Fast Tree-Field Integrators: From Low Displacement Rank to Topological Transformers

UX UX UX UX

Krzysztof Choromanski*, Arijit Sehanobish*, Somnath Basu Roy Chowdhury*, Han Lin*, Avinava Dubey*, Tamas Sarlos, Snigdha Chaturvedi

Problem: Tree-Field Integration

Compute efficiently (in **sub-quadratic** time in the number of nodes **N**) the following expressions **for every node v** of the given **tree T**, approximating graph G (e.g. *low-distortion-tree*):

 $\mathbf{K}(w,v) = \underbrace{f_{\theta}}_{\text{learnable}} \underbrace{d_{\mathbf{G}}(w,v)}_{\text{learnable}}$

1. Popular trees used here: *minimum spanning trees* (MSTs); can be constructed in log-linear time for sparse graphs.

2. Brute-force integration with them still takes quadratic time.

Applications

.

- interpolation on manifolds,
- topological masking mechanisms for Transformers with structural inputs,

distance

- physics simulations in curved spaces,
 Wasserstein
 - barycenter, (Fused) Gromov Wasserstein

Fast Tree-Field Integrators (FTFIs)

1. An **polylog-linear** field-integration algorithm for a large class of functions f, fusing *divide-and-conquer* and *FFT* methods.

2. New data structure to achieve it: integration trees (ITs).

Experiments: interpolation on meshes

Fig: Speed (pre-processing time) and accuracy (cosine similarity) comparison of the FTFI and other baselines for vertex normal prediction on meshes. Cosine similarity of BFFI and FTFI almost overlaps.

-> Cordial Functions $f_{ heta}$

Definition [cordial functions] A function $f : \mathbb{R} \to \mathbb{R}$ is *d*-cordial (or: cordial if *d* is not specified), if there exists $d \in \mathbb{N}$ such that matrix-vector multiplication with a matrix $\mathbf{M} = [f(x_i + y_j)]_{i=1,...,a}^{j=1,...,a}$ can be conducted in time $O((a + b) \log^d (a + b))$ for every $(x_i)_{i=1}^a, (y_j)_{j=1}^b$.

Lemma 3.3 [integration with cordial functions] If f is d-cordial then f-integration for the general weighted tree of N vertices can be conducted in time $O(N \log^{d+1}(N))$.

Examples: trigonometric (sin/cos), rational, exponentials and polynomials products

Experiments: Topological Transformers

	ImageNet															Place365			
$\phi := RELU$				$\phi := x \rightarrow x^2$				$\phi := x \rightarrow x^4$				$\phi := \exp$				$\phi := \text{ReLU}$			
synce	dg	t	Acc. (%)	synced	g	t	Acc. (%)	synced	g	t	Acc. (%)	synced	g	t	Acc. (%)	synced	g	t	Acc. (%)
NA	NA	NA	76.23	NA	NA	NA	75.03	NA	NA	NA	76.37	NA	NA	NA	76.76	NA	NA	NA	54.80
1	exp	1	77.28	1	exp	1	76.66	1	exp	1	77.84	×	exp	1	78.79	×	exp	1	56.69
1	exp	2	76.60	1	exp	2	75.91	1	exp	2	77.23	×	exp	2	78.51	×	$z \rightarrow z^{-1}$	1	56.44
×	exp	1	77.79	×	exp	1	76.76	×	exp	1	77.94	×	$z \rightarrow z^{-1}$	1	77.39	×	$z \rightarrow z^{-1}$	5	56.32
×	exp	2	77.43	×	exp	2	76.27	×	exp	2	78.15	×	$z \rightarrow z^{-1}$	2	77.69	×	$z \rightarrow z^{-1}$	10	56.51

Table: Performance of Topological Vision Transformers with tree-based masking. For each attention kernel, we present the results of the best variant in **bold** and Performer baselines in blue.

Fig.: Experiments with the RPE mechanism for VIT-L and on ImageNet. We observe that FTFI provides **7%** accuracy gain compared to the Performer variant.

 $w_{i,j}$