Fundamental Limits of Perfect Concept Erasure

Concept Erasure

Perfect Erasure Functions (PEF, AISTATS 2025)

Motivation

Concept Erasure

Motivation

Can we analytically derive the perfect erasure function?

Concept Erasure

- X: Input Representations (e.g., text representations)
- Z: Erased Representations (post erasure, Z = f(X))
- A: Categorical Concept (e.g., gender)

- X: Input Representations (e.g., text representations)
- Z : Erased Representations (post erasure, Z = f(X))
- A: Categorical Concept (e.g., gender)

Markov Proper

$$\mathsf{ty}: A \to X \xrightarrow{f} Z$$

- X: Input Representations (e.g., text representations)
- Z: Erased Representations (post erasure, Z = f(X))
- A: Categorical Concept (e.g., gender)

• Markov Property: $A \to X \xrightarrow{f} Z$ • Support sets $(\mathcal{X}, \mathcal{Z}, \mathcal{A})$ are finite

- X : Input Representations (e.g., text representations)
- Z: Erased Representations (post erasure, Z = f(X))
- A: Categorical Concept (e.g., gender)

 - $|\mathcal{X}| > |\mathcal{A}|$

• Markov Property: $A \to X \xrightarrow{f} Z$ • Support sets $(\mathcal{X}, \mathcal{Z}, \mathcal{A})$ are finite

Perfect Erasure

- A: Categorical Concept (e.g., gender)

$$\max_{f} \frac{I(Z;X)}{I(Z;A)} = 0.$$

Utility. Indual information with original representations

X: Input Representations (e.g., text representations)

Z: Erased Representations (post erasure, Z = f(X))

Privacy: mutual information with concept variable

Perfect Erasure

- X: Input Representations (e.g., text representations)
- Z: Erased Representations (post erasure, Z = f(X))
- A: Categorical Concept (e.g., gender)

 $\max_{f} I(Z;X) \text{ subject to } I(Z;A) = 0.$ Optimize for f

Privacy Funnel

[Calmon et al., 2017] Principal Inertia Components and its Applications.

Concept Erasure

Privacy Funnel

[Calmon et al., 2017] Principal Inertia Components and its Applications.

Concept Erasure

Privacy Funnel

[Calmon et al., 2017] Principal Inertia Components and its Applications.

Concept Erasure

Main Result: Feasibility

Perfect concept erasure is feasible if and only if (i, j): (a) Support sizes of concept groups are same, $|\mathcal{X}_i| = |\mathcal{X}_i|$

(b) Distribution of representations are permutations, $P(\mathcal{X}_i) = \sigma(P(\mathcal{X}_i))$

Main Result: Feasibility

Main Result: Feasibility

PEF

Distributions are permutations of each other, $P(\mathcal{X}_i) = \sigma(P(\mathcal{X}_j))$

Main Result: Erasure function

Concept Erasure

PEF

16

Main Result: Erasure function

Main Result: Erasure function

Main Result: Unequal Distributions

Concept Erasure

Main Result: Unequal Distributions

 $\Gamma_{\rm MEC}(\,\cdot\,,\,\cdot\,)$ is the minimum entropy coupling (minimizes $H(P_i,Q)$)

Main Result: Unequal Distributions

 $\Gamma_{\rm MEC}(\,\cdot\,,\,\cdot\,)$ is the minimum entropy coupling (minimizes $H(P_i, Q)$)

Experimental Setting

- Experiments using synthetic and real-world representations
- PEF is able to achieve the theoretical guarantees empirically
- Toxicity classification: Erasure helps improve fairness in text classification using GPT-4 representations

Experimental Results (Synthetic)

Experimental Results (Real-world)

Takeaways

[T2] PEF achieves perfect erasure under mild assumptions [T3] PEF is effective in real-world scenarios outperforming existing techniques

