


Coordination 
languages 
and their 

Significance 
e can build a complete 
programming model 
o”t of two separate 
pieces-the computation 
model and the cwnlination 
model The computation 
mcdel allows program- 
mers to build a single 
computational activity: 
a single-threaded, step- 
at-a-time computation. 
The coordination 

model is the glue that binds separate 
activities into an ensemble. An 
ordinary computation language (e.g., 
Fortran) embodies some computa- 
tion model. A coordination language 
embodies a coordination model; it 
provides operations to LE& com- 
putational activities and to support 
communicaation among them. 

Our approach to coordination has 
been developed in the framework of 
a system called Linda? Linda is 
not a programming language. Kahn 
and Miller write that “Linda is best 
not thought of as a language-but 
rather as an extension that can be 
added to nearly any language to 
enable process creation, communica- 
tion, and synchronizatio~27].” We 

? would rather say that Linda is a coor- 
z din&on language. It is one of two 
- components that together make up a 
: complete programming language. 
uI (The suggestion that traditional 
; pmgxumning languages are iumzpl& 
z is intentional.) Y 
0 A comwtation model and a cc&& 

: might also be separated into two 
; distinct languages, in which case _ 
: programmers choose one of each: ‘ 

one computation language plus 



one coordination language equals a 
complete programming system. 
Kahn and Miller contend the first 
alternative is better. The heart of 
their comments is the observation 
that: 

Both camps are striving for 
uniformity, but of different 
sorts. The CLP [Concurrent 
Logic Programming] camp 
strives for uniformity within a 
language while the Linda 
camp strives for uniformity 
acrOss languages [27]. 

We believe that the second alterna- 
tive is better. We also believe that 
the distinction between the “inte- 
gration” and the “separation” ap- 
proach goes well beyond the (ad- 
mittedly important) points raised 
by Kahn and Miller. It involves a 
whole range of pragmatic issues, 
and some deep questions about the 
nature and likely evolution of pro- 
gramming environments besides. 
We advance a series of claims in re- 
sponse to Kahn and Miller’s argu- 
ment for integration: 

1. Asynchronous ensembles are the 
dominating intellectual issue in the 
emerging era of computer systems 
research-the era of dime-store 
processors and densely intercon- 
nected computer jungles. Diversity 
among an ensemble’s elements- 
diversity with respect to language, 
hardware platform, physical loca- 
tion, eve” basic computing model- 
will be “ornal in the new era. 
2. The fundamental problems 
posed by ensembles-the problems 
of coordination among active 
agents-are best understood as or- 
thogonal to the problems of compu- 
tation, as addressed by conven- 
tional programming languages. 
3. We can (and ought to) define 
“general purpose coordination lan- 
guages” on analogy with general 
purpose computing languages. 

Our article “Linda in Context” appeared in 
the April ,989 issue of cumIn”nirahanr ,a. p. 
4441. According 10 CDmmentS by Kenneth 
Kahn and Mark Miller ,271, the article gcner- 
ated a ““wry of electronic discussions.” This 
article represent3 a full rrsponnc t0 Kahn and 
Miller’s tho”ght-pm”olting critique. 

These coordmation languages sup- 
port a full range of ensembles, 
from parallel applications through 
distributed systems through time- 
coordinated ensembles and a range 
of others. The problems of ensem- 
ble building in general, in other 
words, constitute a well-formed and 
important intellectual unity. 

If these claims are barn out, they 
make a compelling case for separa- 
tion. 

Next, we briefly discuss the first 
(and least controversial) point. In 
the following sections, we explain 
our basic claims with respect to or- 
thogonality and generality, discuss 
Kahn and Miller’s case for integra- 
tion, then present the argument for 
separation. 

Ensembles and their 
Signlflcance 
We will detine an oqnchronozlr en- 
semble (ensemble, for short) as a col- 
lection of asynchronous activities 
that communicate. An activity is a 
program, proass, thread or any 
agent capable in principle of simu- 
lating a Turing Machine. It could 
be a person; it could be (recur- 
sively) another whole ensemble. 

Computations that are struc- 
tured explicitly as sets of communi- 
cating processes will (obviously) be 
ensembles. So we have included 
parallel applications (designed to 
run fast on many processors), dis- 
tributed systems (designed t” man- 
age physically dispersed hardware) 
and many operating systems (struc- 
tured as ensembles in order to cope 
with the asynchronous simultaneity 
of devices). But the ensemble cate- 
gory is far broader. The definition 
does not restrict communication to 
communication-through-space-a 
collection of programs running 
during disjoint intervals and com- 
municating through time, generally 
via a tile system, constitutes a highly 
significant kind of ensemble. When 
a computation and a person com- 
municate, we have another impor- 
tant type of ensemble. In short, 
ensembles are fundamental and 
ubiquitous in computing. 

An ensemble is a natural breed- 

tng ground for heterogeneity. A 
program that needs contributions 
from different machines, or differ- 
ent computing models (i.e., syn- 
chronous and asynchronous paral- 
lelism), will naturally be an 
ensemble. Give” their strong mod- 
ularity, ensembles are a natural 
medium for multilanguage applica- 
tions as well. 

Finally, ensembles are the best- 
adapted inhabitants of the evolving 
hardware environment: the densely 
intertwined computer jungle that is 

taking root everywhere. In this de- 
veloping environment, computa- 
tions will rarely stay cooped up in- 
side a single computer. They will 
interact with-draw services from 
and supply services to-other com- 
putations on other machines. Users 
will regularly choose to focus whole 
skeins of a”tonomous computers 
on a single problem. 

Ensembles of all sorts dominate 
the near-term future of computing. 
Figuring out how to build and un- 
derstand them will become (if it is 
not already) the central problem of 
systems research. 

Basic Claims 
Building ensembles equals coordi- 
nating separate computations. 
There is nothing new about our 
contention that ensembles and co- 
ordination are important. Kahn 
and Miller’s own work on open sys- 
tems and their linguistic require- 
ments [Z], along with other work 
in the open systems area (e.g., on 
Actors [Z]), has played a leading 
role in bringing these issues to the 
attention of systems researchers. 
Our (more controversial) claims 
are: 

1. Orthagonality. It is possible and 
desirable to treat coordination as 
orthogonal to computation for pur- 
poses of building programs. 
2. Generality. It is possible and de- 
sirable t” define coordination in such 
a way that it applies to wery asyn- 
chronous software ensemble, from 
massively parallel, fine-grained 
applications through coarser- 
grained parallelism through dis- 
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tributed, heterogeneous and time- 
coordinated systems. 

The concept of a coordination lan- 
guage follows from these claims. 
We introduced this term to desig- 
nate the linguistic embodiment of a 
coordination model. The issue is 

not mere nomenclature. Our inten- 
tion is to identify Linda and systems 
in its class as complete languages in 
their own righti, not mere extensions 
to some existing base language. 
Complete language means a com- 
plete coordination language of 

course, the embodiment of a com- 
prehensive coordination model. 

C is a complete computation lan- 
guage, though it lacks intrinsic sup- 
port for process creation and inter- 
process communication. Linda is a 
complete coordination language, 
although it offers no support for 

arbitrary computations. We might 
call C an extension to Linda as rea- 

sonably as Linda is called an exten- 
sion to C. But neither description is 
accurate, because Linda and C are, 
in concept, unrelated and orthogo- 
nal. 

What is a coordination language 
for? Is it not true that a computa- 

tion language is useful by itself, 
while a coordination language can 
only be used in combination with a 
computation language? And does 
this not compromise our claim that 
the two are conceptually orthogo- 
nal? 

No: a computation language by 
itself is useless. A computation must 
communicate with its environment or 
it serves no purpose. And the envi- 

ronment, insofar as it must ulti- 
mately be a person or people, can 
only he an active agent. A computa- 
tion must perform operations 
whose purpose is to get information 
from or convey it to the environ- 
ment, and these operations are a 
coordination language-often of a 
highly restricted, specialized or ad 
hoc sort, but a coordination lan- 

guage nonetheless. In the most 
primitive case, a program might 
spin while a user manually keys a 

NdClDnAaC 

bit string into a register. The coor- 
dination language in this case con- 

sists of operations like set the front- 
panel switches, read the accumula- 
tor, spin awaiting keyboard-buffer 
full. Not much; but these opera- 
tions do provide a mechanism 
whereby two separate, asynchro- 
nous activities-the program and 

the person-can communicate. 
Any computation language in- 

cludes a sort of degenerate coor- 
dination language in the form of 
global variables and argument- 
passing: the separate parts of a pro- 
gram communicate with each other 
by using these mechanisms, But 

coordination is not merely informa- 
tion-exchange; the essence of our 
definition (and of the word’s intui- 
tive English meaning) involves in- 
formation exchange among active 
agents. A coordination language 
must allow one active agent to con- 
vey information to another whose 
state is evolving and unpredictable. 
Assignment and parameter passing 
are insufficient. 

In a broader setting, an operat- 
ing system defines a coordination 
language for the benefit of the 
computations it supports. Compu- 
tations need operating systems be- 
cause they need to be tethered to 

other asynchronous activities and to 
create new activities. The lifelines 
that tie a computation to the out- 
side world are (by definition) the 
province of a coordination lan- 
guage. Computations need to be 
tethered to users outside the ma- 

chine (the operating system pro- 
vides I/O). They need to he teth- 
ered to other activities, distant in 
time as well as (or instead of) in 
space-activities that preceded or 
will follow them. The operating sys- 
tem supports files. They need to be 
tethered to other computations 
across a network. They need to syn- 
chronize their activities (thus, im- 

plicitly, to communicate) with other 
computations that share the same 
machine. By providing a process 
model, and allocating system re- 
sources in such a way that activities 
can exist, the operating system car- 
ries out the basic “create activity” 

LliSO n 

E nsembles 
of all sorts dom- 
inate the near- 
term future of 
computing. Figw 
ing out hour to 
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Systems research. 
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role of a coordination language. 
Operating systems tend to pro- 

vide these functions in messy, ad hoc 
ways. Communication through 
time via the tile system does not in 
the least resemble (so far as the syn- 
tax and semantics of operations of- 
fered to the programmer are con- 
cerned) communication with 
another process via shared table 
and semaphore, or communication 
across a network via message. And 
the coordination language defined 
by the operating system is likely to 
be strictly an interpreted language, 
not a compiled language. We do not 
generally feed programs into a 
“computation compiler” and also, 
separately, an “operating system” 
compiler, which would generate 
customized code for all external 
interactions. We rely on standard 
prepackaged libraries instead. But 
despite all this nonuniformity and 
ad hocness, the operating system 
exists to create activities, and to 
support their coordination with 
other activities: hence its primary 
function is to implement a coordi- 
nation language. The major part of 
any operating system might be 
thrown out and replaced by an inte- 
grated, general-purpose coordina- 
tion language. 

In fact, this view of operating 
systems might induce some intellec- 
tual coherence in an important 
field that lacks all vestiges of it at 
present. 

In sum, we cannot do anything 
useful with a coordination language 
standing alone. However, we can- 
not do anything useful with a mere 
computation language either. All 
useful computing depends on a 
combination of the two. 

Generalltv as a Consequence 
of OrthogonaliW 

Generality-our second claim-is 
suggested by orthogonality. The 
fact that we can separate computa- 
tion and coordination does not 
mean that, in principle, we might 
not choose to cover the coordina- 
tion spectrum with a million sepa- 
rate languages instead of a single 
integrated one. But the general- 
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purpose computing language is a 
recognized, useful idea. It seems 
reasonable to posit a general- 
purpose coordination language as 
well. 

We have staked our claims, and 
we turn now to defending them. 

Why Separatlon? 
Why Generallty? 
Aside from Linda, few other sys- 
tems accept the idea of a separate, 
conceptually self-contained coordi- 
nation language. But, in effect, 
most current approaches reject sep- 
aration. 

If I accept separation, I might 
nonetheless reject generality: I 
might provide a cwrdination lan- 
guage designed for parallel appli- 
cations exclusively, or distributed 
systems, or whatever. 

Generality is almost uniuerxzll~ 
rejected. The parallel-applications 
and the distributed-systems com- 
munities are (by now) almost com- 
pletely disjoint. And as a rule, nei- 
ther community finds much 
interest in the broader coordination 
issues discussed earlier-time- 
wise coordination, heterogeneity, 
software-human communication. 
There are pragmatic reasons why 
this should be so; but there are 
strong logical reasons (and some 
pragmatic ones as well) why it 
should not. 

Opposing Sewatlon and 
Generalltv 
Kahn and Miller ably state the case 
for integration: 

Concurrent logic program- 
ming (CLP) has traditionally 
been addressing another 
problem [as distinct from the 
problems Linda addresses]: 
namely how can one design a 
single language which is ex- 
pressive, simple, clean and ef- 
ficient for general purpose 
parallel computing? 

There is just one way to com- 
municate in CLP, not as in 
Linda where there is a dialect 
specific way of communicating 
in the small and the tuple 

space way of communicating 
at the next level [47]. 

In other words, why worry about 
two separate tooltn3xes (a computa- 
tion and a coordination box) when 
you can have one? A fair question. 
(Of course, from our point of view, 
communication is something that in- 
volves separate activities; a sin@ 
process does not communicate with 
itself. Routines within one process 
pass information back and forth, 
but without confronting the prob- 
lems of coordination among asyn- 
chronous activities. The “intra- 
process communication” that Kahn 
and Miller implicitly assume is com- 
munication in the sense that tossing 
a ball up and down is juggling. 
Nonetheless, this is a matter of deli- 
nition, and they are obviously enti- 
tled to their own.) 

We do not know of any equally 
concise attack OD generality in our 
sense. So we will supply one, an 
argument that (we believe) many 
researchers would accept. 

True, in some ultimate logical 
sense “communication is communi- 
cation,” but the pragmatic needs of 
(say) the distributed-system builder 
are very different from the needs 
of a parallel-applications developer. 
Accordingly, it is natural that com- 
pletely different models have been 
developed to meet those needs. 

For example, distributed systems 
often rely on remote procedure 
call. RPC is, in fact, a near-standard 
in this domain. For the builder of 
parallel applications, on the other 
hand, RPC is an unmitigated disas- 
ter. It is fundamentally wrong in 
concept: parallel programmers 
want to keep processes busy, want 
them to generate data and then get 
rid of it as quickly as possible. A 
communication model based on 
sending parameters to some rou- 
tine, then awaiting a reply (while 
twiddling your thumbs) is rarely 
useful in parallel programming- 
to the extent that it ix heavily used 
in some code, those are strong 
grounds for suspicion. 

The rest of this article presents 
arguments in favor of separation 



and generality, or (in other words) 
of the idea of a general-purpose 
coordination language. 

These arguments are: 
l In favor of separation: portabdq 

in a broad sense; and support for 
heterogeneity. 
l In favor of generality: economy, 
flexibility and intellectual focw. 

Separation: Portability and 
Heterogeneity 
Portability means reusability, or 
recycle-ability in a broad sense. We 
would like to recycle applications, 
implementations, programming 
tools and (maybe above all) pro- 
grammer expertise to the fullest 
extent possible. When moving from 
one platform to a different one, m 
from one parallelism model to a 
different one, 07 from one comput- 
ing language to a different one, we 
would like to retain as much as pos- 
sible. An integrated language sacri- 
fices computing-language portabil- 
ity completely, and in many cases 
compromises the other varieties. 

Given some C programmers, 
Scheme programmers and Prolog 
programmers, all of whom need to 
develop parallel applications, we 
could recommend three indepen- 
dent, tailor-made parallel variants 
of these languages-for example 
Concurrent C [16], Multilisp [19] 
and Parlog [26]. Alternatively, we 
could note that the machinery re- 
quired for explicit parallelism is 
always the same, no matter what the 
base language: to get parallelism, 
we must be able to create and coor- 
dinate simultaneous execution 
threads. Given this observation, we 
can outfit all three groups in essen- 
tially the same way: we supply them 
with C-Linda, Schema-Linda and 
Prolog-Linda. In so doing we make 
it easier for them to switch base lan- 
guages, simplify the job of teaching 
parallelism, and allow implementa- 
tion and tool-building investment 
to be focused on a single coordina- 
tion model. 

The underlying premise is per- 
haps even more important: an XYZ 
programmer who needs to develop 

parallel applications will be sup- 
plied not with a new language, but 
with a dialect that is as much like 
XYZ as possible. 

Heterogeneity is a generalization 
of portability. If our system works 
on X 01 Y, then it may very well 
work for X and Y. Certainly it is a 
better candidate for linking X and 
Y than some other model that is X- 
or Y-specific. Because a coordina- 
tion language is not committed to 
any base computing language, it 
can work in principle with all of 
them, and tie programs in many 
languages together. Likewise with 
respect to mixed-machine or 
mixed-model heterogeneity. 

Parallelism. SpecMcally 
Before we shift focus to coordina- 
tion in general, we need to consider 
how these arguments apply specifi- 
cally to the domain that served as 
Kahn and Miller’s main focus, and 
has been ours as well: models, tools 
and methods for parallel applica- 
tions programming. 

There are two radically different 
ways to support parallelism. 

Approach I: 
(a) Define all new languages 
for parallel programming 
(CSP was one of the first and 
remains one of the most influ- 
ential); or 

(b) generalize the semantic 
model of some base language 
to produce a new and com- 
plete parallel language (as in 
Multilisp [19], the concurrent 
logic languages, concurrent 
Smalltalk [IO] and many oth- 
ers); or 

(c) sidestep the whole issue, by 
using sophisticated compiler 
or runtime technology to 
achieve parallel execution of 
programs that lack explicit 
parallelism. This approach 
includes work on parallelism 
compilers and on parallel exe- 
cution of conventional func- 
tional or logic languages. 

What these approaches share is 
the lack of any coordination model 

A side from 
Linda, few other 

systems accept 
the idea of a sep- 

arate, conceptually 
self-contained 

coordination lan- 
guage. But, in 

effect, most cur- 
rent approaches 

reject separation. 
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@SC. Instead, they supply a single, 
unified programming model 
(which may include the tools neces- 
sary to achieve coordination as one 
part of an integrated approach). 
The other approach to parallelism 
is: 

Approach II: 
Define an independent coor- 
dination model; this model 
can be added to any base lan- 
guage with no change to the 
base language semantics. 

Linda falls into the Approach II 
category. Dongarra and Sorenson’s 
Schedule [ 111 is another example. 
(Schedule, in turn, is related to 
Babb’s work on coarse-grain 
dataflow [4].) Strand is an example 
that approaches the problem from 
a logic-programming viewpoint 
(151. Linda is the only advocate of 
generality in this group: the others 
focus on parallelism specifically (al- 
though concurrent logic program- 
ming has a consistent secondary 
interest in distributed systems as 
well). This is not a criticism- 
merely a matter of differing foci. 

Kahn and Miller’s comments 
amount (fundamentally) to a criti- 
cism of Approach 11 from the 
standpoint of Approach I. 

Under the first approach, paral- 
lelism is regarded as a generaliza- 
tion of some base language’s com- 
puting model (if it is regarded at 
all). In the second-particularly 
Linda’s version of the second- 
parallelism is a specialization of a 
more general phenomenon, the 
problem of coordination in all its 
guises. 

There is no clear right and 
wrong between these two; bath 
approaches have been used success- 
fully. How do we evaluate them? 

First, consider Approach Ia and 
b. Kahn and Miller argue that these 
approaches offer one toolbox in- 
stead of two. We do not denigrate 
this argument from conceptual 
economy. Such an argument is ex- 
ceptionally important. It should be 
overridden only in return for intel- 
lectual leverage of a decisive kind. 

We believe that portability, reus- 
ability and heterogeneity constitute 
this kind of overriding advantage. 
We also believe that, by sacrificing 
conceptual economy in the small, 
we will regain it in the large, when 
we unify the coordination tools re- 
quired for parallel programming 
with a broad range of others. These 
arguments leave our respect for the 
basic principle of Kahn and Miller’s 
argument undiminished. Obvi- 
ously, each programmer will decide 
the issue individually. 

Next, consider Approach Ic (im- 
plicit parallelism) versus Approach 
II. The starting point for much of 
this work, particularly on implicitly- 
parallel functional languages, was 
the contention that explicit parallel- 
ism would prove too difficult for 
programmers to manage. “The 
potential performance of this kind 
of architecture is enormous,” 
Turner wrote in 1984, referring to 
parallel machines, “but how can 
they be programmed? An idea that 
can be dismissed more or less 
straight away is that we should take 
some conventional sequential lan- 
guage and add facilities for explic- 
itly creating and co-ordinating pro- 
cesses. This may work where the 
number of processes is small, but 
when we are talking about thou- 
sands and thousands of indepen- 
dent processes, this cannot possibly 
be under the conscious control of 
the programmer” [28 p. 101. Al- 
though the field is still immature, 
the evidence to date suggests 
strongly that this contention is false, 
or at any rate misleading. Signiii- 
cant numbers of parallel machines 
have been installed and see routine 
use by programmers who use ex- 
plicitly parallel methods. Currently 
these architectures are more likely 
to involve tens or hundreds than 
thousands of processors, but why 
existing techniques should sud- 
denly fail at the transition from (let 
us say) a “r-Cube to a lo-Cube is 
unclear. 

The fallacy in Turner’s statement 
has proven to be the underlying 
assumption that somehow each 
process in an ensemble will be cre- 

ated separately and treated as an 
individual. In the context of large- 
scale Linda programs, which usu- 
ally involve many identical worker 
processes, or processes each of 
which computes one piece of a 
large, aggregate data structure 
(turning into the result upon com- 
pletion), Turner’s statement makes 
no more sense than the claim that 
“DO loops may work for small 
numbers of iterations, but when we 
are talking about thousands and 
thousands of iterations, this cannot 
possibly be under the conscious 
control of the programmer ” 
Of course it can’t, but so what? To 
specify explicitly does not mean to 
specify individually. 

In evaluating Approach I as a 
whole, there is a final pragmatic 
factor to keep in mind as well. 
Those who work actively at the in- 
terface between computer science 
and real computation are aware of 
the fact that most “real” parallel 
applications begin life not as blank 
sheets of paper, but as serial pro- 
grams that run too slowly. If we 
were asked for help in parallelizing 
a large serial code, and we opened 
the discussion from our side by say- 
ing “first thing, throw out every line 
of this program and rewrite it in 
(say) Miranda,” the response would 
likely be unprintable. Not because 
real-world programmers are too 
stupid to understand the beauties 
of these brave new languages. It is 
merely that they have better things 
to do with their time than rewrite 
code that already works, unless the 
advantages of doing so are over- 
whelming. They rarely are. 

Of course many parallel applica- 
tions are built from scratch, and 
their numbers will increase. But 
forcing new languages on parallel 
programmers clearly complicates 
the transition to parallelism. 

Cenerallty: Economy. 
Flexlblllty and Intellectual 
FOCUS 
We turn now to basic claim number 
two: in principle, you can use the 
same coordination language that 
you rely on for parallel applications 
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programming when you develop 
distributed systems. You can use 
the same model in building (or at 
any rate conceptualizing-design- 
ing the programmer interface to) a 

tile system. You can use the same 
model, again, in building heteroge- 

neous applications. And you can 
use the same model for implement- 
ing basic human-machine commu- 
nication. This approach does not 
accord with current practice, to say 
the least. Before we consider why 
you might want to do this, we need 
to consider whether (in basic design 
terms) the whole thing is even pos- 

sible. 
We are arguing on behalf of a 

class of systems, not Linda specifi- 
ally. But it is convenient to use 
Linda as an example. All these 
forms of communication are sub- 
sumed, in logical terms, by the 
Linda model. They are not all sup- 
ported adequately by current 
implimentations; but that’s another 
question. The first question is: can 
you design a general-purpose coor- 

dim&on language? 
The Linda model has been de- 

scribed often, and we will not re. 
peat the description here. How 
ever, in brief outline, Linda 
provides an associative object mem- 
ory, conceived as a kind of stretchy 
envelope. Processes in Linda in- 
habit this envelope, called a tuple 
space. When they have information 
to communicate, they generate 
tuple-structured data objects and 
release them into the envelope. 
When they need information, they 

may read a data object or cmuume 
one, as the context requires. Ob- 
jects are described for purposes of 
reading or consumption by an asso- 
ciative naming scheme that oper- 
ates like “select” in a relational 
database. Processes turn into tuple- 
structured data objects, indistin- 
guishable from all the rest, when 
they are done computing. The sys- 
tem as described is supported 
commercially on a broad range of 
platforms. Current research imple- 
mentations (epitomized by Jagan- 
nathan’s Schema Linda [ZO]) sup- 
port multiple iirst~lass tuple 

spaces: whole tuple spaces can ap- 
pear as tuple fields; whole tuple 
spaces may be manipulated as unit 

objects. 
The preceding is brief and 

sketchy, but it is sufficient to moti- 
vate our claim that Linda can sup- 
port all forms of communication 
listed earlier. Inter-process com- 
munication, of the sort that parallel 
applications and distributed sys- 
tems both require, is realized in 
terms of distributed data struc- 
tures. Information-producing pro- 

cesses build data structures out of 
tup1es; information-consuming 

processes read or ccmsume those 
structures. (In the simplest case, 
such a structure is merely a single 
tuple.) The technique is discussed 
at length in [8, 91. 

RPC is trivial to simulate: the “in- 
voke procedure” operation is im- 
plemented by a “generate parame- 
ters” object followed by a “consume 
result” operation. The remotely 
invoked procedure becomes a pro- 

cess which repeatedly accepts a pa- 
rameter object, invokes the called- 

for procedure locally and then gen- 
erates a result object. (The 
converse, by the way, is not true. 
Linda operations cannot be trans- 
lated directly into RPCs-which 
procedure would they invoke? Not 
some hypothetical object store pro- 
cedure, because runtime efficiency 
is mandatory for parallel applica- 
tions, and we cannot allow central- 

ized bottlenecks. Nor can we allow 
Linda’s asynchronous, nonblocking 
“generate object” operation to 
block until a remote prcxedure 
generates a logically pointless reply. 
Nor can we readily support Linda’s 
view of processes as incipient data 
objects in this framework.) 

Linda’s boundaries as a +rallel 
appbcations tool continue to ex- 
pand. For example, one recent 
Linda application in financial anal- 
ysis successfully uses the owner- 
computes model of data parallel- 
ism. Jagannathan and Philbin’s 

STING system supports tine- 
grained Linda programs, currently 
on shared-memory multiprocessors 
but with a port to distributed- 
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memory environments planned. It 
promises to expand significantly 
the range of program struct”res 
that can be expressed cleanly and 
implemented efficiently using the 
Linda coordination model [Zl]. Sci- 
entific Computing Associates now 
supports For&m-Linda as well as 
C-Linda. The “Piranha” system, 

which executes Linda programs on 
conventional local networks in such 
a way that idle workstations may 

join an ongoing computation, and 
participating workstations may 
withdraw quickly when their own- 
ers need them, runs on 60 worksta- 
tions in the Yale Computer Science 
Department and has been used to 
execute a variety of production 
applications. At several recem 
workshops (notably Re&wch direc- 
tions in high-level pm&l langvqes, 
which focussed on Unity, Gamma 
and Linda [24], and Linda-L& Sys- 
terns and Thtir Implemcntatiom [%I), 
Linda-related projects addressed to 
a broad range of other program- 
ming styles was presented. 

Linda is inherently a (distrib- 
uted) file-system and database 
model as well, because tuples are 
persistent objects. A tuple space is a 
son of tile: objects can be added to 
and read from the file; tuples are 

immutable, but they are modified 
in effect by removing an old one 
and reinstating an updated version. 
Associative addressing makes it 
possible to organize the tuples in a 
“file” as an indexed stream of bytes 
(one byte per tuple); such tiles can 
also hold a heterogeneous stream 
of arbitrary records, or an unor- 
dered collection of objects. They 
can hold processes (incipient tup- 
les) as well as data objects. Thus we 
might, for example, store a librar- 

ian daemon inside a mail tile, and 
so on. On the use of Linda in data- 

base setting, see Anderson and 
Shasha’s work on “Persistent 
Linda,” which supports transac- 
tions and some other extensions 
that are useful in this domain 131. 

Linda is logically suited to lan- 
guage-heterogeneous applications: 
the Linda coordination model 
makes no reference to any particu- 
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lar host computing language. Obvi- 
ously, this statement begs the hard 
question of type compatibility- 
each language puts data objects cre- 
ated according to its own type sys- 
tem in the tuples it generates. But If 
we define some common (stripped- 
down) type system, the Linda oper- 
ations make it possible for processes 
in many languages to collaborate on 
production and consumption of a 
single shared data structure, make 
it possible for a prcxess in one lan- 
guage to consume the residue (the 
tuple left behind upon completion 
of the computation) of a process 
expressed in another language, and 
so on. Linda supports basic man- 
machine communication insofar as 
a user, using a Linda command in- 
terpreter, can dump objects into 
tuple space, read or retrieve them 
directly. 

The fact that all this holds in ccm- 
cept does not mean, of course, that 
it holds in practice. For example: 
the RPC community has invested 
considerable effort in deftning the 
meaning of its ccmstruct in the 
presence of various failures, and in 
developing implementations that 
are robust in the face of network 
faults. The fragmentary coordina- 
tion language defined by the typical 
file system is supported by an im- 
plementation optimized to the 
needs of I/O interfaces, to security 
and authentication requirements, 
and so on. These issues are not con- 
fronted by current Linda imple- 
mentations which target parallel 
applications where runtime perfor- 
mance (not reliability, security and 
so on) is the driving consideration. 

Still, it is vital not to loose sight of 
the underlying question. In this 
section we ask not what has been im- 
@mented but what might be and ought 
to be imphetied. The fact that cur- 
rent RPC implementations are well- 
suited to the pragmatics of distrib- 
uted systems is, for now, formida- 
ble and important. But obviously, 
the same sort of research effort that 
led to a reliability semantics for 
RPC could (and will, we expect) 
lead to the same sort of thing in the 
Linda context, or in the framework 

of smne other general-purpose co- 
ordination language. A number of 
interesting projects have already 
addressed important aspects of the 
reliable Linda problem /for exam- 
ple, [5] and [23]). (Given our own 
steadily-increasing focus on local 
networks as parallel machines [l], 
we will also be confronting many of 
these issues.) Likewise for issues of 
file systems, databases and so on. 

In short, a general-purpose coor- 
dination language is possible in 
concept. But is it a good idea? 

GeN2lltv: ECOnOmy 
and Flexlblllty 
Conceptual economy is a principle 
of great importance: Kahn and 
Miller made this argument (as have 
many others in recent millennia), 
and we accepted it. We would 
rather have a single coordination 
tooltmx than many separate ones. 

The practical gain from concep- 
tual economy is fle&lity. Simple, 
economical languages tend to be 
supple and powerful, complex ones 
tend to be rigidly inflexible-a 
stubborn fact that emerges scream- 
ing from programming language 
history, only to be repeatedly ig- 
nored. (Our recent textbook on 
programming language design [ 181 
discusses this issue at length.) By 
proposing a single, general- 
purpose coordination language we 
are filling in the blanks that sepa- 
rate massive parallelism from task- 
level parallelism or distributed sys- 
tems-leaving ourselves with a 
clean and continuous spectrum 
stretching from one end of the co- 
ordination world to the other. Two 
posslblhtles-interpolation and 
extrapolation-follow. We get 
strong support and a conceptual 
basis for applications that do not tit 
precisely into any one category. 
Also, we can smoothly extend our 
knowledge of coordination outward 
beyond the software world alto- 
gether, into the domain of ensem- 
bles in general-including, for ex- 
ample, human ones. 

Consider two active research proj- 

ects in our group, one dealing with 
realtime data fusion (the trellis [12, 
14]), the other with expert data- 
bases (the FGP machine [13, 171). 

The trellis is a software architec- 
ture that uses parallelism for clar- 
ity, insofar as parallelism allows us 
to impose a uniform framework on 
a wide-ranging collection of sepa- 
rate programs, and speed, insofar 
as parallelism allows us to guaran- 
tee sufftcient execution resources to 
meet realtime deadlines. But the 
project does not stop with the trellis 
program itself. Factor et al. [I41 
describe the front-end visualizer 
running on a graphics workstation. 
In the complete system we envision, 
Linda supports parallelism in the 
trellis which runs on a parallel ma- 
chine. It supports uniprocessor 
concurrency within the graphics 
workstation (processes that manage 
subsidiary windows require data 
from the main display-manager 
process). It also supports distrib- 
uted system communication be- 
tween the workstation and the trel- 
lis. The first two parts of this 
picture, parallelism and uniproces- 
sor concurrency, are complete, and 
the third is current research. 

Question: Why should we accept 
three toolboxes, one for parallel 
applications (say, message passing), 
one for uniprocessor concurrency 
(for example, shared memory with 
locks), and one for tram-network 
communication (say, RPC), when 
logically Linda works well in all 
three cases? And what do we call 
this program, anyway? A parallel 
application? A distributed system? 
Clearly it’s an ememble pure and 
simple. 

The FGP project poses a similar 
question. Its database manipulation 
component is computationally ex- 
pensive for large databases, and is 
now being parallelized. But the full 
system goes beyond a single in- 
stance of the program: the goal is to 
support the expert examination of 
a local database running on a local 
workstation or PC, and a simultane- 
ous examination of a much larger 
(public) database to be executed on 
a parallel machine. In a medical 



c oI‘a*r 

domain, for example, rhe clinnan 
runs a local search against his own 
patient database while simultane- 
ously searching a hospital’s much 
larger case repository. Some of the 
requisite communication has to do 
with parallelism and some with dis- 
tributed systems, but logically it is 
all the same. Why should we use 
two separate communication sys- 
tems when we only need one? 

These projects refuse to be 
neatly categorized; they squirm 
wherever you put them. They 
clearly require coordination tools 
that are powerful enough to work 
in many settings. And there is noth- 
ing unique about our research ef- 
fort in this regard. Mixed-mode 
ensembles will be normal and wide- 
spread in the future. 

EXtrapOlation 
Once we have identified coordina- 
tion as a topic that we can discuss in 
general, we can consider applying 
our knowledge of software ensem- 
bles to the construction of other 
kinds of ensembles-human ones, 
for example. (The questions we 
face in this new area are similar to 
the ones Thomas Malone poses in 
his provocative work on coordina- 
tion theory [P5].) 

For example: communication in 
Linda is based on distributed data 
stmctures, oi- shared structures such 
as streams and arrays that are built 
out of tuples. Processes communi- 
cate via these shared structures. But 
in principle, people might also 
communicate this way. We might 
imagine a tuple space surrounded 
by people who release, read and 
retrieve tuples directly. Alterna- 
tively, each person might be repre- 
sented by a software agent-a pro- 
cess inside of tuple space-that is 
active on his behalf. 

We can now build information- 
sharing software in which each 
tuple is an information object. 
Many diverse, sometimes complex 
questions and requirements have 
simple solutions in terms of distrib- 
uted data structures. 

Another example exists in multi- 
ple tuple space Linda systems. Mul- 

tiple tuple spaces are useful in 
structuring software, but they are 
also a natural mechanism for build- 
ing a hierarchical “conceptual land- 
scape” to describe a project or orga- 
nization. When users want to know 
something about Linda itself, for 
example, we might refer them to a 
nest of tuple spaces that captures 
the system’s conceptual structure. 
Within the global Linda space are 
tuple spaces holding documenta- 
tion, code, reports, or perhaps run- 
ning programs. Each of these con- 
tains appropriate subspaces in turn. 
We arrive at a structure that resem- 
bles a hierarchical file system, ex- 
cept that the objects being orga- 
nized are full-fledged tuple spaces. 
They may contain processes (dae- 
moos or visiting agents) as well as 
data objects. 

A final example: in [S] we use the 
term “Turingware” to refer to an 
ensemble incorporating people and 
processes, in such a way that no ele- 
ment knows or cares whether the 
others with which it deals are pro- 
cesses or people. One current proj- 
ect involves a Turingware version 
of the trellis architecture discussed 
earlier. 

In short: when we introduce 
general-purpose coordination 
models, the resultant broadening of 
intellectual scope is wide-ranging 
and considerable. 

Intellectual Focus 
The idea of a general-purpose co- 
ordination model directs attention 
to the fact that there is such a topic 
as ensemble building in general, 
and that it is a fundamental issue 
for computer science. 

Programming languages have 
traditionally treated I/O, the file 
system and the relationship be- 
tween a user’s program and the 
surrounding environment as out- 
side the bounds of a computing 
model, an area for recourse to 
extra-linguistic library routines or 
ad hoc extensions. (Of early lan- 
guages, Cob4 and APL were each 
partial exceptions in different ways, 
but neither was influential in this 
respect.) Thus Algol 60, for exam- 
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pie, has no provision for l/O; it as- 
sumes that I/O will be handled by 
hand-coded external routines. 

Consider a Gedankenexperimnt 
based on a” anti-Algal: this lan- 
guage makes no provision for com- 
puting values; it assumes that val- 
“es will be computed by external 
library routines. It is precisely a 
coordination language, capable of 
expressing interactions between 
running programs and users, the 
generation, storage and retrieval of 
persistent objects in a file system, 
and the coordination of multiple 
activities into a single ensemble. 

If 1960 had see” the definition 
of anti-Algol instead of Algal, we 
might have developed a set of 
value-computing tools as unsystem- 
atic and ad hoc as our present coor- 
dination tools. Of course, this sce- 
nario was impossible, not only on 
obvious pragmatic grounds but 
because of the existence in recur- 
sive function theory of a simple and 
comprehensive model of computa- 
tion. But the experiment should 
give us at least a moment’s pause, 
because the current direction of 
computing makes it appear that 
anti-Algol and not Algol might ulti- 
mately prove the more important 
language. 

I” a” age where prepackaged 
software is cheap and for sale 
everywhere (no doubt there will be 
software vending machines before 
long), the programmer’s main task 
will shift decisively in the direction 
of gluing cmnponmtr togethn- 
building ensembles. (Modern It’s 
have shifted the digital designer’s 
role in the same way, towards the 
gluing-together and away from the 
synthesis of components.) 

Furthermore, a general coordi- 
nation model is the basic mental 
constrxt that we require in order 
to distinguish programming from 
mathematics. Every computation 
language is a fancy Turing Ma- 
chine. But programmers do not 
deal in the mere evaluation of ex- 
pressions, precisely because asyn- 
chronous ensembles are the funda- 
mental fact of programming. Even 
when we deal with a conventional, 
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deterministic, single-threaded ap- 
plication, the user plus the com- 
puter constitutes a two-part asyn- 
chronous ensemble. An ensemble is 
the natural outgrowth of the inevi- 
table asynchronism in any human- 
computer system. Why not three or 
n activities instead of two? 

It would be nice to have a theo- 
retical foundation for general ccmr- 
dination. We would like to see the 
following characteristics in such a 
model. First, a simple definition of 
computational space and time 
where a point in space is identified 
with a single locus of control (or a 
single Turing Machine), and a 
point in time is defined as the cur- 
rent states of many loci or TMs. 
Second, a model that becomes a 
TM when projected onto the time 
axis at some spatial point, and be- 
comes a “current coordination 
state” when projected onto the 
space axis at some temporal point. 
From our standpoint, a “current 
coordination state” is (the current, 
frozen state of) a tuple space: a TM 
and a tuple space are orthogonal 
elements in computational time- 
space. 

Conclusions 
A broad research effort aimed at 
the development of general- 
purpose coordination languages is 
long overdue. The tangible result 
would be a tool of great power and 
significance. The intangible one 
would be a better understanding of 
the rcmt problems of computer sci- 
ence. There appears to be a” “n- 
spoken consensus in much of the 
research community that every 
twist and turn in the hardware de- 
velopment path, particularly where 
parallel machines or networks are 
concerned, calls for a new language 
or programming model, a new de- 
sign, new implementation and new 
coding methods. In the long run, 
this approach is intellectually crip- 
pling. What are the fuv&rn.enlal 
guestions here? 

Although we have used the Kahn 
and Miller comments as a foil for 
this exposition of our basic prem- 
ises, our work is, in fact, closely al- 

lied to theirs. The issues they raise 
in their “Open Systems” paper [PZ] 
are important, and the dynamic, 
evolving and open-ended systems 
they envision will become increas- 
ingly central to systems research. 
Our thinking about Linda and its 
evolution has been strongly influ- 
enced by their work. 

Linda obviously shares much 
with other coordination-language 
projects, particularly with Don- 
garra and Sorenson’s Schedule (at 
any rate with respect to basic “n- 
derpinnings). We also see strong 
similarities between our approach 
and the work of Bisiani, Forin and 
Ambriola on heterogeneity and 
coordination [6, 71. In general we 
see computation and programming 
languages as areas in which further 
progress will be slow, incremental 
and, in many cases, of marginal 
importance to working program- 
mers. Coordination languages are a 
field of potentially great signifi- 
cance. A growing “umber of 
groups will play major roles in this 
work. 
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