O, G, P, M)〉 ↪→ Γ′
me ∈ gset(G, l)

(Raise-notme-message)
〈c, (I, O〈x, 〈gset(G, l), compute(e1, . . . , ek)〉〉, G, P, M)〉 ↪→ Γ′

〈raise x(e1, . . . , ek) direct l c, (I, O, G, P, M)〉 ↪→ Γ′
me /∈ gset(G, l)

The label-not-C describes the case when a device attempts to add a non-controllable event to

its input queue. The label-not-cond rule describes the case when a device attempts to perform a

controllable event, but the preconditions are not met. The label-mess describes the case when a device

successfully performs a controllable event with associated message variables, and the label-nomess
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describes the case when a device successfully performs a controllable event with no associated message.

(Label-notC)
〈c, Γ〉 ↪→ Γ′

〈x c, Γ〉 ↪→ Γ′
x /∈ C

(Label-not-cond)
〈Pre(C(x)), Γ〉 ↪→ false〈c, Γ〉 ↪→ Γ′

〈x c, Γ〉 ↪→ Γ′
x ∈ C

(Label-mess)

〈Pre(C(x)), (I, O, G, P, M)〉 ↪→ true

〈e1, (I, O, G, P, M)〉 ↪→ v1

〈e2, (I, O, G, P 〈p1, v1〉, M)〉 ↪→ v2

〈e3, (I, O, G, P 〈p1, v1〉〈p2, v2〉, M)〉 ↪→ v3

...

〈ek, (I, O, G, P 〈p1, v1〉〈p2, v2〉 . . . 〈pk−1, vk−1〉, M)〉 ↪→ vk

〈c, Γ(I, O, G, P 〈p1, v1〉〈p2, v2〉 . . . 〈pk, vk〉, M)〉 ↪→ Γ′

〈x(e′1, . . . , e′j) c, Γ〉 ↪→ Γ′

x ∈ C ∧ calls(x)∧

Post(C(x)) = 〈p1, e1〉 . . . 〈pk, ek〉

(Label-nomess)

〈Pre(C(x1)), (I, O, G, P, M)〉 ↪→ true

〈e1, (I, O, G, P, M)〉 ↪→ v1

〈e2, (I, O, G, P 〈p1, v1〉, M)〉 ↪→ v2

〈e3, (I, O, G, P 〈p1, v1〉〈p2, v2〉, M)〉 ↪→ v3

...

〈ek, (I, O, G, P 〈p1, v1〉〈p2, v2〉 . . . 〈pk−1, vk−1〉, M)〉 ↪→ vk

〈c, Γ(I, O, G, P 〈p1, v1〉〈p2, v2〉 . . . 〈pk, vk〉, M)〉 ↪→ Γ′

〈x c, Γ〉 ↪→ Γ′

x ∈ C ∧ calls(x)∧

Post(C(x)) = 〈p1, e1〉 . . . 〈pk, ek〉

The Gadd and Grem rules describe when a device adds or removes devices from a group.

(Gadd)
〈c, (I, O, G(x, G(x) ∪ gset(G, l)), P, M)〉 ↪→ Γ′

〈gadd x l c, (I, O, G, P, M)〉 ↪→ Γ′

(Grem)
〈c, (I, O, G(x, G(x)− gset(G, l)), P, M)〉 ↪→ Γ′

〈grem x l c, (I, O, G, P, M)〉 ↪→ Γ′
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The next four rules govern behavior of the choice command: The Choice-no-cor-T rule applies

when there are no cor statements and the condition is true, the Choice-no-cor-F rule when there are

no cors and the condition is false, the Choice-cor-T rule when there are one or more cor statements

and the condition is true, and the Choice-cor-F rule when there are one or more cors and the condition

is false.

(Choice-no-cor-T)
〈d, Γ〉 ↪→ true〈Commands c, Γ〉 ↪→ Γ′

〈choice d Commands end c, Γ〉 ↪→ Γ′

(Choice-no-cor-F)
〈d, Γ〉 ↪→ false〈c, Γ〉 ↪→ Γ′

〈choice d Commands end c, Γ〉 ↪→ Γ′

(Choice-cor-T)
〈d1, Γ〉 ↪→ true〈Commands1 c, Γ〉 ↪→ Γ′

〈choice d1 Commands1 cor d2 Commands2 . . . cor dk Commandsk end c, Γ〉 ↪→ Γ′

(Choice-cor-F)
〈d1, Γ〉 ↪→ false〈choice d2 Commands2 . . . cor dk Commandsk end c, Γ〉 ↪→ Γ′

〈choice d1 Commands1 cor d2 Commands2 . . . cor dk Commandsk end c, Γ〉 ↪→ Γ′

The m-assign rule describes memory assignment statements. There is no corresponding p-assign

rule, since commands cannot modify the device parameters.

(m-assign)
〈e, Γ〉 ↪→ v〈c, (I, O, G, P, M〈x, v〉) ↪→ Γ′

〈x := e; c, Γ〉 ↪→ Γ′

The above rules all are structured by the following command meta-rule. This rule is used to reason

about the general operation of commands in C3L.

(Cmd-meta-rule)
〈c, Γ′′〉 ↪→ Γ′

〈Commands c, Γ〉 ↪→ Γ′

The following 28 rules describe evaluation of conditional statements. These are fairly self-explanatory.

The and/or operators support short circuit evaluation (denoted by the “SC” rules). Also, all of the

comparison operators can be applied to pairs of strings, with the result determined by the lexicographic

ordering of the strings.
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(true)
< true,Γ >↪→ true

(false)
< false,Γ >↪→ false

(and-SC-F)
< d1,Γ >↪→ false

< d1 and d2,Γ >↪→ false

(and-2nd-F)
< d1,Γ >↪→ true < d2,Γ >↪→ false

< d1 and d2,Γ >↪→ false

(and-T)
< d1,Γ >↪→ true < d2,Γ >↪→ true

< d1 and d2,Γ >↪→ true

(or-SC-T)
< d1,Γ >↪→ true

< d1 or d2,Γ >↪→ true

(or-2nd-T)
< d1,Γ >↪→ false < d2,Γ >↪→ true

< d1 or d2,Γ >↪→ true

(or-F)
< d1,Γ >↪→ false < d2,Γ >↪→ false

< d1 or d2,Γ >↪→ false
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(not-true)
< d,Γ >↪→ true

< not(d),Γ >↪→ false

(not-false)
d, Γ >↪→ false

< not(d),Γ >↪→ true

(eq-true)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 = e2,Γ >↪→ true

v1 = v2 ∨ v1 =L v2

(eq-false)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 = e2,Γ >↪→ false

v1 6= v2 ∨ v1 6=L v2

(less-true)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 < e2,Γ >↪→ true

v1 < v2 ∨ v1 <L v2

(less-false)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 < e2,Γ >↪→ false

v1 6< v2 ∨ v1 6<L v2

(greater-true)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 > e2,Γ >↪→ true

v1 > v2 ∨ v1 >L v2

(greater-false)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 > e2,Γ >↪→ false

v1 6> v2 ∨ v1 6>L v2

(leq-true)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 <= e2,Γ >↪→ true

v1 ≤ v2 ∨ v1 ≤L v2
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(leq-false)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 <= e2,Γ >↪→ false

v1 > v2 ∨ v1 >L v2

(geq-true)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 >= e2,Γ >↪→ true

v1 ≥ v2 ∨ v1 ≥L v2

(geq-false)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 >= e2,Γ >↪→ false

v1 < v2 ∨ v1 <L v2

(noteq-true)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1! = e2,Γ >↪→ true

v1 6= v2 ∨ v1 6=L v2

(noteq-false)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1! = e2,Γ >↪→ false

v1 = v2 ∨ v1 =L v2

(label-true)
v = P (x)

< x,Γ >↪→ true

v = true

(label-false)
v = P (x)

< x,Γ >↪→ false

v = false

(string-in-label-T)
< “xs” in x,Γ >↪→ true

(x, ld) ∈ G.xs ∈ ld
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(string-in-label-F)
< “xs” in x,Γ >↪→ false

(x, ld) /∈ G ∨ xs /∈ ld

(label-in-label-T)
< x1 in x2,Γ >↪→ true

(x1, ld1) ∈ G.(x2, ld2) ∈ G.∀x ∈ ld1x ∈ ld2

(label-in-label-F)
< x1 in x2,Γ >↪→ false

(x1, ld1) /∈ G ∨ (x2, ld2) /∈ G ∨ ∃x ∈ ld1s.t.x /∈ ld2

The next 14 rules describe the behavior of arithmetic operators and math functions. These are also

fairly self-explanatory. The typing works as in C or C++, that is, if both operands are integers, the

result is an integer; otherwise, the result is a real.

(int)
< n,Γ >↪→ n

(real)
< r,Γ >↪→ r

(add-int)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 + e2,Γ >↪→ n

v1, v2 ∈ Z ∧ n = v1 + v2

(add-real)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 + e2,Γ >↪→ r

v1 ∈ R ∨ v2 ∈ R ∧ r = v1 + v2
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(sub-int)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 − e2,Γ >↪→ n

v1, v2 ∈ Z ∧ n = v1 − v2

(sub-real)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 − e2,Γ >↪→ r

v1 ∈ R ∨ v2 ∈ R ∧ r = v1 − v2

(mult-int)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 ∗ e2,Γ >↪→ n

v1, v2 ∈ Z ∧ n = v1 ∗ v2

(mult-real)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1 ∗ e2,Γ >↪→ r

v1 ∈ R ∨ v2 ∈ R ∧ r = v1 ∗ v2

(div-int)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1/e2,Γ >↪→ n

v1, v2 ∈ Z ∧ v2 6= 0 ∧ n =
⌊

v1

v2

⌋

(div-real)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1/e2,Γ >↪→ r

v1 ∈ R ∨ v2 ∈ R ∧ v2 6= 0 ∧ r =
v1

v2

(div-zero)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2

< e1/e2,Γ >↪→ NULL

v2 = 0

(neg-int)
< e, Γ >↪→ v

< −e,Γ >↪→ n >

v ∈ Z ∧ n = −v

(neg-real)
< e, Γ >↪→ v

< −e,Γ >↪→ r >

v ∈ R ∧ r = −v
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(math-fcn)
< e1,Γ >↪→ v1 < e2,Γ >↪→ v2 . . . < ek,Γ >↪→ vk

< math(e1, e2, . . . , ek),Γ >↪→ v

n ≥ 0 ∧ v = math(v1, v2, . . . , vk)

The final two rules describe the array dereferencing operation. If it is supplied with a valid subscript

n, the result is the nth element of the array’s value parameter. If it is supplied with an invalid subscript,

the result is NULL.

(deref-valid)
val(x) = (v1, v2, v3, . . . , vk)

< x[n],Γ >↪→ v

v = vn.n ∈ Z ∧ 0 ≤ n ≤ k

(deref-fail)
val(x) = (v1, v2, v3, . . . , vk)

< x[n],Γ >↪→ NULL

n /∈ Z ∨ n < 0 ∨ n > k

Using these semantics the formal properties of C3L can be explored, and several formal results, shown

below, can be proven for the language.

4.2 Static Analysis of C3L Programs

Static analysis of a program attempts to determine some properties regarding the behavior of that

program without actually executing the program. Some aspects of static program analysis are: checking

for syntactic correctness, checking for type correctness, and basic control flow analysis. Each of these

static analyses has been implemented for use with C3L. Static analysis, especially in the area of type

correctness, is dependent on having a complete and correct semantics for the language. Checking for

syntax correctness is a well-understood and simple problem, and will not be further discussed here.

Since C3L enforces the determination of variable types prior to runtime, it is a statically-typed

language. C3L is also a weakly-typed language, meaning that there are exceptions to the strict enforement

of type rules in the language, but only in the case of storing “integer”-type data in a “real”-type variable.

In no other case is type conversion allowed. Therefore, C3L is a type-safe programming language.

Since C3L uses a plant/controller model, it is desirable to show that the program never enters a
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“blocking state.” This is an undecidable problem, since it can be reduced to the Halting Problem, as

shown in [31]. However, the following is an incomplete list of possible causes of blocking in a C3L program

that have been identified:

1. All uncontrollable preconditions evaluate to false. (Implies that no state transitions can ever occur

in the plant. Controller state transitions are still possible)

2. All controllable preconditions evaluate to false. (No controllable exits from any state.)

3. No uncontrollables have event handlers, or, no uncontrollable has an event handler which raises a

command. (This implies that no controllables are ever called, and so there is not a controllable

exit from any state.)

4. No controllable events are raised for the group containing “me”. (There are no controllable exits

from any state.)

5. A variable is used in a precondition without being initialized. (There may be no resulting state

transition, or the transition may be undefined.)

6. An event is raised to an undefined group. (It is unknown whether any device will receive the

controllable.)

7. Input queue pathologies (Note: The “DoS” and “DDoS” pathologies used herein refer to “Denial

of Service” and “Distributed Denial of Service”, respectively. These terms are used in the normal

way; a Denial of Service attack originates from one device, and a Distributed Denial of Service

attack originates from many devices. The “attack” notation is used by convention, but this is not

meant to imply malicious intent; these pathologies result from incorrectly designed plant models.):

• Self DoS - One internal events calls two or more internal events, at least one of which is the

same as the original event.

• Initiating DDoS - One received event causes two or more events to be raised to the same direct

list.

• Inviting DDoS - One event raised to a direct list causes a response from every member of the

list (This pathology is only applicable in a multiple-device setting).

Not all of these possible pathologies can be tested for prior to run time (i.e., they are outside the

realm of static analysis). However, pathologies 3, 5, 6, and the Self DoS component of 7 all can be, and

are, identified statically. This gives the user at least some degree of certainty that the control flow of
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his or her program is correct. This process is performed by a C++ program which also checks for the

syntactic correctness of the C3L program. This program is not included here, in the interests of space

and simplicity.
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Chapter 5

Language Verification and Proofs

Given that there is a complete semantics for the C3L language, as specified in Section 4.1.2, it is possible

to use these semantic rules to prove statements about programs written in C3L. These proofs can refer

to specific programs, or as the proofs in this section do, to all programs written in C3L.

The first property that will be proved, event fairness, is the property that any event that is placed

on the input queue of a C3L device must necessarily be dequeued in some finite amount of time. This

allows us to say that “event starvation” is not possible for a device controlled by a C3L program. This

is desirable because it assures the user that any device that can be received will eventually be handled,

and also because it is a component in the proof of prefix-closed controllability that follows.

A language is prefix-closed controllable if it satisfies the following two constraints: First, that a

specification cannot cause a command to execute if the state of device should prohibit its execution,

and second, that the specification cannot prohibit an event from occuring, if that event is outside of the

control of the device. Full controllability requires that a language possess a third property, that execution

of a program cannot terminate in an undesirable state. As shown in [31], it is impossible to show full

controllability in C3L, or any other language of equal expressive power (that is, any language that is at

least Turing-complete and can have marked states). However, it is possible to show that a language is

prefix-closed controllable, and so programs in that language do not depend on controlling uncontrollable

events. The second proof in this section proves that this is the case for C3L. These results can also be

found in [31].
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5.1 Proof of Event Fairness in C3L

In a network of autonomous devices, each device is operating concurrently with the other devices. In

order to ensure communication and basic functionality it is important to prevent the major risks of

concurrent systems from affecting the network. One of the most important concerns in a concurrent

system is starvation, where a particular process or event is left waiting indefinitely. This problem is

especially common in the pathology of busy waiting, where a device will continually check for an event,

and in doing so prevent that event from accessing the resources needed to be noticed. The property of

a language that no events are starved is called event fairness.

In the C3L language the formal model prevents event starvation by ensuring that every event will

eventually be removed from the input queue. This is the reason the C3L language lacks any explicit

looping commands. This is also the reason why the functionality of procedure calls in other languages is

replaced with that of raising events in C3L. Repeated raising of events acts as tail recursion, and by the

nature of the C3L input queue, any events preceding the newly raised event occur without interruption.

These design considerations are necessary for the following proof of event fairness.

Event Fairness: An event i, placed on the input queue at arbitrary time t, is always dequeued in

finite time.

Remark: In order to prove finite queue waiting, it was assumed that the enqueue operation takes 0

processor time. If this were not the case, it would be theoretically possible that an infinite, or at least

sufficiently large, number of uncontrollable events could consume all available processing time with en-

queueing, effectively performing a DoS attack on the device. In practice, this does not represent a

considerable weakening of the proof, since a certain degree of sparseness of uncontrollable events is ob-

served. That is, uncontrollable events occur at most finitely often.

Proof: There are two device resources which can affect the dequeueing of an input event: The in-

put queue, and the command sequence at any given time. These two resources will be taken as separate

cases, and in each case, will be inductively proved to become empty in finite time. Since both resources

being empty is the prerequisite for dequeueing of the desired event i, this is sufficient to prove finite

queue waiting for any event.

Case I: Command List (proof by well-founded induction (WFI))
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Let ε be the minimal element of any list of commands, and let the partial order relation be defined as

the “is a sublist of” relation. There are 6 distinct commands in the C3L language: label [outmessage],

raise label [outmessage] [except slist], gadd label slist, grem label slist, assign, and choice. None of

these commands, when executed, can add to the command list. Also, none of these commands can ever

be non-terminating in normal operation. Finally, all of these commands execute in finite time. Given

these conditions, the execution of any command causes the length of the command list to decrease by

at least 1 after a finite time step. Then, by WFI on the sublist relation, any list of commands can be

reduced to the empty list, ε, in finite time.

Case II: Input Queue (proof by well-founded induction)

Let Ipre denote those events that make up the input queue immediately before time t, when event i

is added to the queue, and let Ipost denote the list of events that are added to the queue after time t.

Only Ipre has an effect on the waiting time of event i, since those events in Ipost cannot be dequeued

before event i, or moved up in the list to be in front of event i. Therefore, only the state of Ipre is

relevant to this proof. Any uncontrollable events that occur, or any events that are placed on the queue

by execution of a command, are placed at the tail of Ipost, and are therefore irrelevant to the proof. Now

all that remains to show is: For any event i placed on the queue at time t, Ipre can be reduced to the

empty list, ε, in finite time.

Let ε denote the minimal element of Ipre, and again let the partial order relation be defined as the “is

a sublist of” relation. The dequeue operation is defined such that whenever the command list is empty,

the event at the head of the input queue will be removed from the queue and handled (if applicable).

As shown in Case I, the command list will always become empty in finite time. Therefore, a dequeue

operation will always be able to take place after some finite time interval. By the definition of the dequeue

operation, dequeueing causes the length of the input queue to be reduced by 1. Then, by WFI on the

sublist relation, Ipre can be reduced to ε in finite time. Then, after the command list again becomes

empty, in a finite amount of time, i is dequeued. Therefore, an event i placed on the input queue at

arbitrary time t is always dequeued in finite time.
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5.2 Proof of Prefix-Closed Controllability in C3L

In most languages significant care must be taken to ensure that a specification does not cause a command

to execute when the state of the sensor node prohibits its execution. It is also important that the speci-

fication does not prohibit the occurrence of an event, if that event is outside of the control of the sensor

node. A specification which satisfies both of these properties is called prefix-closed controllable. Full

controllability requires an additional constraint, namely that execution cannot terminate in an undesired

state. This requires the specification to both incorporate termination and to consider some sensor node

states to be undesirable for termination, otherwise controllability is just prefix-closed controllability as

described above [25]. Full controllability and its relationship to C3L and other languages will be discussed

below.

One of the major formal properties of C3L is that all syntactically correct specifications in C3L are

prefix-closed controllable. A sketch of this result is shown below.

Prefix-Closed Controllability: For all parameter configurations, all allowable uncontrollables can

be received. (∀ generates, ∀ P, ∀t, if 〈Pre(U(i)),Γ〉 ↪→ true at time t and i ∈ U , then generates(i) at

time t → It+ε = Iti)

Proof: It+ε = Iti ⇔ ∃ a rule s.t. for any sequence of commands, evaluating those commands under

Γt = (It, O,G, P,M) and under Γt+ε = (Iti, O
′, G′, P ′,M ′) gives the same result state ⇔ ∃ an inference

rule s.t.

. . . 〈Commands, (Iti, O
′, G′, P ′, M ′)〉 ↪→ Γ′

〈Commands, (It, O, G, P, M)〉 ↪→ Γ′

where Γt+ε = (Ii, O,G, P, M) and Γt = (Ii, O′, G′, P ′,M ′). Since the statement to be proved is gener-

ates(i) → It = It+εi, and the only rules for which the generates predicate can be true are the (Uncon-

not-cond) and (Uncon-cond) rules, and the proof statement assumes that 〈 Pre(U(i)),Γt〉 ↪→ true,

(Uncon-cond) is the only rule that can be applied. 〈Pre(U(i)),Γt〉 ↪→ true, i ∈ U , and generates(i,t)

are all part of the assumptions in the proof statement, and these three conditions are the necessary

and sufficient conditions for an allowed uncontrollable. Since all expressions evaluate to values, this rule

can be applied. Therefore, the (Uncon-cond) rule will always be applied in this situation, and is of

the type required above. This is sufficient to show that for all parameter configurations, all allowable

uncontrollables can be received.
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Chapter 6

Demonstration: Dynamic

Locality-Based Election

The semantics for C3L presented in Section 4.1.2 and formal proofs such as those presented in Chapter 5

serve as verification for C3L; that is, they make formal the properties and behaviors of the language, such

that these properties and behaviors can be checked against the specifications for the language. Validation

of a general use programming language such as C3L is less intuitive. Validation of a programming

language is only meaningful in terms of validation for a specific application. In this case, a discussion

of how this application validates C3L in terms of the characteristics stated in Section 3.3 will follow the

presentation of the experimental results.

6.1 Experimental Setup

As a demonstration of C3L programming, the following program was developed. This program performs

a detection-based cluster head election among a group of networked sensor nodes, which assumes that

these nodes are occupying random distances from a specified target. The algorithm seeks to elect the

nearest node to the target to act as the cluster head for the group, without using any global information.

Frequency of target detections is used as a proxy for physical distance; that is, if a node receives more

frequent detections of the target, it is assumed to be closer to the target. The text of the C3L program

appears below:

device Locality_Elector
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parameter

Active integer (0)

Last_Active integer (0)

Doubt integer (5)

uncontrollable

Start () ()

Restart () ()

Detection () (Active := (Active + 1);)

controllable

Sync () (Last_Active := Active;)

Inhibit (Active > 4;) (Active := (Active - 5);)

Reduce_Doubt (Doubt > 0;) (Doubt := (Doubt - 1);)

Increase_Doubt (Doubt <= 10;) (Doubt := (Doubt + 1);)

Reset () (Active := 0; Last_Active := 0; Doubt := 5;)

group

Potentials := all except me end

Subordinates := end

Supervisor := end

control

event Start

raise Update direct me end

end

event Restart
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Reset

gadd Potentials all except me end

grem Subordinates all end

grem Supervisor all end

end

event Update

choice (Active > 10;)

raise Assert_Sup direct Potentials end

Reduce_Doubt

Reduce_Doubt

end

choice ((Active - Last_Active) < (Active / 2);)

Inhibit

Increase_Doubt

Increase_Doubt

end

Sync

raise Update direct me end

end

event Assert_Sup

authorize Potentials end

choice (Doubt > 6;)

raise Join direct you end

raise Reject direct Subordinates end

grem Subordinates Subordinates end

grem Potentials Potentials end

gadd Supervisor you end

end

Increase_Doubt

end
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event Join

authorize all except me end

choice (you in Potentials;)

grem Potentials you end

gadd Subordinates you end

Reduce_Doubt

raise Assert_Sup direct Potentials end

cor (not(you in Subordinates);)

raise Reject direct you end

end

end

event Reject

authorize Supervisor end

gadd Potentials all except me end

grem Supervisor you end

end

end

Roughly, this program functions as follows: The Start event causes an event to call the Update event,

which is then performed continually for the duration of the execution. Any detection increments a device’s

Active count. If the Active count exceeds 10, the device believes that it is a valid potential supervisor,

and communicates this to every other device. If the device does not receive detections frequently (i.e.

if Active - Last Active is sufficiently small), it doubts that it can be a valid supervisor. When a device

receives another device’s Assert Sup declaration, it either increases its degree of doubt, or if its doubt is

already sufficiently great, it joins the group headed by the raiser of Assert Sup. If a device becomes a

subordinate to another device, and has subordinates of its own, it releases those subordinates, so that

they are free to join another supervisor. When all devices have the same supervisor, the algorithm stops.

This algorithm will always elect a cluster head, however, since it is stochastic (that is, random), it may

take an arbitrarily large amount of time.
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6.2 Results

Simulations were performed in order to determine some of the characteristics of the program presented

in Section 6.1. First, the simulation was run with only a single device; 20 runs at each distance from 1 to

10, with a maximum number of steps of 10000. The runtime was capped in order to prevent pathological

cases from monopolizing simulation time. The goal of this simulation was to establish a baseline of how

long it would take a node at any given distance to recognize that it could be a potential supervisor. The

results are summarized in the following table:

Distance Mean no. of steps Median no. of steps Percentage of failures
1 21.65 27 0
2 22.8 24 0
3 21.45 15 0
4 17.9 51 0
5 45.5 21 0
6 151.45 267 0
7 5690 4586 0
8 10000 10000 100
9 10000 10000 100
10 10000 10000 100

Table 6.1: Single Device Simulation Results

The data of Table 6.1 can be summarized as follows. For distances from the target of 5 or less, the

device always succeeded in recognizing itself as a potential supervisor, in a small number of steps (on

order 10). For a device at distance 6 from the target, the device always recognized itself as a potential

supervisor, although it took appreciably longer than for devices closer to the target (on order 100). For

a device at distance 7 from the target, it was essentially random whether the device would recognize

itself as a supervisor. The high difference between the median and the mean for devices at distance 7

implies that the cases in which the device did not recognize itself as a supervisor perhaps excessively

color the mean value. For devices at distance 8 or further, a device never recognized itself as a potential

supervisor. It should be noted that for such a small number of runs, it is not clear that more precise

distinctions can be made for the number of steps needed at each distance than the order comparisons

made above.

In addition, simulations were run for groups ranging between 2 and 20 devices, 1000 runs for each

group size, with a maximum of 1000 steps placed on each run, again, to prevent particularly bad cases

from monopolizing simulation time. The nodes were placed randomly, with a quadratic distribution of

distances (i.e. 1 percent of devices are located at distance 1 from the target, 4 percent at distance 2 or

nearer, 9 percent at distance 3 or nearer, etc.) The following relationships were observed during these

simulations:
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1. Runtime (measured in number of steps) vs. Number of devices:

Independent variable: Number of devices

Dependent variable: Runtime

2. Runtime vs. Standard deviation of distances

Independent variable: Standard deviation of distances

Dependent variable: Runtime

It is thought that a more tightly grouped set of devices might have a different set of performance

characteristics using this algorithm than a more widely-scattered group. The standard deviation

of distances from the target is used to measure this characteristic of “tightly-grouped-ness”.

3. Quality of Supervisor vs. Number of devices:

Independent variable: Number of devices

Dependent variable: Quality of supervisor

Quality of supervisor must be well-defined for this comparison to be meaningful. I choose to define

it as follows: 1 - (Fraction of devices with distance 〈 supervisor’s distance). This is a simple metric;

the best choice for supervisor would always rate as 1, and the worst would rate as 0. It does

not penalize the supervisor for ties in quality, since a choice among tied nearest nodes is entirely

arbitrary. It is possible that this metric is not harsh enough; for example, if the algorithm were to

choose the 5th best supervisor out of 10 nodes, it’s quality would still be rated as .5, although in

actuality, a rating this low would reflect a spectacularly bad choice on the part of the algorithm.

A square of this measurement might more accurately reflect this.

4. Quality of supervisor vs. Standard deviation of distances

Independent variable: Standard deviation of distances

Dependent variable: Quality of supervisor

See (3) for a definition of quality of supervisor.

Results are presented in the following charts and discussions.
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Figure 6.1: Simulation Results Relating Runtime to Number of Devices

Figure 6.1 shows the relationship between runtime and number of devices using this algorithm. The

interesting characteristic of these data is that there is a “sweet spot” between five and ten devices in the

network. Networks with fewer than 5 devices have particularly bad runtimes as a result of “thrashing”,

wherein multiple devices each consider themselves to be the supervisor, and the network takes a very

large amount of time to reach a consensus on the best supervisor, causing a disproportionately high rate

of failure with a maximum of steps.
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Figure 6.2: Simulation Results Relating Runtime to Standard Deviation of Distances

Figure 6.2 shows the relationship between supervisor quality and number of devices. Again, this chart

shows a “sweet spot” around ten devices. For fewer than twelve devices, the algorithm tends to elect

an average supervisor that is better than the second best possible supervisor in any single run. As the

number of devices increases, the algorithm elects a relatively poor supervisor with greater frequency.

Figure 6.3: Simulation Results Relating Quality of Supervisor to Number of Devices

Figure 6.3 shows the relationship between runtime and the standard deviation of distances from the

target. This chart shows a very clear trend, in that very tightly-grouped networks of devices (stan-

dard deviation of distances less than 1.5), runtimes are exceedingly high (above 700 steps on average),
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indicating a very large amount of failures to reach consensus on a supervisor. For standard deviation

of distances greater than 1.5, the runtimes are consistently low. This indicates a strong correlation of

runtime with a threshold value of standard deviation of distances, somewhere between 1 and 1.5.

Figure 6.4: Simulation Results Relating Quality of Supervisor to Standard Deviation of Distances

Figure 6.4 shows the relationship between supervisor quality and the standard deviation of distances

from the target. In light of the previous chart, the results are as expected. Below the threshold value

(between 1 and 1.5), supervisor quality is very poor, indicating a large amount of failures. Above that

threshold value, supervisor quality is very close to 1. This reinforces the notion that performance has a

very strong correlation to the “clumping” in a network, but only insofar as whether the “clumping” is

more or less than some known threshold.

6.3 Validation of Results

The six specific motivating characteristics of the C3L language, as stated in Section 3.3, are dynamic

organization, accomodation of uncontrollable events, portability, formality, expressiveness, and extensi-

bility. This section seeks to show that the example program shown previously in this chapter validates

C3L for this specific application by performing the stated task and taking advantage of these character-

istics. This program obviously demonstrates dynamic organization of groups in C3L. Devices join and

leave groups in real time in response to target detections and communication events. This example is also

dependent upon the accomodation of uncontrollable events, as a detection of the target is an uncontrol-

lable event, which causes modification of device parameters and dynamic changes to device groups. This
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specific example does not directly show the portability of the C3L language, however, the C3L program

is interpreted in C++, so it could run on any platform that has an existing C++ compiler, and it is also

portable across different C3L devices, as long as they share the variables and events presented in the

program text above. This program does exhibit formality, by possessing at least the properties of event

fairness and prefix-closed controllability. It also exhibits the necessary expressiveness, demonstrating

the use of recursion in the Update event, and also demonstrating the device communication and group

formation functionality in the language. Extensibility is not validated by this example, owing to the fact

that this example could be entirely composed in the existing C3L language. An example which would

validate the extensibility of the language would be, say, adding a global stack to the language.
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Chapter 7

Future Research Directions

While implementation of the base of C3L, as described in [2], is largely concluded, there are several

extensions to the language that may be implemented in the future.

First, as discussed in [2], C3L is naturally suited to use in simulation applications. Development in

this area is underway, in which the C3L interpreter is being integrated with the open-source Player/Stage

platform. In this integrated system, called Robotalk, a user could specify the behavior of multiple devices

using the C3L language, define the parameters of the environment, and run the C3L program, with results

being displayed in the Player/Stage interface.

Other potential extensions to the language include the addition of a polymorphic stack construct to

the device context, the addition of records to the language, the addition of structured parallelism to

the language, and the addition of logical programming constructs to the language. With any of these

additions, the semantics of the language would also have to be amended to describe the new behavior of

the language.

Other extensions, mentioned earlier, include biologically-inspired programming constructs and sup-

port for mobile code.
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