COMP 144 April 17, 2002
Programming Language Concepts
Lecture 34: Code Optimization

q\‘; The University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Spring 2002

Lecture 34:
Code Optimization

Felix Hernandez-Campos
April 17

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

L Optimization

» We will discuss code optimization from the point of
view of the compiler and the programmer

» Code improvement is an important phase in
production compilers

— Generate code that runs fast (CPU-oriented)

» In some case, optimize for memory requirements or network
performance

* Optimization is an important task when developing
resource-intensive application
— E.g. Games, Large-scale services

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 1

COMP 144

Programming Language Concepts
Lecture 34: Code Optimization

. Optimization

* Two lectures on optimization

e References
— Scott’s Chapter 13

— Doug Bell, Make Java fast: Optimize!
» http://www.javaworld.com/javaworld/jw-04-1997/jw-04-
optimize_p.html
— HyperProf- Java profile browser
» http://www.physics.orst.edu/~bulatov/HyperProf/

— Python Performance Tips
» http://manatee.mojam.com/~skip/python/fastpython.html

— Python Patterns - An Optimization Anecdote
» http://www.python.org/doc/essays/list2str.html

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

The Golden Rules of Optimization

A%y, Premature Optimization is Evil

* Donald Knuth, premature optimization is the root of
all evil
— Optimization can introduce new, subtle bugs

— Optimization usually makes code harder to understand and
maintain

 Get your code right first, then, if really needed,
optimize it
— Document optimizations carefully

— Keep the non-optimized version handy, or even as a
comment in your code

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos

April 17, 2002

COMP 144 April 17, 2002
Programming Language Concepts
Lecture 34: Code Optimization

» The Golden Rules of Optimization
.W\v The 80/20 Rule

* In general, 80% percent of a program’s execution
time is spent executing 20% of the code

* 90%/10% for performance-hungry programs

* Spend your time optimizing the important 10/20% of
your program

* Optimize the common case even at the cost of
making the uncommon case slower

COMP 144 Programming Language Concepts
Felix H andez-Campos

The Golden Rules of Optimization
W Good Algorithms Rule

» The best and most important way of optimizing a
program is using good algorithms
— E.g. O(n*log) rather than O(n?)

* However, we still need lower level optimization to
get more of our programs

* In addition, asymthotic complexity is not always an
appropriate metric of efficiency
— Hidden constant may be misleading

— E.g. a linear time algorithm than runs in 100*7+100 time
is slower than a cubic time algorithm than runs in #*+10
time if the problem size is small

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 3

COMP 144 April 17, 2002
Programming Language Concepts

Lecture 34: Code Optimization

Asymptotic Complexity
Hidden Constants

Hidden Contants

3000

2500 -

2000 /
====100"n+100
1500 -

/ — *N*N+10
1000

Problem Size

Execution Time

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

| V\‘j" General Optimization Techniques

» Strength reduction
— Use the fastest version of an operation

- Eg
x >> 2 instead of x / 4
x << 1 instead of x * 2

* Common sub expression elimination
— Eliminate redundant calculations

- Eg
double x =|d * (lim / max)| * sx;
double y = d * (lim / max)| * sy;

double depth =[d * (lim / max)|;
double x = depth * sx;
double y = depth * sy;

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 4

COMP 144 April 17, 2002
Programming Language Concepts
Lecture 34: Code Optimization

| T\‘j" General Optimization Techniques

* Code motion
— Invariant expressions should be executed only once
—-Eg.
for (int i = 0; i < x.length; i++)
x[1] *=|Math.PI * Math.cos(yﬂ;

double picosy = Math.PI * Math.cos(y):
for (int i = 0;|i < x.length; i++) |
x[1] *= picosy;

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

| V\‘j" General Optimization Techniques

* Loop unrolling

— The overhead of the loop control code can be reduced by
executing more than one iteration in the body of the loop
-Eg
double picosy = Math.PI * Math.cos(y):;
for (int i = 0; i < x.length; i++)
| x[1i] *= picosy;

double picosy = Math.PI * Math.cos(y):
for (int i = 0; i < x.length; 1 += 2) {
x[1] *= picosy;

x[1+1] *= picosy;| A efficient “+1” in array
} indexing is required

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 5

COMP 144 April 17, 2002
Programming Language Concepts
Lecture 34: Code Optimization

i Compiler Optimizations

» Compilers try to generate good code
— Le. Fast

* Code improvement is challenging
— Many problems are NP-hard

» Code improvement may slow down the compilation
process

— In some domains, such as just-in-time compilation,
compilation speed is critical

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Phases of Compilation

Ay,

Character stream

\(Scamner (lexical analysis)) ° The ﬁI'St three
Token stream \\ phaSCS are
(Parser (syntax analysis)) language—
Parse tree dependent
\ Semantic analysis) p
Abstract syntax tree / Frontend @ The laSt two
with annotations \ Back end are mac h ln e-
I di
(emetie) dependent
Flow g1apl1 with pseudcr
instructions in basic blocks \ ------------- ° The mlddle
(Cusamar) two

Madified flow graph \ de%ind?ﬁt on
neiner tne
A - (Target code generation) Machine. language nor
I .
o el e \\(Machine-specific) dependent the machine

code improvernent

Real assembly language

Felix Hernandez-Campos 6

COMP 144

Programming Language Concepts

Lecture 34: Code Optimization

G

highly

speed

* Generating

optimized is a

on execution

optimization

Character strearn
Token stream

Phases

Parse tree

Abstract syntax tree with
annetations (high-level 1)

Contrel flow graph with
psendo-instructions in basic

complicated blocks (medium-level IF)
process Modified control flow graph

° We Will Modified control flow graph
concentrate

Maodified control flow graph

{Almost) assembly language
(low-level IF}

Modified assembly language

Modified assembly language

Maodified assembly language

Final assembly language

\\'* (Scarmer (lexical analysis})
—

> (Parser (syntax analysis) j
\"“‘“'--; (

Semantic analysis J

Front end

Back end

Intermediate
code generation

Local redundancy J

\, Machine-

independent

elimination

Global redundancy
elimination

Loop improvement)
-/

\ n
Target code generation
—()
\\"‘“"--; Preliminary
— instruction scheduling
Machine-
> (Register allocation) ¢ szci;,:’e

“'\“ Final instruction schedulillgj
<8

Peephole optimization)
A—-”"’.‘ (_J

Character strearn
Token stream

Phases

Parse tree

Absiract syntax tree with
annetations (high-level 1IF}

Control flow graph with
psende-instructions in basic
blocks {medium-level IF)

Modified control flow graph

Modified control flow graph

Modified control flow graph

{Almost) assembly language
{low-level TF)

Modified assembly language

Maodified assembly language

Modified assemmbly language

Final assembly language

* (Smrmer (lexical analysis))
—

\M"'* Parser (syntax analysis))
—(

‘-“\‘ (Semantic analysis J
/ Front end
Back end
\ Intermediate 1
/ code generation
\ (Local redundancy J .
PR Machine-
*_,-"" elimination in ndent
‘\\""‘m Global redundancy
‘____--" eliminarion
\-‘“‘" (Loop improvement)
/ =
\ M
J—— (Target code generation)
‘-“\—; Preliminary
"___,_,-— instruction scheduling
— .) Machine-
— Register allocation { specific
\\‘ Final instruction schcduling)
< .
Peephole optimization)
— (_J

Felix Hernandez-Campos

April 17, 2002

COMP 144 April 17, 2002
Programming Language Concepts
Lecture 34: Code Optimization

E I mi_ &udw_put
t
¥ EXampie cal. o
. %\‘, Control Flow Graph al o= Binput
»y 4 call readint

* Basic blocks are
maximal-length set v a1 - touput

ofsequential E RN P
operations i
— Operations on a set
of virtual registers

» Unlimited

» A new one for each
computed value

* Arcs represent
interblock control
flow

COMP 1441
Fe

| W'\‘j; Peephole Optimization

» Simple compiler do not perform machine-
independent code improvement
— They generates naive code

* It is possible to take the target hole and optimize it

— Sub-optimal sequences of instructions that match an
optimization pattern are transformed into optimal
sequences of instructions

— This technique is known as peephole optimization

— Peephole optimization usually works by sliding a window
of several instructions (a peephole)

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

Felix Hernandez-Campos 8

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

> Peephole Optimization
Wy, Common Techniques

Elimination of redundant loads and stores

r2 =l + 5

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

- r2 . =rl+5

)= r2 :

3 becomes i =12

r4d :=rd x 3 4 =12 %3
Constant folding

r2 =3 x 2 becomes r2 . ==o

» Peephole Optimization
W¥%, Common Techniques

Constant propagation

r2 =4 r2 =4

r3i =rl+r2 becomes r3=rl+ 4 and then

r2=... r2 =

r2 =4 o

r3 =rl4+r2 becomes 3=rl+4 and then
r3 = #r3

r3 = #r3

1 =3 rl =3

r2 =1l x 2 becomes r2 =3 x 2 and then

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

r3=rl+ 4
r2 =

r3 = #(rl+4)

Felix Hernandez-Campos

April 17, 2002

COMP 144 April 17, 2002
Programming Language Concepts
Lecture 34: Code Optimization

> Peephole Optimization
Wy, Common Techniques

Clapy propagation

r2 =rl r2 =rl 3=t 41l

r3:=rl+ 12 becomes r3=rl+1l and then [2 :; '

r2 =5 r?2 =5 -
Strength reduction

rl=r2x2 hecomes rl=r24r2 or rl=r2<<1

rl=r2/2 becomes r=r2>>1

rl=r2x0 becomes rl =10

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

» Peephole Optimization
W¥%, Common Techniques

Elimination of useless tnstructions
rl . =rl+ 0
rl:=rl =1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

20

Felix Hernandez-Campos 10

COMP 144 April 17, 2002
Programming Language Concepts
Lecture 34: Code Optimization

| “;‘ Peephole Optimization

 Peephole optimization is very fast

— Small overhead per instruction since they use a small,
fixed-size window

« It is often easier to generate naive code and run
peephole optimization than generating good code!

COMP 144 Programming Language Concepts
Felix Hernandez-Campos
21

. Reading Assignment

* Read Scott
— Ch. 13 intro
— Sect. 13.1
— Sect. 13.2

* Doug Bell, Make Java fast: Optimize!

— http://www.javaworld.com/javaworld/jw-04-1997/jw-04-
optimize p.html

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

22

Felix Hernandez-Campos 11

