Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning

Deepali Jain, Vikas Sindhwani, Snigdha Chaturvedi

Motivation

- Large Transformer models used in various application Vision, Speech etc.
- Fine-tuning these large models for downstream tas resource-intensive.
- Parameter Efficient Fine-tuning (PEFT) methods ha an attractive method to adapt these models.
- Most PEFT methods leverage low rank matrices.

Low Displacement Rank Matrices

 ∇ has rank

•
$$\nabla_{\mathbf{A},\mathbf{B}}(\mathbf{M}) \coloneqq \mathbf{A}\mathbf{M} - \mathbf{M}\mathbf{B}$$

- Ex : Circulant, Toeplitz, etc.
- Low rank matrices are a subset of this framework (by choosing suitable A and B)

Examples of Structured Matrices

$\begin{array}{c} c_0 \\ c_1 \\ \vdots \\ c_{m-2} \\ c_{m-1} \end{array}$	$\begin{array}{c} c_{n-1} \\ c_0 \\ c_1 \\ \vdots \\ c_{m-2} \end{array}$	c_{n-1} c_0 \cdot	<i>c</i> ₂	$\begin{array}{c} c_1 \\ c_2 \\ \vdots \\ c_m \end{array}$		a_0 a_1 a_2 \vdots a_{m-1}	a_{-1} a_0 a_1 \vdots	<i>a</i> _1 <i>a</i> _0 ••	··· ·· ·· a ₁	$a_{-(n-1)}$: a_{-1} a_{0}
(a) Circulant (b) Toeplitz (d) $\mathbf{W}(\mathbf{G}, \mathbf{H}) = \sum_{i=1}^{r} \mathbf{Z}_{1}(\mathbf{g}_{i}) \mathbf{Z}_{-1}(\mathbf{h}_{i})$										
wher	e Z	$f(\mathbf{v}) =$	$= v_1$	v_0 v_1 \vdots n-1	fv 1	n-1 v_0	 : v ₁	$egin{array}{c} fv_1\ fv_2\ fv_2\ fv_n-\ v_0 \end{array}$	-1	

We call these matrices Structured Unrestricted Rank Matrices (SURM) *Equal contribution

Arijit Sehanobish*, Avinava Dubey*, Krzysztof Choromanski*, Somnath Basu Roy Chowdhury*,

Main Research Question

tions in NLP,	[RQ] Are there other classes of matrices
sks becomes	rank ones, which perform better under th
ave emerged as	Approximation Qualities of SU

Low Rank Matrices struggle to fit the data

Image Classification

Fine-tuning on Vision Datasets

that can be used in lieu of low he same parameter budget?

RMs

• SURMs show better approximation quality than low-rank matrices. Circulant and Toeplitz perform similarly to the more general

Fitting a pinwheel dataset with a simple neural network with one hidden layer and varying the type of the hidden layer.

Fitting a UUID dataset with Llama-2 7B to investigate if high ranks are needed to learn OOD tasks.

Image Segmentation. SURMs integrated in SURM compare favorably with specialized architectures developed for medical imaging on Synapse multi-organ segmentation dataset.

Fine-tuning on NLP Datasets

• Small Data Regimes. SURMs obtain strong performance on small scale datasets: CIFAR-10, CIFAR-100, DTD, etc.

• Large Data regimes. SURM match full fine-tuning performance on ImageNet and INaturalist using only 0.06% parameters.

Low Resource Training. Circulant is the most performant variant and can match the full fine tuning results with only a small fraction of data

Fraction of Training Data

Results on GLUE Dataset

- SURM-Adapters outperform many strong baselines while using very few parameters.
- SURM-LoRA outperforms the baseline LoRA with the same parameter budget.

Structured Unrestricted-Rank Matrices for Parameter Efficient Fine-tuning

Deepali Jain, Vikas Sindhwani, Snigdha Chaturvedi

Motivation

- Large Transformer models used in various applications in NLP, Vision, Speech etc.
- Fine-tuning these large models for downstream tasks becomes resource-intensive.
- Parameter Efficient Fine-tuning (PEFT) methods have emerged as an attractive method to adapt these models.
- Most PEFT methods leverage low rank matrices.

Low Displacement Rank Matrices

• M has displacement rank r if ∇ has rank r.

$$\nabla_{\mathbf{A},\mathbf{B}}(\mathbf{M}) := \mathbf{A}\mathbf{M} - \mathbf{M}\mathbf{B}$$

- Ex : Circulant, Toeplitz etc
- Low rank matrices are a subset of this framework (by choosing suitable A and B)

Matrices Explored in our Work

<i>c</i> ₀	C_{n-1}	•••	c_2	c_1	a_0	<i>a</i> ₋₁	•••	•••	$a_{-(n-1)}$	
<i>c</i> ₁	<i>C</i> ₀	c_{n-1}	•••	<i>c</i> ₂	a_1	a_0	a_{-1}	•••	:	
:	c_1	c_0	۰.	:	a_2	a_1	a_0	۰.	:	
c_{m-2}	÷	••	۰.	:	:	:	•	•.	a_{-1}	
c_{m-1}	C_{m-2}	•••	•••	C_m	a_{m-1}	•••	•••	a_1	a_0	
	(a) Circulant				-	(b) Toeplitz				

(d)
$$\mathbf{W}(\mathbf{G}, \mathbf{H}) = \sum_{i=1}^{r} \mathbf{Z}_{1}(\mathbf{g}_{i})\mathbf{Z}_{-1}(\mathbf{h}_{i})$$

where $\mathbf{Z}_{f}(\mathbf{v}) = \begin{bmatrix} v_{0} & fv_{n-1} & \cdots & fv_{1} \\ v_{1} & v_{0} & \cdots & fv_{2} \\ \vdots & \vdots & \vdots & fv_{2} \\ \vdots & \vdots & \vdots & fv_{n-1} \\ v_{n-1} & \cdots & v_{1} & v_{0} \end{bmatrix}$

We call these matrices Structured Unrestricted Rank Matrices (SURM)

* equal contribution

Arijit Sehanobish*, Avinava Dubey*, Krzysztof Choromanski*, Somnath Basu Roy Chowdhury*,

Approximation Qualities of SURMs

- SURMs show better approximation quality than low-rank matrices.
- Circulant and Toeplitz perform similarly to the more general **W(G,H)**.

Low Rank Matrices struggle to fit the data

• Fitting a UUID dataset with Llama-2-7b to investigate if high ranks are needed to learn OOD tasks.

(c) Kronecker

SURMs show better approximation quality than low-rank matrices.

Vision Results

Low Resource Training. Circulant is the most performant variant and can match the full fine tuning results with only a small fraction of data

Image Segmentation : SURMs integrated in SURM compare favorably with specialized architectures developed for medical imaging on Synapse multi-organ segmentation dataset.

NLP Results

Image Classification

Small Data Regimes. SURMs obtain strong performance on small scale datasets: CiFAR-10, CiFAR-100, DTD, etc.

• Large Data regimes. SURM match performance to full fine tuning on ImageNet and INaturalist using only 0.06% parameters.

Results on GLUE Dataset :

- > SURM-Adapters outperform many strong baselines while using very few parameters.
- > SURM (integrated into LoRA) outperforms the baseline LoRA, under the same parameter budget.