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[Carlini et al., 2020] [Nasr et al., 2023]
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Exact Unlearning
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Exact Unlearning

Exact unlearning guarantees that the ML model has perfectly erased information.
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Exact Unlearning: Modular System
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Stage 1 Stage 2 Stage

Sequential Slice-wise Training Deletion Strategy

TrainingS3T
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Stage 1 Stage 2 Stage

Sequential Slice-wise Training Deletion Strategy

Train the top-layer with 
slice  while freezing the 

rest of the layers.
S1

TrainingS3T
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Stage 1 Stage 2 Stage

Sequential Slice-wise Training Deletion Strategy

The second layer is trained using slices ( ).S1 + S2
TrainingS3T
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Stage 1 Stage 2 Stage

Sequential Slice-wise Training Deletion Strategy

The second layer is trained using slices ( ). This continues.S1 + S2
TrainingS3T
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Stage 1 Stage 2 Stage

Sequential Slice-wise Training Deletion Strategy

Why do we even need this? 

Allows parameter isolation for 
different slices.

TrainingS3T
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Stage 1 Stage 2 Stage

Sequential Slice-wise Training Deletion Strategy

Why do we even need this? 

Allows parameter isolation for 
different slices.

TrainingS3T



: Sequential Slice-aware TrainingS3T

15

If a deletion request affects , it can be unlearned 
by switching off all PEFT layers below it

S2
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Switching off all PEFT layers - 
Retrain from scratch.

y

TrainingS3T
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Leads to better 
deletion guarantees!
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• We introduce an unlearning framework that achieves modularity using fine-tuning


•  results in better theoretical guarantees about deletion requests


• In practice,  can handle up to 4x more deletion requests than existing systems

S3T

S3T

SummaryS3T


