
COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 1

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

11

Lecture 34:Lecture 34:
Code OptimizationCode Optimization

COMP 144 Programming Language ConceptsCOMP 144 Programming Language Concepts
Spring 2002Spring 2002

Felix HernandezFelix Hernandez--CamposCampos

April 17April 17

The University of North Carolina at Chapel HillThe University of North Carolina at Chapel Hill

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

22

OptimizationOptimization

•• We will discuss code optimization from the point of We will discuss code optimization from the point of
view of the compiler and the programmerview of the compiler and the programmer

•• Code improvement is an important phase in Code improvement is an important phase in
production compilersproduction compilers

–– Generate code that Generate code that runs fastruns fast (CPU(CPU--oriented)oriented)
»» In some case, optimize for memory requirements or network In some case, optimize for memory requirements or network

performanceperformance

•• Optimization is an important task when developing Optimization is an important task when developing
resourceresource--intensive applicationintensive application

–– E.g. E.g. Games, LargeGames, Large--scale servicesscale services

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 2

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

33

OptimizationOptimization

•• Two lectures on optimizationTwo lectures on optimization

•• ReferencesReferences
–– Scott’s Chapter 13Scott’s Chapter 13
–– Doug Bell, Doug Bell, Make Java fast: Optimize!Make Java fast: Optimize!

»» http://www.javaworld.com/javaworld/jwhttp://www.javaworld.com/javaworld/jw--0404--1997/jw1997/jw--0404--
optimize_p.htmloptimize_p.html

–– HyperProfHyperProf-- Java profile browserJava profile browser
»» http://www.physics.orst.edu/~bulatov/HyperProf/http://www.physics.orst.edu/~bulatov/HyperProf/

–– Python Performance TipsPython Performance Tips
»» http://manatee.mojam.com/~skip/python/fastpython.htmlhttp://manatee.mojam.com/~skip/python/fastpython.html

–– Python Patterns Python Patterns -- An Optimization AnecdoteAn Optimization Anecdote
»» http://www.python.org/doc/essays/list2str.htmlhttp://www.python.org/doc/essays/list2str.html

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

44

The Golden Rules of OptimizationThe Golden Rules of Optimization
Premature Optimization is EvilPremature Optimization is Evil

•• Donald Donald KnuthKnuth, , premature optimization is the root of premature optimization is the root of
all evilall evil

–– Optimization can introduce new, subtle bugsOptimization can introduce new, subtle bugs
–– Optimization usually makes code harder to understand and Optimization usually makes code harder to understand and

maintainmaintain

•• Get your code right first, then, if really needed, Get your code right first, then, if really needed,
optimize itoptimize it

–– Document optimizations carefullyDocument optimizations carefully
–– Keep the nonKeep the non--optimized version handy, or even as a optimized version handy, or even as a

comment in your codecomment in your code

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 3

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

55

The Golden Rules of OptimizationThe Golden Rules of Optimization
The 80/20 RuleThe 80/20 Rule

•• In general, In general, 80% percent of a program’s execution 80% percent of a program’s execution
time is spent executing 20% of the codetime is spent executing 20% of the code

•• 90%/10% for performance90%/10% for performance--hungry programshungry programs

•• Spend your time optimizing the important 10/20% of Spend your time optimizing the important 10/20% of
your programyour program

•• Optimize the common case even at the cost of Optimize the common case even at the cost of
making the uncommon case slowermaking the uncommon case slower

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

66

The Golden Rules of OptimizationThe Golden Rules of Optimization
Good Algorithms RuleGood Algorithms Rule

•• The best and most important way of optimizing a The best and most important way of optimizing a
program is using program is using good algorithmsgood algorithms

–– E.g. O(n*log) rather than O(nE.g. O(n*log) rather than O(n22))

•• However, we still need lower level optimization to However, we still need lower level optimization to
get more of our programsget more of our programs

•• In addition, In addition, asymthotic asymthotic complexity is not always an complexity is not always an
appropriate metric of efficiencyappropriate metric of efficiency

–– Hidden constant may be misleadingHidden constant may be misleading
–– E.g.E.g. a linear time algorithm than runs in 100a linear time algorithm than runs in 100*n+*n+100 time 100 time

is slower than a cubic time algorithm than runs in is slower than a cubic time algorithm than runs in nn33++10 10
time time if the problem size is smallif the problem size is small

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 4

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

77

Asymptotic ComplexityAsymptotic Complexity
Hidden ConstantsHidden Constants

Hidden Contants

0

500

1000

1500

2000

2500

3000

0 5 10 15

Problem Size

Ex
ec

ut
io

n
Ti

m
e

100*n+100
n*n*n+10

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

88

General Optimization TechniquesGeneral Optimization Techniques

•• Strength reductionStrength reduction
–– Use the fastest version of an operationUse the fastest version of an operation
–– E.g. E.g.

x >> 2x >> 2 instead ofinstead of x / 4x / 4
x << 1x << 1 instead ofinstead of x * 2x * 2

•• Common sub expression eliminationCommon sub expression elimination
–– Eliminate redundant calculationsEliminate redundant calculations
–– E.g.E.g.

double x = d * (double x = d * (limlim / max) */ max) * sxsx;;
double y = d * (double y = d * (limlim / max) */ max) * sysy;;

double depth = d * (double depth = d * (limlim / max);/ max);
double x = depth *double x = depth * sxsx;;
double y = depth *double y = depth * sysy;;

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 5

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

99

General Optimization TechniquesGeneral Optimization Techniques

•• Code motionCode motion
–– InvariantInvariant expressions should be executed only onceexpressions should be executed only once
–– E.g.E.g.

for (for (intint i = 0; i < x.length; i++)i = 0; i < x.length; i++)
x[i] *= Math.PI * Math.x[i] *= Math.PI * Math.coscos(y);(y);

doubledouble picosypicosy = Math.PI * Math.= Math.PI * Math.coscos(y);(y);
for (for (intint i = 0; i < x.length; i++)i = 0; i < x.length; i++)

x[i] *=x[i] *= picosypicosy;;

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1010

General Optimization TechniquesGeneral Optimization Techniques

•• Loop unrollingLoop unrolling
–– The overhead of the loop control code can be reduced by The overhead of the loop control code can be reduced by

executing more than one iteration in the body of the loopexecuting more than one iteration in the body of the loop
–– E.g.E.g.

doubledouble picosypicosy = Math.PI * Math.= Math.PI * Math.coscos(y);(y);
for (for (intint i = 0; i < x.length; i++)i = 0; i < x.length; i++)

x[i] *=x[i] *= picosypicosy;;

doubledouble picosypicosy = Math.PI * Math.= Math.PI * Math.coscos(y);(y);
for (for (intint i = 0; i < x.length; i += 2) {i = 0; i < x.length; i += 2) {

x[i] *=x[i] *= picosypicosy;;
x[i+1] *=x[i+1] *= picosypicosy;;

}}
A efficient “+1” in arrayA efficient “+1” in array
indexing is requiredindexing is required

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 6

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1111

Compiler OptimizationsCompiler Optimizations

•• Compilers try to generate Compilers try to generate goodgood codecode
–– I.e.I.e. FastFast

•• Code improvement is challengingCode improvement is challenging
–– Many problems are NPMany problems are NP--hardhard

•• Code improvement may slow down the compilation Code improvement may slow down the compilation
processprocess

–– In some domains, such as justIn some domains, such as just--inin--time compilation, time compilation,
compilation speed is criticalcompilation speed is critical

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1212

Phases of CompilationPhases of Compilation

•• The first three The first three
phases are phases are
languagelanguage--
dependentdependent

•• The last two The last two
are are machinemachine--
dependentdependent

•• The middle The middle
two two
dependent on dependent on
neither the neither the
language nor language nor
the machinethe machine

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 7

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1313

•• Generating Generating
highly highly
optimized is a optimized is a
complicated complicated
processprocess

•• We will We will
concentrate concentrate
on execution on execution
speed speed
optimizationoptimization

PhasesPhases

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1414

PhasesPhases

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 8

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1515

Example Example
Control Flow GraphControl Flow Graph

•• Basic blocksBasic blocks are are
maximalmaximal--length set length set
of sequential of sequential
operationsoperations

–– Operations on a set Operations on a set
of of virtual registersvirtual registers

»» UnlimitedUnlimited
»» A new one for each A new one for each

computed valuecomputed value

•• Arcs representArcs represent
interblockinterblock control control
flowflow

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1616

Peephole OptimizationPeephole Optimization

•• Simple compiler do not perform machineSimple compiler do not perform machine--
independent code improvementindependent code improvement

–– They generates They generates naïvenaïve codecode

•• It is possible to take the target hole and optimize itIt is possible to take the target hole and optimize it
–– SubSub--optimal sequences of instructions that match an optimal sequences of instructions that match an

optimization pattern are transformed into optimal optimization pattern are transformed into optimal
sequences of instructionssequences of instructions

–– This technique is known as This technique is known as peephole optimizationpeephole optimization
–– Peephole optimization usually works by sliding a window Peephole optimization usually works by sliding a window

of several instructions (a of several instructions (a peepholepeephole))

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 9

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1717

Peephole OptimizationPeephole Optimization
Common TechniquesCommon Techniques

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1818

Peephole OptimizationPeephole Optimization
Common TechniquesCommon Techniques

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 10

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

1919

Peephole OptimizationPeephole Optimization
Common TechniquesCommon Techniques

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

2020

Peephole OptimizationPeephole Optimization
Common TechniquesCommon Techniques

COMP 144
Programming Language Concepts
Lecture 34: Code Optimization

April 17, 2002

Felix Hernandez-Campos 11

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

2121

Peephole OptimizationPeephole Optimization

•• Peephole optimization is very fastPeephole optimization is very fast
–– Small overhead per instruction since they use a small, Small overhead per instruction since they use a small,

fixedfixed--size windowsize window

•• It is often easier to generate naïve code and run It is often easier to generate naïve code and run
peephole optimization than generating good code!peephole optimization than generating good code!

COMP 144 Programming Language Concepts
Felix Hernandez-Campos

2222

Reading AssignmentReading Assignment

•• Read ScottRead Scott
–– Ch. 13 introCh. 13 intro
–– Sect. 13.1Sect. 13.1
–– Sect. 13.2Sect. 13.2

•• Doug Bell, Doug Bell, Make Java fast: Optimize!Make Java fast: Optimize!
–– http://www.http://www.javaworldjavaworld.com/.com/javaworldjavaworld//jwjw--0404--1997/1997/jwjw--0404--

optimize_p.htmloptimize_p.html

