Is Everything in Order?
A simple way to Order Sentences

Somnath Basu Roy Chowdhury*, Faeze Brahman*, Snigdha Chaturvedi
Motivation

Sentence Ordering Task:

- Organizing a shuffled set of sentences into a coherent text

Shuffled Input

1. I packed my raincoat.
2. The forecast called for rainy.
3. It never rained.
4. The weather is never predictable.
5. Instead it started to snow.
Motivation

Sentence Ordering Task:

- Organizing a shuffled set of sentences into a coherent text
Motivation

Sentence Ordering Task:
- Organizing a shuffled set of sentences into a coherent text
- Requires understanding of causal and temporal relations.
- Applications in NLG, QA, etc.
Prior Works

• Pointer networks for Pairwise Ranking (Gong et al., 2016, Logeswaran et al., 2018a, Cui et al., 2018, Yin et al., 2019, 2020)

• Solving a ranking problem (Chen et. Al, 2016)

• Constraint solving + topological sorting (Prabhumoye et al., 2020)

• SOTA: Novel Pointer Decoder with Deep relational module (Cui et al., 2020)
Prior Works

• Pointer networks for Pairwise Ranking (Gong et al., 2016, Logeswaran et al., 2018a, Cui et al., 2018, Yin et al., 2019, 2020)

• Solving a ranking problem (Chen et. Al, 2016)

• Constraint solving + topological sorting (Prabhumoye et al., 2020)

• SOTA: Novel Pointer Decoder with Deep relational module (Cui et al., 2020)
Prior Works

• Pointer networks for Pairwise Ranking (Gong et al., 2016, Logeswaran et al., 2018a, Cui et al., 2018, Yin et al., 2019, 2020)

• Solving a ranking problem (Chen et. Al, 2016)

• Constraint solving + topological sorting (Prabhumoye et al., 2020)

• SOTA: BERSON, proposed a novel Pointer Decoder with Deep relational module (Cui et al., 2020)
Re-order BART (Re-Bart)

- Solve the task as a conditional text-to-marker generation problem
Re-order BART (Re-Bart)

- Solve the task as a conditional text-to-marker generation problem
Re-order BART (Re-Bart)

• Solve the task as a conditional text-to-marker generation problem
Re-order BART (Re-Bart)

- Solve the task as a conditional text-to-marker generation problem
Re-order BART (Re-Bart)

• Solve the task as a conditional text-to-marker generation problem
Re-order BART (Re-Bart)

- Solve the task as a conditional text-to-marker problem
Re-order BART (Re-Bart)

What are the advantages of text-to-marker setup over text-to-text setup?

• Less susceptible to neural degeneration.

• Text-to-text often generate tokens that are not part of the input.
Re-order BART (Re-Bart)

What are the advantages of text-to-marker setup over text-to-text setup?

- Less susceptible to neural degeneration.
- Text-to-text often generate tokens that are not part of the input.
Datasets

Paper Abstracts
- NeurIPS
- AAN
- ACL
- NSF Research Awards
- arXiv

Narratives
- ROCStoris
- SIND
- Wikipedia Movie Plots
Evaluation Metrics

- **Accuracy**: The fraction of output sentence positions predicted correctly

- **Perfect Match Ratio**: The fraction of sentence orders exactly matching with the correct order

- **Kendall’s Tau**: The correlations between predicted and gold order

\[
\tau = 1 - \frac{2\ (#\text{inversions})}{\binom{n}{2}}
\]
Results
Results

Paper Abstracts

Accuracy

<table>
<thead>
<tr>
<th></th>
<th>NeurIPS</th>
<th>AAN</th>
<th>NSF</th>
<th>arXiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>AON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGCM</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B-TSort</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERSON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Re-Bart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

Paper Abstracts

Accuracy

Accuracy (%)

NeurIPS AAN NSF arXiv

AON TGCM B-TSort BERSON Re-Bart
Results

Paper Abstracts

Accuracy

<table>
<thead>
<tr>
<th>Dataset</th>
<th>AON</th>
<th>TGCM</th>
<th>B-TSort</th>
<th>Berson</th>
<th>Re-Bart</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeurIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arXiv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Perfect Match Ratio

<table>
<thead>
<tr>
<th>Dataset</th>
<th>AON</th>
<th>TGCM</th>
<th>B-TSort</th>
<th>Berson</th>
<th>Re-Bart</th>
</tr>
</thead>
<tbody>
<tr>
<td>NeurIPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AAN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NSF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>arXiv</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Results

Paper Abstracts

Accuracy

Perfect Match Ratio

Accuracy (%)

PMR (%)

NeurIPS AAN NSF arXiv

NeurIPS AAN NSF arXiv

AON TGCM B-TSort BERSO Re-Bart
Results

Paper Abstracts

Perfect Match Ration

SIND

ROCStories

PMR (%)
Results

Paper Abstracts

Perfect Match Ration

Kendall’s Tau

PMR (%)

HAN FUDecoder RankTxNet BERSON Re-Bart

SIND ROCStories

Tau

SIND ROCStories
Results

How does text-to-text framework perform?
Results

How does text-to-text framework perform?

![Graph showing performance comparison between BART (finetuned) and ReBART across different datasets: NeurIPS, AAN, SIND, NSF, arXiv, and Movie Plots. The graph indicates varying PMR percentages for each dataset.](image)
Results

How does text-to-text framework perform?
Results - BART vs T5

BART

T5

Accuracy PMR Kendall's Tau

Accuracy PMR Kendall's Tau

text-to-text text-to-marker
Results - BART vs T5

BART embeddings

T5 embeddings
Ablations

- shuffled output
- w/o markers
- random markers
- ReBART

Best PMR

PMR
Analysis - Effect of Shuffling
Analysis - Effect of Shuffling

Degree of shuffling $d(S^*, S')$: Minimum number of swaps required to reconstruct ordered sequence S^* from shuffled input S'

$$\hat{d}(S^*, S') = \frac{d(S^*, S')}{|S^*|}$$
Analysis - Effect of Shuffling

Degree of shuffling $d(S^*, S')$: Minimum number of swaps required to reconstruct ordered sequence S^* from shuffled input S'

$$\hat{d}(S^*, S') = \frac{d(S^*, S')}{|S^*|}$$
Analysis - Effect of Input Length
Analysis - Effect of Input Length

Investigate the effect on Re-BART’s performance varies with change in number of input sentences in the sequence
Analysis - Effect of Input Length

Investigate the effect on Re-BART’s performance varies with change in number of input sentences in the sequence
Analysis - Effect of Sentence Position
Analysis - Effect of Sentence Position

Investigate if Re-BART predict sentences at certain positions better than others

\[y_{rel} = \frac{y_i}{|S|} \]
Analysis - Effect of Sentence Position

Investigate if Re-BART predict sentences at certain positions better than others

\[y_{rel} = \frac{y_i}{|S|} \]
Analysis - Prediction Displacement
Analysis - Prediction Displacement

For incorrect predictions Y, investigate how far it was from the correct prediction Y^*. Computed as the minimum number of swaps $d(Y, Y^*)$.
Analysis - Prediction Displacement

For incorrect predictions Y, investigate how far it was from the correct prediction Y^*. Computed as the minimum number of swaps $d(Y, Y^*)$.

![Graph showing the relationship between $d(Y, Y^*)$ and the number of instances.](image-url)
Analysis - Sentence Displacement
Analysis - Sentence Displacement

Evaluate how Re-BART’s performance varies based on shuffled sentence’s distance from its original position. Relative distance from correct position
Analysis - Sentence Displacement

Evaluate how Re-BART’s performance varies based on shuffled sentence’s distance from its original position. Relative distance from correct position

$$\delta_{rel}(s_i) = \frac{|i-j|}{|S^*|} \text{ s.t. } s_i = s'_j$$
Analysis - Sentence Displacement

Evaluate how Re-BART’s performance varies based on shuffled sentence’s distance from its original position. Relative distance from correct position

$$\delta_{rel}(s_i) = \frac{|i - j|}{|S^*|} \text{ s.t. } s_i = s'_j$$

![Graph showing accuracy against relative displacement]
Cross-Attention Visualization
Cross-Attention Visualization
Cross-Attention Visualization

Attention is concentrated near the sentence markers.
Takeaways

★ We formulate Sentence Ordering as a conditional text generation task and introduce Re-BART.
Takeaways

★ We formulate Sentence Ordering as a conditional text generation task and introduce Re-BART.

★ We show that our text-to-marker setup is better than a vanilla text-to-text framework as it reduces the prediction space.
Takeaways

★ We formulate Sentence Ordering as a conditional text generation task and introduce Re-BART.

★ We show that our text-to-marker setup is better than a vanilla text-to-text framework as it reduces the prediction space.

★ Re-BART achieves SOTA on 7 datasets and shows excellent performance in zero-shot setups.
Takeaways

★ We formulate Sentence Ordering as a conditional text generation task and introduce Re-BART.

★ We show that our text-to-marker setup is better than a vanilla text-to-text framework as it reduces the prediction space.

★ Re-BART achieves SOTA on 7 datasets and shows excellent performance in zero-shot setups.

★ Re-BART is sensitive to certain factors like degree of shuffling and number of input sentences.
Takeaways

★ We formulate Sentence Ordering as a conditional text generation task and introduce Re-BART.

★ We show that our text-to-marker setup is better than a vanilla text-to-text framework as it reduces the prediction space.

★ Re-BART achieves SOTA on 7 datasets and shows excellent performance in zero-shot setups.

★ Re-BART is sensitive to certain factors like degree of shuffling and number of input sentences.