
21

Software Model Checking

RANJIT JHALA

University of California, San Diego

and

RUPAK MAJUMDAR

University of California, Los Angeles

We survey recent progress in software model checking.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification; F.3.1
[Logics and Meanings of Programs]: Specifying and Verifying and Reasoning about Programs

General Terms: Languages; Verification; Reliability

Additional Key Words and Phrases: Software model checking, enumerative and symbolic model checking,
abstraction, counterexample-guided refinement, safety, liveness

ACM Reference Format:

Jhala, R. and Majumdar, R. 2009. Software model checking. ACM Comput. Surv. 41, 4, Article 21 (October
2009), 54 pages. DOI = 10.1145/1592434.1592438 http://doi.acm.org/10.1145/1592434.1592438

Software model checking is the algorithmic analysis of programs to prove properties of
their executions. It traces its roots to logic and theorem proving, both to provide the
conceptual framework in which to formalize the fundamental questions and to provide
algorithmic procedures for the analysis of logical questions. The undecidability theorem
[Turing 1936] ruled out the possibility of a sound and complete algorithmic solution
for any sufficiently powerful programming model, and even under restrictions (such
as finite state spaces), the correctness problem remained computationally intractable.
However, just because a problem is hard does not mean it never appears in practice.
Also, just because the general problem is undecidable does not imply that specific in-
stances of the problem will also be hard.

As the complexity of software systems grew, so did the need for some reasoning
mechanism about correct behavior. (While we focus here on analyzing the behavior of

This work was sponsored in part by the National Science Foundation grants CCF-0546170, CCF-0702743,
and CNS-0720881.
Authors’ addresses: R. Jhala, University of California, San Diego, Department of Computer Science and
Engineering, 9500 Gilman Drive #0404, La Jolla, CA 92093-0404; email: rjhala@ucsd.edu; R. Majumdar,
UCLA Comp Sci, Box 951596, 4532H Boelter, Los Angeles, CA 90095-1596; email: rupak@cs.ucla.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-
0481, or permissions@acm.org.
c©2009 ACM 0360-0300/2009/10-ART21 $10.00

DOI 10.1145/1592434.1592438 http://doi.acm.org/10.1145/1592434.1592438

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:2 R. Jhala and R. Majumdar

a program relative to given correctness specifications, the development of specification
mechanisms happened in parallel, and merits a different survey.)

Initially, the focus of program verification research was on manual reasoning, and the
development of axiomatic semantics and logics for reasoning about programs provided
a means to treat programs as logical objects [Floyd 1967; Hoare 1969; Dijkstra 1976;
Apt and Olderog 1991]. As the size of software systems grew, the burden of provid-
ing entire manual proofs became too cumbersome, and brought into questions whether
long and laborious proofs of correctness could themselves be trusted [de Millo et al.
1979]. This marked a trend toward automating the more mundane parts, leaving the
human to provide guidance to an automatic tool (for example, through loop invari-
ants and function pre- and post-conditions [Dijkstra 1976]). This trend has continued
since: the goal of software model checking research is to expand the scope of automated
techniques for program reasoning, both in the scale of programs handled and in the
richness of properties that can be checked, reducing the burden on the expert human
programmer.

More recently, software model checking has been influenced by three parallel but
somewhat distinct developments. First, development of program logics and associated
decision procedures [Nelson 1981; Nelson and Oppen 1980; Shostak 1984] provided a
framework and basic algorithmic tools to reason about infinite state spaces. Second,
automatic model checking techniques [Clarke and Emerson 1981; Queille and Sifakis
1981; Vardi and Wolper 1994] for temporal logics [Pnueli 1977; Emerson 1990] provided
basic algorithmic tools for state-space exploration. Third, compiler analysis, formalized
by abstract interpretation, provided connections between the logical world of infinite
state spaces and the algorithmic world of finite representations. Throughout the 1980s
and 1990s, the three communities developed with only occasional interactions. How-
ever, in the last decade, there has been a convergence in the research directions and
modern software model checkers are a culmination of ideas that combine and perhaps
supersede each area alone. In particular, the term “software model checker” is probably
a misnomer, since modern tools simultaneously perform analyses traditionally classi-
fied as theorem proving, or model checking, or dataflow analysis. We retain the term
solely to reflect historical development.

In this survey, we trace some of these ideas that have combined to produce tools with
more and more automation and precision for the analysis of software systems.

1. PRELIMINARY DEFINITIONS

1.1. Simple Programs

We assume a transition-relation representation of programs, following the style of
Lamport [1983] and Manna and Pnueli [1992]. Over the course of this chapter, we
define several classes of programs, starting with a simple model, and adding more fea-
tures as we go along. To begin with, we consider simple programs which are defined
over a set of integer variables. In the following sections, we augment this simple model
with pointers and procedure calls.

A simple imperative program P = (X , L, �0, T) consists of a set X of typed variables,
a set L of control locations, an initial location �0 ∈ L, and a set T of transitions. Each
transition τ ∈ T is a tuple (�, ρ , �′), where �, �′ ∈ L are control locations, and ρ is a
constraint over free variables from X ∪ X ′. The variables from X denote values at
control location �, and the variables from X ′ denote the values of the variables from X
at control location �′. The sets of locations and transitions naturally define a directed
labeled graph, called the control-flow graph (CFG) of the program. We denote by imp
the class of all simple programs.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:3

An imperative program with assignments and conditional statements can be trans-
lated into a simple program as follows. The control flow of the program is captured
by the graph structure. An assignment x := e (where e is an expression over X) is
translated to the relation:

x′ = e ∧
∧

y∈X \{x}
y′ = y

and a conditional p (a Boolean expression over X) is translated to

p ∧
∧
x∈X

x′ = x

We shall exploit this translation to provide our examples in a C-like syntax for better
readability.

Similarly, there is a simple encoding of simple programs executing concurrently with
an interleaved semantics into a single simple program, for example, by taking the
union of the variables, the cross product of the locations of the threads, and transitions
((l1, l ′

1), ρ , (l2, l ′
2)) where either (l1, ρ , l2) is a transition of the first thread and l ′

2 = l ′
1,

or (l ′
1, ρ , l ′

2) is a transition of the second thread and l2 = l1.
Thus, we shall use simple programs in our exposition of model checking algorithms

in the following sections. Of course, particular model checkers may have more struc-
tured representations of programs that can be exploited by the model checker. For
example, input formats can include primitive synchronization operations (e.g., locks,
semaphores, or atomic sections), language-level support for channels that are used for
message passing, etc. In each case, such features can be compiled down to the “simple”
model.

A state of the program P is a valuation of the variables from X . The set of all states
is denoted v.X . We shall represent sets of states using constraints. For a constraint ρ
over X ∪ X ′ and a valuation (s, s′) ∈ v.X × v.X ′, we write (s, s′) |= ρ if the valuation
satisfies the constraint ρ.

Sometimes we shall consider simple programs with an explicitly provided initial state
that sets all variables in X to specific values in their domains. If an initial state is not
given explicitly, we assume that the program can start executing from an arbitrary
state. In this latter case, any state is initial.

A finite computation of the program P is a finite sequence 〈�0, s0〉, 〈�1, s1〉, . . . , 〈�k , sk〉 ∈
(L × v.X)∗, where �0 is the initial location, s0 is an initial state, and for each
i ∈ {0, . . . , k − 1}, there is a transition (�i, ρ , �i+1) ∈ T such that (si, si+1) |= ρ.
Likewise, an infinite computation of the program P is an infinite sequence
〈�0, s0〉, 〈�1, s1〉, . . . , 〈�k , sk〉 . . . ∈ (L×v.X)ω, where �0 is the initial location, s0 is an initial
state, and for each i ≥ 0, there is a transition (�i, ρ , �i+1) ∈ T such that (si, si+1) |= ρ.
A computation is either a finite computation or an infinite computation. A state s is
reachable at location � if 〈�, s〉 appears in some computation. A location � is reachable
if there exists some state s such that 〈�, s〉 appears in some computation. A path of the
program P is a sequence π = (�0, ρ0, �1), (�1, ρ1, �2), . . . , (�k−1, ρk−1, �k) of transitions,
where �0 is the initial location.

We define two useful operations on states. For a state s and a constraint ρ over
X ∪ X ′, we define the set of successor states Post (s, ρ) = {s′ | (s, s′) |= ρ}. Similarly
for a state s′ and constraint ρ, we define the set of predecessor states Pre (s′, ρ) =
{s | (s, s′) |= ρ}. The operations Post and Pre are extended to sets of states in the obvi-
ous way: Post (S, ρ) = ⋃

s∈S Post (s, ρ) and Pre (S, ρ) = ⋃
s∈S Pre (s, ρ). The Post and Pre

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:4 R. Jhala and R. Majumdar

Fig. 1. Simple program.

operations are also called the strongest postcondition and pre-image operations respec-
tively [Dijkstra 1976]. An operator related to the pre-image is the weakest liberal precon-
dition operation WP [Dijkstra 1976] defined as WP(s′, ρ) = {s | ∀t.(s, t) |= ρ ⇒ t = s′}.
The WP and Pre operators coincide for deterministic systems.

Example. Figure 1 shows a simple program consisting of two threads. Each thread
has four locations {L0, L1, L2, L3} and {L0′, L1′, L2′, L3′}, respectively. There are two
global variables x and lock, let us assume x can take values in the set {0, 1, 2} and lock
is Boolean. The transitions for thread 1 are given by

(L0, lock = 0 ∧ lock′ = 1 ∧ x′ = x, L1)
(L1, lock′ = lock ∧ x′ = 1, L2)

(L2, lock = 1 ∧ lock′ = 0 ∧ x′ = x, L3)

and similarly for thread 2. For readability, we write programs in an imperative syntax
as shown in Figure 1. The initial location of the program is 〈L0, L0′〉. Let us additionally
assume that the initial state is lock = 0 and x = 0. The set of reachable states are given
by:

〈L0, L0′, lock = 0, x = 0〉
〈L1, L0′, lock = 1, x = 0〉 〈L0, L1′, lock = 1, x = 0〉
〈L2, L0′, lock = 1, x = 1〉 〈L0, L2′, lock = 1, x = 2〉
〈L3, L0′, lock = 0, x = 1〉 〈L0, L3′, lock = 0, x = 2〉
〈L3, L1′, lock = 1, x = 1〉 〈L1, L3′, lock = 1, x = 2〉
〈L3, L2′, lock = 1, x = 2〉 〈L2, L3′, lock = 1, x = 1〉
〈L3, L3′, lock = 0, x = 2〉 〈L3, L3′, lock = 0, x = 1〉

Notice that the location 〈L1, L1′〉 is not reachable.

1.2. Properties

The main goal of software model checking is to prove properties of program compu-
tations. Examples of properties are simple assertions, that state that a predicate on
program variables holds whenever the computation reaches a particular control loca-
tion (e.g., “the variable x is positive whenever control reaches �”), or global invariants,
that state that certain predicates hold on every reachable state (e.g., “each array ac-
cess is within bounds”), or termination properties (e.g., “the program terminates on
all inputs”). Broadly, properties are classified as safety and liveness. Informally, safety
properties stipulate that “bad things” do not happen during program computations, and
liveness properties stipulate that “good things” do eventually happen. This intuition
was formalized by [Alpern and Schneider 1987] as follows.

Mathematically, a property is a set of infinite sequence from (L × v.X)ω. We say
an infinite sequence σ satisfies a property � if σ ∈ �. A safety property � ⊆ (L ×
v.X)ω is a set of infinite computations such that for every infinite computation σ ∈

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:5

�, for every finite prefix σ ′ of σ , there exists β ∈ (L × v.X)ω such that σ ′ · β ∈ �,
where · is string concatenation. Taking the contrapositive, a computation σ does not
satisfy a safety property � if there is a finite prefix σ ′ of σ such that no extension
of σ ′ satisfies P . That is, every violation of a safety property has a finite witness. A
liveness property �, on the other hand, is such that every partial computation can be
extended to a computation satisfying �. That is, � is a liveness property for every finite
computation α ∈ (L×v.X)∗, there is an infinite computation β ∈ (L×v.X)ω such that α·β
satisfies �.

The verification problem takes as input a program P and a property �, and returns
“safe” if every computation of P is in �, and returns “unsafe” otherwise. In the former
case, we say P satisfies �. If � is a safety property (respectively, a liveness property),
we refer to the safety (respectively, liveness) verification problem.

For most of the survey, we focus on the problem of checking if a program P
satisfies a safety property �. We consider the verification of liveness properties in
Section 8.

In the following, we formulate the safety verification problem as a check for reach-
ability of a particular location. Let P be a simple program, and let E ∈ L be a special
error location. We say the program is safe with respect to the error location E if the
location E is not reachable. An error trace is a computation ending in the location E .
Clearly, reachability of location E is a safety property, and it is known that checking
any safety property (expressed, e.g., in a temporal logic) can be reduced to the above
reachability question. Thus, we consider safety verification problems specified in the
following form: the input is a program P and an error location E ∈ L, and the output is
“safe” if P is safe with respect to E , and “unsafe” if E is reachable.

An alternate and common way to specify safety properties for programs is through
assertions. The programmer explicitly puts in a predicate p over program variables
(called the assertion) at a program location, with the intent that for every execution
of the program that reaches the location, the program state satisfies the assertion.
Our simple formulation subsumes assertion checking in a simple way: each assertion
is replaced by a conditional on the predicate p, the program continues execution if the
predicate p holds, and enters an error location otherwise. Conversely, reachability of an
error location can be encoded as an assertion violation, by putting an assertion false at
the desired location. Thus, reachability of error location and assertions are equivalent
ways to specify safety properties.

In the following, we use the following terminology. An algorithm for the safety verifi-
cation problem is sound if for every program P and error location E of P , if the algorithm
returns “safe” then P is safe with respect to E . It is complete if for every program P and
error location E of P , if P is safe with respect to E , then the algorithm returns “safe”.

The undecidability of the halting problem implies that there is no general sound and
complete algorithm for the verification problem. In practice, algorithmic tools maintain
soundness, but compromise on completeness. Interestingly, there are two ways this can
be done. One way is to explore a part of the reachable state space of the program,
hoping to find a computation that violates the property. In this case, the model checker
is geared towards falsification: if it finds a violation, then the program does not satisfy
the property, but if it does not, no conclusion about correctness can be drawn (either
the program satisfies the property, or the unexplored part of the state space has a
computation that is not in the property). Another way is to explore a superset of program
computations. In this case, the model checker is geared towards verification: if it finds
the property is satisfied, then the program does satisfy the property, however, if it finds
a violation, no conclusion can be drawn (either the original program has a computation
not in the property, or the violation is due to adding extraneous computations in the
analysis).

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:6 R. Jhala and R. Majumdar

1.3. Organization

The rest of the survey is organized as follows. We first describe two main ways of
representing state: enumerative (in which individual states are represented, Sections 2)
and symbolic (in which sets of states are represented using constraints, Section 3).
We then describe abstraction techniques (Section 4), which reduce the state space at
the expense of precision, and automatic techniques to make abstract analyses more
precise (Section 5). While we describe each facet in isolation, in practice, several notions
can be combined within the same tool: the program state can be represented partly
in enumerated form, and partly symbolically, and combined with (several different)
abstractions.

The next few sections describe extensions to the basic approach: dealing with (poten-
tially recursive) functions (Section 6), dealing with program memories with dynamic
allocation and heap abstractions (Section 7), and extending the techniques to reason
about liveness properties (Section 8). We then make the connection between model
checking techniques and related dynamic (testing) and static (type systems) techniques
in software quality (Section 9). We conclude with the limitations of current tools and
some future challenges.

2. CONCRETE ENUMERATIVE MODEL CHECKING

Algorithms for concrete enumerative model checking essentially traverse the graph
of program states and transitions using various graph search techniques. The term
concrete indicates that the techniques represent program states exactly. The term enu-
merative indicates that these methods manipulate individual states of the program, as
opposed to symbolic techniques (see Section 3) which manipulate sets of states. Con-
crete enumerative model checking grew out of testing and simulation techniques in
the late 1970’s, most notably from techniques for testing network protocols [Sunshine
1978; Sunshine et al. 1982], as a comprehensive methodology to ensure correctness. In
independent lines of work, Clarke and Emerson [1981] and Queille and Sifakis [1981]
generalized the techniques to temporal logic specifications. Since then, the method has
been applied successfully in analyzing many software domains, most notably asyn-
chronous, message-passing protocols [Holzmann 1997] and cache coherence protocols
[Dill 1996].

2.1. Stateful Search

Let impfin be the class of simple programs in which each variable ranges over a finite
domain. In this case, the safety verification problem can be solved by explicitly con-
structing the (finite) set of reachable states and checking that E is not reachable.

Figure 2 shows Algorithm EnumerativeReachability, a procedure that computes the
set of reachable states of a program in impfin by performing graph search. The algorithm
maintains a set reach of reachable states and a set worklist of frontier states that are
found to be reachable but whose successors may not have been explored. Initially, the
set reach is empty, and the frontier worklist contains all the initial states. The main
reachability loop of the algorithm explores the states of the frontier one at a time. If the
state has not been visited before, the successors of the state are added to the frontier,
otherwise, the successors are not added. The process is repeated until all reachable
states have been explored, which happens when the frontier worklist becomes empty.
At this point, reach contains exactly the set of reachable states. The loop terminates
for all impfin, in fact, it terminates for all programs for which reach is finite.

While we have implemented the check for reachability of E at the end of the reacha-
bility loop, it can be performed whenever a new state is picked from the frontier. Also,

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:7

Fig. 2. EnumerativeReachability.

Algorithm EnumerativeReachability can be easily modified to produce an error trace in
case E is reachable.

The generic schema of Figure 2 can be instantiated with different data structures
for maintaining the set of reachable states and the set of frontier states, and with
algorithms for implementing the order in which states are chosen from the frontier set.

For example, maintaining the frontier as a stack (and always choosing the next state
by popping the stack) ensures depth-first traversal of the graph, while maintaining
the frontier as a queue ensures breadth-first traversal. For efficiency of checking mem-
bership, the set reach is usually implemented as a hashtable [Holzmann 1997; Dill
1996]. In addition, instead of generating all states and transitions up front, reachabil-
ity search algorithms usually construct the state space on-the-fly, based on currently
reached states and the program. This exploits the observation that the reachable state
space of the program can be much smaller than the state space.

While we focus on a forward algorithm, based on the Post operator, a dual backward
algorithm based on the Pre operator is also possible. This algorithm starts at the lo-
cation E and searches backward over the set of states that can reach E . If some initial
state can reach E , the program is unsafe.

Enumerative model checking of finite state concurrent programs has been imple-
mented in several tools, most notably SPIN [Holzmann 1997] and MURPHI [Dill 1996].
Both tools have had significant impact, especially in the protocol verification domain.

The state space of a program can be exponentially larger than the description of
the program. This problem, known as state explosion, is one of the biggest stumbling
blocks to the practical application of model checking. Controlling state explosion has
therefore been a major direction of research in software model checking. In the context
of enumerative model checking, broadly, the research takes two directions.

First, reduction-based techniques compute equivalence relations on the program be-
haviors, and explore one candidate from each equivalence class. A meta-theorem as-
serts that the reduced exploration is complete, that is, for any bug in the original
system, there is a bug in the reduced one. Primary reduction-based techniques consist
of partial-order reduction [Valmari 1992; Katz and Peled 1992; Godefroid 1996], sym-
metry reduction [Clarke et al. 1993; Emerson and Sistla 1996; Ip and Dill 1996; Sistla
et al. 2000] or minimization based on behavioral equivalences such as simulation or
bisimulation [Bouajjani et al. 1990; Loiseaux et al. 1995; Bustan and Grumberg 2003].
Partial order reductions exploit the independence between parallel threads of execution

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:8 R. Jhala and R. Majumdar

on unrelated parts of the state. That is, if two transitions τ1 and τ2 in parallel threads of
execution access independent sets of variables, the final state reached after executing
τ1 and τ2 in that order is the same as that reached after executing first τ2 and then τ1.
An algorithm based on partial order reduction chooses to explore one candidate inter-
leaving among independent transitions rather than all of them. Symmetry reduction
determines symmetries in the program, and explores one element from each symmetry
class. In general, identifying symmetries in the state space may be difficult, and in
practice, the syntax of the programming language is used to identify symmetries. In
many examples, such as parameterized protocols, symmetry-based techniques can yield
dramatic reductions in the state space [Ip and Dill 1996]. Behavioral equivalences such
as similarity and bisimilarity construct a quotient graph that preserves reachability
(i.e., there is a path from an initial state to E in the original graph iff there is a path
to E in the quotient), and then performs reachability analysis on the quotient. This
assumes that constructing the quotient is simpler, or more scalable, than computing
reachability on the original graph. Some algorithms combine reachability and quotient
construction [Lee and Yannakakis 1992].

Second, compositional techniques reduce the safety verification problem on the orig-
inal program to proving properties on subprograms, such that the results of model
checking the subprograms can be combined to deduce the safety of the original pro-
gram. Assume-guarantee reasoning is a well-studied form of compositional reasoning
[Misra and Chandy 1981; Jones 1983; Stark 1985; Abadi and Lamport 1993, 1995;
Henzinger et al. 1998; Alur and Henzinger 1999; Alur et al. 1998]. In this approach,
the behavior of a component is summarized as a pair (A, G) of two formulas: an as-
sumption on the environment of the component (which restricts the possible inputs
presented to the component), and a guarantee that the component will satisfy provided
the inputs to the component from the environment satisfy the assumption. Let P1 and
P2 be two components with assumption-guarantee pairs (A1, G1) and (A2, G2) respec-
tively. To show that the composition of P1 and P2 has an assumption-guarantee pair
(A, G), one shows that the assumption A and the guarantee G2 together imply that
P1 maintains the assumption A2, and similarly, the assumption A and the guarantee
G1 together imply that P2 maintains the assumption A1, and finally that G follows
from A, G1, and G2. The reasoning above is circular: assumptions on the behavior of
P1 are used to discharge assumptions on the behavior of P2 and vice versa. In order
to make the reasoning sound, the interpretation of (A, G) must be carefully defined
to break this circularity. One common way is to break the circularity by induction on
time.

The search heuristic also has a profound influence on the performance of Algo-
rithm EnumerativeReachability on practical problems, where the objective is to find bugs
quickly. One direction of research applies guided or directed search heuristics inspired
by search heuristics from the artificial intelligence literature, such as iterative deep-
ening [Korf 1985], best-first search [Russell and Norvig 2003], or A∗ search [Hart et al.
1968; Russell and Norvig 2003]. These techniques were imported into MURPHI [Yang
and Dill 1998] and SPIN [Edelkamp et al. 2004; Lluch-Lafuente 2003], and there have
been several extensions (and combinations with orthogonal techniques) since that time
[Fraser et al. 2000].

In a different direction, using the observation that model checking is often more useful
as a falsification or bug-finding aid, one gives up completeness of the search. This is often
done by limiting resources available to the model checker (run for a specified amount
of time or memory), or by bounding the set of behaviors of the program to be explored
(e.g., by bounding the depth of the search, or the number of context-switches). Bitstate
hashing is a popular technique in which the hash of each reachable state is stored,
rather than the state itself. The choice of the range of the hash function is determined

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:9

by the available memory. Bitstate hashing is unsound, as two distinct reached states
can hash to the same value (a hash collision). In order to obtain nicer guarantees on
the probability of collision, each state is hashed using several (in practice, two or three)
independent hash functions. When the search space is so big that even with bitstate
hashing one can only explore a small portion of the state space, it is possible to store the
states on disk rather than on main memory [Stern and Dill 1998]. This is a time-for-
space tradeoff: while accessing states take much longer on disk, the disk allows storing
a much larger state space, and the algorithms have to be designed carefully to ensure
disk accesses are fast (e.g., by ensuring disk reads are sequential).

2.2. Systematic Execution Exploration

The execution-based model checking approach, pioneered by VERISOFT [Godefroid 1997],
is a special case of enumerative verification. This approach uses the runtime system of
a programming language implementation to implement enumerative state space explo-
ration. In the most common approach, implemented in VERISOFT, JAVAPATHFINDER, and
several other tools, all the the non-determinism in a concurrent program is factored into
two sources: inputs from the environment, and scheduling choices made by the sched-
uler. That is, each sequence of user inputs and schedule choices uniquely determines
the outcome of an execution, and the set of all behaviors can be explored by analyzing
the behavior of the process under all possible inputs and schedules.

In contrast to techniques that exhaustively explore the state space using graph algo-
rithms, systematic execution exploration proceeds by systematically iterating over the
space of possible schedules and simply executing the process under each schedule. This
most appealing benefit of this approach is that it sidesteps the need to be able to for-
mally represent the semantics of the programming language and machine instructions
as a transition relation. In essence, the transitions correspond directly to the manner in
which the machine state is altered by the execution of instructions between scheduler
invocations. Moreover, when a counterexample is found, the model checker can gen-
erate a concrete execution demonstrating how the system violates the property. This
counterexample is typically detailed enough to be replayed inside a debugger, thereby
helping the user pinpoint the cause of error.

Execution-based model checkers are typically used as a “test amplification” mech-
anism. The user provides a test harness corresponding to a workload under which
the program is run. The usual operating system scheduler would execute the work-
load under a fixed schedule, thereby missing most possible behaviors. However, the
execution-based model checker’s scheduler is able to systematically explore the possi-
ble executions of the same workload under different schedules, for example, exploring
what happens under different interleavings of shared operations like message sends,
receives etc., and is able to find various safety errors like assertion failures, deadlocks
and divergences, that are only manifested under corner-case schedules.

There are two main technical challenges that must be addressed to make execution-
based model checking feasible. These challenges stem from the fact that in this approach
the “state” comprises the entire machine state – all the registers, the heap, the stack,
state of network resources etc.. First, the size of the machine state makes it infeasible
to store the set of visited states. Thus, how can one systematically explore the space of
executions without storing the visited states? Second, the space of possible schedules
grows exponentially in the length of the schedule. However, many of these schedules
can lead to states that are either identical, or identical with respect to the properties
being analyzed (i.e., differing only in the values of some irrelevant variables like per-
formance counters). Given that one can only run the model checker for a finite amount
of time, how can one bias the analysis away from exploring redundant executions and

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:10 R. Jhala and R. Majumdar

Fig. 3. StatelessSearch.

towards executions that are more likely to expose bugs? There is the usual time-space-
soundness tradeoff here: storing entire states ensure paths are not re-executed but
require too much space; storing no states (“stateless search” described below) spends
time re-executing similar paths and can diverge if there are loops; and storing hashes
of states can miss executions owing to hash collisions.

2.3. Stateless Search

The key innovation in VERISOFT was to introduce the idea of stateless search, wherein
the model checker could explore different executions without actually storing the set
of visited states. Since all nondeterminism is captured within the schedules, whenever
the process needs to make a nondeterministic choice, for example, a choice based on
a random number, a user input, the choice of thread to execute or network latency, it
queries the scheduler for a number from a finite range. Each execution is characterized
by the schedule, that is, the sequence of numbers returned by the scheduler to the pro-
cess. Thus, to iterate over different executions, the model checker needs only to iterate
over the space of possible schedules and re-execute the process using the schedule.

While conceptually the schedule does not distinguish user inputs and thread sched-
ule choices, even for a small number of 32-bit user inputs, the number of schedules
can become astronomical. VERISOFT (and many similar tools described below) explic-
itly model the non-determinism arising from scheduling choices, keeping user inputs
fixed. Tools based on symbolic execution (described in Section 3) for sequential pro-
gram focus on the other hand on exploring the space of user inputs, using symbolic
representations to avoid the explosion in schedules. Tools such as JAVAPATHFINDER com-
bine both approaches, exploring schedule choices explicitly while tracking user inputs
symbolically.

Algorithm StatelessSearch in Figure 3 shows this algorithm. The algorithm takes as
input a system and a depth increment, and performs a bounded-depth depth first search
of the space of executions. The size of an execution is measured by the number of calls
made to the scheduler during the execution.

Recall that each execution of size depth is characterized by the sequence of values that
the scheduler returns along that execution. Suppose that at each point, the scheduler
returns an integer between 0 and k. Sequences(depth) is an iterator over the sequences
of 1 . . . k of size depth. That is, it returns, in order, the sequences,

0depth, 0depth−11, . . . , 0depth−1k, 0depth−210, . . . , kdepth

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:11

For each sequence or schedule, we analyze the behavior of the system under the sched-
ule by resetting the system to its initial state and executing the system under the
schedule. The order in which sequences of a given depth depth are generated ensures
that algorithm explores executions in a depth-first manner. Once all the executions of
size depth have been explored, the depth is incremented and the process is repeated
until the execution returns UNSAFE meaning that an execution along which some safety
property has been violated has been found.

The key property of the above algorithm is that it makes very modest demands on
the representation of the process being analyzed. We need only to be able to: (1) reset
it, or restore it to a unique starting state, and, (2) execute it, under a given schedule.
Notice that to explore executions of larger depths, the algorithm simply re-executes the
system from the initial state. This requires that the execution be deterministic under
a given schedule. That is, two executions using the same schedule leave the system in
identical states. In practice, the most onerous burden upon the user is to ensure that
every source of non-determinism is replaced with a call to the scheduler.

2.4. Execution-Based Tools

Next, we describe several execution-based model checkers, and the strategies they have
adopted to effectively explore the executions in order to find bugs.

Verisoft. As mentioned before, the VERISOFT tool pioneered the idea of execution-based
stateless model checking of software. VERISOFT takes as input the composition of several
Unix processes that communicate by means of message queues, semaphores and shared
variables that are visible to the VERISOFT scheduler. The scheduler traps calls made
to access the shared resources, and by choosing which process will execute at each
trap point, the scheduler is able to exhaustively explore all possible interleavings of
the processes’ executions. VERISOFT has been used to found several complex errors in
concurrent phone-switching software [Chandra et al. 2002].

JavaPathFinder is an execution-based model checker for Java programs that mod-
ifies the Java Virtual Machine to implement systematic search over different thread
schedules [Havelund and Pressburger 2000; Visser et al. 2003]. This language-based
approach restricts the classes of software that can be analyzed, but provides many sig-
nificant advantages. First, the use of the JVM makes it possible to store the visited
states, which allows the model checker to use many of the standard reduction-based
approaches (e.g., symmetry, partial-order, abstraction) to combating state-explosion.
Second, as the visited states can be stored, the model checker can utilize various
search-order heuristics without being limited by the requirements of stateless search.
Third, one can use techniques like symbolic execution and abstraction to compute in-
puts that force the system into states that are different from those previously visited
thereby obtaining a high level of coverage. JAVAPATHFINDER has been used to success-
fully find subtle errors in several complex Java components developed inside NASA
[Brat et al. 2004; Penix et al. 2005], and is available as a highly extensible open-source
tool.

Cmc is an execution based model checker for C programs that explores different
executions by controlling schedules at the level of the OS scheduler. CMC stores a hash of
each visited state. In order to identify two different states which differ only in irrelevant
details like the particular addresses in which heap-allocated structures are located, CMC

canonicalizes the states before hashing to avoid re-exploring states that are similar to
those previously visited. CMC has been used to find errors in implementations of network
protocols [Musuvathi and Engler 2004] and file systems [Yang et al. 2004].

MaceMC is an execution-based model checker for distributed systems implemented
in MACE, a domain-specific language built on top of C++ [Killian et al. 2007]. MACEMC

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:12 R. Jhala and R. Majumdar

uses two techniques to guide state space exploration. First, rather than exploring the
interleavings of low-level operations like network sends and receives, MACEMC exploits
higher-level constructs in its modeling language MACE to explore only coarse-grained
interleavings of event-transitions, each of which can comprise of tens of low-level shared
operations. Second, it combines exhaustive search with long random walks executed
from the periphery of the exhaustive search. Long walks that end without “something
good” happening indicate potential violations of liveness properties.

Chess is an execution based model checker for multithreaded Windows pro-
grams [Musuvathi and Qadeer 2007]. Like CMC and VERISOFT, CHESS works by inter-
cepting system calls in order to systematically explore the space of schedules. CHESS

employs an innovative search ordering called iterative context bounding in which the
tool explores executions with at most k context-switches, where k is a parameter that
is iteratively increased [Qadeer and Rehof 2005]. The intuition behind this search-
ordering is that many bugs are manifested in long executions containing just a few
unexpected context-switches. CHESS has been incorporated inside the testing frame-
work for several programs inside Microsoft.

In addition, many of the techniques for execution-based model checking have been
incorporated in newer versions of SPIN .

3. CONCRETE SYMBOLIC MODEL CHECKING

While enumerative techniques capture the essence of software model checking as the
exploration of program states and transitions, their use in practice is often hampered
by severe state space explosion. This led to research on symbolic algorithms which
manipulate representations of sets of states, rather than individual state, and perform
state exploration through the symbolic transformation of these representations. For
example, the constraint 1 ≤ x ≤ 10∧1 ≤ y ≤ 8 represents the set of all states over {x, y}
satisfying the constraint. Thus, the constraint implicitly represents the list of 80 states
that would be enumerated in enumerative model checking. Symbolic representations
of sets of states can be much more succinct than the corresponding enumeration, and
can represent infinite sets of states as well. The symbolic representation of regions is
the crucial component of symbolic algorithms, but in addition to providing an implicit
representation of sets of states, the representation must also allow performing certain
operations on sets of states directly on the representation. For example, given a program
with (symbolic) initial region σI , the set of reachable states are given by

⋃
i≥0 Post i(σI).

This suggests that a symbolic representation of regions must allow at least the Post and
the ∪ operations on symbolic regions, and a way to check inclusion between regions (to
check for convergence). Performing these operations by enumerating individual states
in the region nullifies the advantage of the symbolic representation.

3.1. The Region Data Structure

Let P be a simple program. For symbolic model checking algorithms, we introduce
the abstract data type of symbolic representations for states of P . The abstract data
type defines a set of symbolic regions symreg, an extension function [[·]] : symreg →
2v.X mapping each symbolic region to a set of states, and the following constants and
operations on regions:

(1) The constant ⊥ ∈ symreg representing the empty set of states, [[⊥]] = ∅, and the
constant � ∈ symreg representing the set of all states, [[�]] = v.X .

(2) The operation ∪ : symreg × symreg → symreg that computes the union of two
regions, that is, for every r, r ′ ∈ symreg we have [[r ∪ r ′]] = [[r]] ∪ [[r ′]].

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:13

Fig. 4. SymbolicReachability.

(3) The operation ∩ : symreg × symreg → symreg that computes the intersection of two
regions, that is, for every r, r ′ ∈ symreg we have [[r ∩ r ′]] = [[r]] ∩ [[r ′]].

(4) The operation =: symreg × symreg → bool such that r = r ′ returns true iff r and r ′
denote the same set of states, that is, [[r]] = [[r ′]].

(5) The operation ⊆: symreg×symreg → bool such that r ⊆ r ′ returns true iff r denotes
a region contained in r ′, that is, [[r]] ⊆ [[r ′]].

(6) The operation Post : symreg × T → symreg that takes a symbolic region r and a
constraint ρ and returns a symbolic region denoting the set Post ([[r]], ρ).

(7) The operation Pre : symreg × T → symreg that takes a symbolic region r and a
constraint ρ and returns a symbolic region denoting the set Pre ([[r]], ρ).

In what follows, we shall assume that each operation above is effectively computable
for an implementation of symreg.

Figure 4 shows Algorithm SymbolicReachability, a symbolic implementation of reach-
ability. The basic search procedure is the same as Algorithm EnumerativeReachability
(Figure 2), but we now manipulate symbolic regions rather than individual states. Note
that we maintain the program locations enumeratively, alternately, we can construct
a fully symbolic version where the program locations are maintained symbolically as
well. The algorithm maintains a map reach from locations � ∈ L to sets of states reach-
able when the control location is �. The frontier regions are maintained in worklist as
before, and the main loop explores regions at the frontier and adds new regions to reach.
(The notation reach[� �→ r] denotes a function that maps � to r but agrees with reach
on all other locations.)

Notice that the algorithm does not make any assumptions of finiteness: as long as
the symbolic regions can represent infinite sets of states, and the symbolic operations
are effective, the algorithm can be implemented.

The power of symbolic techniques comes from tremendous advances in the perfor-
mance of constraint solvers that underlie effective symbolic representations, both for
propositional logic (satisfiability solvers [Silva and Sakallah 1996; Moskewicz et al.
2001; Een and Sorensson 2003] as well as binary decision diagrams [Bryant 1986;
Somenzi 1998]) and more recently for combinations of first order theories [Dutertre
and de Moura 2006; Bruttomesso et al. 2008; de Moura and BjØrner 2008].

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:14 R. Jhala and R. Majumdar

3.2. Example: Propositional Logic

For finite domain programs, Boolean formulas provide a symbolic representation. The
encoding is easiest understood when each variable in the program is Boolean (finite
domain variables can be encoded using several Boolean variables). Suppose the program
has n Boolean variables. Then, a state is a vector of n bits, and each set of states can
be represented by its characteristic formula that maps an n bit vector to true if it is in
the set and to false otherwise.

In this representation, the regions ⊥ and � are then the formulas false and true,
respectively, Boolean operations on regions are logical operations on formulas, and
equality and subset checks reduce to Boolean equivalence and implication checks. Fi-
nally, Post and Pre can be computed by Boolean conjunction followed by existential
quantifier elimination (and renaming) as follows. Given a transition relation τ (X , X ′)
represented as a formula over 2n variables (the unprimed and primed variables), and
a formula b(X) over the current set of variables, Post (b(X), τ (X , X ′)) is given by the
formula

Rename(∃X .b(X) ∧ τ (X , X ′), X ′, X)

where the existential quantifier ∃X existentially quantifies each variable in X , and
Rename(φ(X ′), X ′, X) renames each primed variable x ′ ∈ X ′ appearing in the formula
φ(X ′) by the corresponding unprimed variable x ∈ X . Similarly, Pre (b(X), τ (X , X ′)) is
given by the formula

∃X ′.Rename(b(X), X , X ′) ∧ τ (X , X ′)

Symbolic representation can result in very compact representations of states. Compare,
for example, a program with n Boolean variables, and the set of all program states. An
enumerative representation would explicitly represent 2n program states, whereas a
symbolic representation using Boolean formulas is simply the formula true.

Unfortunately, it is often difficult to work directly with Boolean formulas. (Reduced
ordered) binary decision diagrams (BDDs) [Bryant 1986] can be used instead as an
efficient implementation of Boolean formulas. BDDs are compact and canonical repre-
sentations of Boolean functions.

For a program with n state bits, regions are represented as BDDs over n variables
with some ordering on the variables. As before, the empty region is the BDD for false,
representing the empty set, and the top region � is the BDD for true, representing all
states. Union and intersection are Boolean disjunction and conjunction, respectively,
which can be computed directly on BDDs [Bryant 1986]. Equality is Boolean equiva-
lence, but reduces to equality on BDDs since they are canonical representations. Check-
ing containment reduces to equality, using the observation that r1 ⊆ r2 iff r1 ∩ r2 = r1.
The computation of Post and Pre require existential quantification and renaming (in
addition to Boolean operations), which can again be implemented directly on BDDs.

BDDs are the primary representation in symbolic model checkers such as SMV, and
have been instrumental in scaling hardware model checkers to extremely large state
spaces [Burch et al. 1992; McMillan 1993]. Each Boolean operation and existential
quantification of a single variable can be quadratic in the size of the BDD, and the
size of the BDD can be exponential in the number of variables in the worst case. More-
over, the size of the BDD is sensitive to the variable ordering, and many functions
do not have a succinct BDD representation [Bryant 1986]. This is the symbolic ana-
logue of the state explosion problem, and has been a major research direction in model
checking.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:15

Notice that Algorithm 4 terminates for impfin where symreg is implemented using
BDDs, since each BDD operation is effective, and each iteration of the loop finds at
least one new state.

BDD-based model checkers, such as SMV [McMillan 1993], have been extremely
successful in hardware model checking. They were also used as back-ends for initial
attempts at software model checking [Corbett et al. 2000].

3.3. Example: First-Order Logic with Interpreted Theories

In case program variables range over infinite domains, such as integers, a more expres-
sive symbolic representation is provided by first order logic formulas [Floyd 1967; Hoare
1969]. A symbolic region is represented by a first order formula whose free variables
range over the program variables. For a formula ϕ, we write [[ϕ]] for the set of states
{s | s |= ϕ}. With abuse of notation, we often identify a formula ϕ with the set of states
[[ϕ]], and omit [[·]] when clear from the context. The empty region ⊥ is represented by the
logical formula false, the region � by true. Union and intersection are implemented by
disjunction and conjunction in the logic, and equality and containment by equivalence
checking and implication, respectively.

Finally, the Pre and Post operations can again be implemented using existential
quantification, using essentially the same formulations as for the Boolean case above,
but where the formulas can now be over the more general logic.

When using the full power of first-order logic, the equivalence and implication checks
are not effective. So in practice, one chooses formulas over a decidable theory, such as
quantifier-free formulas over a combination of the theory of equality with uninterpreted
functions and the theory of rationals [Nelson 1981].

While the availability of decision procedures makes the individual operations in
Algorithm 4 effective, it could still be that the algorithm runs forever. Consider for
example a loop

i := 0; while (i ≥ 0) {i := i + 1; }E :;

Clearly, the location E is not reachable. However, a symbolic representation based on
first order formulas could run forever, finding the set of reachable states

i = 0 ∨ i = 1 ∨ · · · ∨ i = k

at the kth iteration of the while loop, approximating the “fixed point” i ≥ 0 closer and
closer.

3.4. Bounded Model Checking

As in enumerative model checking, one can trade-off soundness for effective bug finding
in symbolic model checking. One popular approach, called bounded model checking
[Biere et al. 1999], unrolls the control flow graph for a fixed number of steps, and checks
if the error location can be reached within this number of steps. Precisely, given program
P , error location E , and k ∈ N, one constructs a constraint which is satisfiable iff the
error location E is reachable within k steps. Satisfiability of this constraint is checked
by a constraint solver. The technique is related to symbolic execution [King 1976], in
which the program is executed on symbolic as opposed to concrete inputs. While BMC
techniques search over all program computations using backtracking search within the
constraint solver, traditionally, symbolic execution techniques enumerate all program
paths, and generate and solve constraints for each enumerated path.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:16 R. Jhala and R. Majumdar

Tools for bounded model checking of software implementations come in two flavors.
The first, such as CBMC [Kroening et al. 2003], F-SOFT [Ivancic et al. 2008], Saturn
[Xie and Aiken 2005], or Calysto [Babic and Hu 2008] generate constraints in proposi-
tional logic and use Boolean satisfiability solvers to discharge the constraints. Scalabil-
ity of the techniques depend both on the scalability of the underlying SAT solvers
as well as carefully tuned heuristics which keep the size of the constraints small.
The reduction to propositional satisfiability captures the semantics of fixed-width pro-
gram datatypes precisely. Thus, one can find subtle bugs arising from mismatches be-
tween the algorithm and low-level fixed-width machine semantics, such as arithmetic
overflows.

CBMC and Saturn are tools implementing this idea for C programs. Both have been
fairly successful in analyzing large pieces of software, including analyzing C models of
processors and large parts of the Linux kernel. Saturn improves upon the basic bounded
model checking algorithm by computing and memoizing relations between inputs and
outputs (“summaries”) for procedures bottom-up in the call graph. This makes bounded
model checking scale to large programs.

The second class of tools generates constraints in an appropriate first order theory
(in practice, the combination theory of equality with uninterpreted functions, linear
arithmetic, arrays, and some domain-specific theories) and use decision procedures for
such theories [de Moura et al. 2002; Ganai and Gupta 2006; Armando et al. 2006]. The
basic algorithm is identical to SAT-based bounded model checking, but the constraints
are interpreted over more expressive theories.

3.5. Invariants and Invariant Synthesis

The set of reachable states R of a program is the smallest set which contains the set of
initial states and is closed under the Post operator (i.e., Post (R) ⊆ R). By definition, a
program is safe if the location E does not appear in the set of reachable states. Instead
of computing the set of reachable states, though, one could compute (possibly larger)
regions R ′ which satisfy the two constraints that the set of initial states is contained
in R ′ and R ′ is closed under Post . As long as the location E does not appear in R ′, we
could still deduce that the program is safe. Such regions are called invariants.

An invariant of P at a location � ∈ L is a set of states containing the states reachable
at �. An invariant map is a function η from L to formulas over program variables from X
such that the following conditions hold:

Initiation: For the initial location �0, we have η.�0 = true.
Inductiveness: For each �, �′ ∈ L such that (�, ρ , �′) ∈ T , the formula η.�∧ρ

implies (η.�′)′. Here, (η.�′)′ is the formula obtained by substituting vari-
ables from X ′ for the variables from X in η.�′.

Safety: For the error location E , we have η.E = false.

With these properties, it can be proved by induction that at every location � ∈ L, we
have that {s | (�, s) is reachable in P} ⊆ [[η.�]], and so the method is sound. In the above
example, a possible invariant map associates the invariant i ≥ 0 with the head of the
while loop.

The presence of invariants reduces the problem of iteratively computing the set of
reachable states to checking a finite number of obligations, which is possible if the
symbolic representation is effective. In fact, relative completeness results [Cook 1978]
ensure that relative to deciding the implications, the method is complete for safety
verification. Traditional program verification has assumed that the invariant map is
provided by the programmer, and several existing tools (ESC-Modula [Leino and Nelson
1998], ESC-Java [Flanagan et al. 2002]) check the conditions for invariants, given an

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:17

invariant map, using decision procedures. (For ease of exposition, we have assumed that
an invariant map assigns an invariant to each program location, but it is sufficient to
define invariants only over a cutset of the program, i.e., a set of program locations such
that every syntactic cycle in the CFG passes through some location in the cutset. Thus,
the tools only require loop invariants from the programmer.)

In practice, the requirement that the programmer provide invariants has not found
widespread acceptance, so the emphasis has shifted to algorithmic techniques that can
synthesize invariant maps automatically, with minimal support from the programmer.
Clearly, the set of reachable states at each location constitutes an invariant map. How-
ever, there are other invariant maps as well, each of which contains the set of reachable
states. This is a crucial observation, and reduces the safety verification problem to the
search for appropriate invariants. For example, it enables the use of abstraction tech-
niques for invariant synthesis that we look at in the next section.

Several modifications to the inductiveness condition for invariants have been stud-
ied. One promising approach is k-induction [Sheeran et al. 2000; de Moura and Ruess
2003], which checks the inductiveness condition not for an edge (�, �′) but for paths of
length k. That is, instead of performing an induction scheme in which one assumes
the inductive invariant at the current state and proves the invariant holds after one
more step, k-induction assumes the inductive invariant holds for the previous k con-
secutive steps along a path, and proves that the invariant continues to hold after one
more step. Paths of length k in the program are encoded using bounded model checking
constraints.

We close this section with a constraint-based algorithm for invariant synthesis. The
method starts with a template invariant map, that is, a parameterized expression rep-
resenting the invariant map, and encodes the three conditions (initiation, inductive-
ness, safety) on the templates to get a set of constraints on the parameters of the
template [Giesl and Kapur 2001; Sankaranarayanan et al. 2005]. A solution to these
constraints provides an assignment to the parameters in the template and constitutes
an invariant map. For templates in linear rational arithmetic, the constraint system
can be encoded as a set of nonlinear arithmetic constraints on the template parameters
[Sankaranarayanan et al. 2005], and decision procedures for real arithmetic can be used
to construct invariant maps. Invariant synthesis for templates over more expressive
theories, such as combinations of linear arithmetic and equality with uninterpreted
functions, can be reduced to nonlinear arithmetic constraints [Beyer et al. 2007a].

While attractive, the technique is limited by two facts. First, the programmer has
to guess the “right” template. Second, the scalability is limited by the performance
of constraint solvers for nonlinear arithmetic. Thus, so far constraint-based invariant
synthesis has so far been applied only to small programs, even though recent tech-
niques combining the approach with other model checking techniques and constraint
simplification are promising [Beyer et al. 2007b; Gupta et al. 2009].

4. MODEL CHECKING AND ABSTRACTION

For infinite state programs, symbolic reachability analysis may not terminate, or take
an inordinate amount of time or memory to terminate. Abstract model checking trades
off precision of the analysis for efficiency. In abstract model checking, reachability anal-
ysis is performed on an abstract domain which captures some, but not necessarily
all, the information about an execution, using an abstract semantics of the program
[Cousot and Cousot 1977]. A proper choice of the abstract domain and the abstract
semantics ensures that the analysis is sound (i.e., proving the safety property in the
abstract semantics implies the safety property in the original, concrete, semantics) and
efficient.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:18 R. Jhala and R. Majumdar

Fig. 5. Abstract Reachability.

Historically, the two fields of model checking and static program analysis have evolved
in parallel, with model checking emphasizing precision and static analysis (with ap-
plications to program optimization) emphasizing efficiency. It has been long known
that theoretically each approach can simulate the other [Steffen 1991; Schmidt 1998;
Schmidt and Steffen 1998; Cousot and Cousot 2000]. In what follows, we focus on
abstract reachability analysis, but the techniques generalize to model checking more
expressive temporal properties, for example, those expressed in the μ-calculus [Clarke
et al. 1992; Cousot and Cousot 2000].

4.1. Abstract Reachability Analysis

An abstract domain (L, [[·]], Pre#, Post#) for a program P consists of a complete lattice
L = (L, �, ⊥, �, �, �) of abstract elements, a concretization function [[·]] : L → 2v.S

mapping lattice elements to sets of states, and two monotone total functions Pre # :
L × T → L and Post# : L × T → L such that the following conditions hold:

(1) [[⊥]] = ∅ and [[�]] = v.S;
(2) for all elements l , l ′ ∈ L, we have [[l � l ′]] ⊇ [[l]] ∪ [[l ′]] and [[l � l ′]] ⊇ [[l]] ∩ [[l ′]]; and
(3) for all l ∈ L and transition ρ, we have [[Post#(l , ρ)]] ⊇ Post ([[l]], ρ) and [[Pre#(l , ρ)]] ⊇

Pre ([[l]], ρ).

A lattice element l ∈ L represents an abstract view of a set of program states [[l]]. Note
that [[·]] is not required to be onto: not all sets of program states need to have an abstract
representation. A strictly ascending chain is a sequence l0 � l1 � l2 The height of
a lattice is the cardinality of the largest strictly ascending chain of elements in L.

Figure 5 shows the abstract reachability algorithm. It is similar to the symbolic
reachability algorithm (Algorithm 4), but instead of using symbolic regions, uses an
abstract domain. It takes as input a program P , an error location E , and an abstract
domain A, and returns either SAFE, signifying P is safe with respect to E , or UNSAFE,
signifying that either the program is unsafe or the abstract domain could not prove that
the program is safe. From the properties of an abstract domain, the abstractly reachable
set reach# so computed has the property reach ⊆ [[reach#]], so if the abstract reachability
algorithm returns “safe” then the program is indeed safe with respect to the error

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:19

Fig. 6. Program.

location. Unfortunately, the converse is not true in general: the abstract reachability
could return “unsafe” if it loses too much precision in the abstraction process, even
though the program is safe.

Consider the example program shown in Figure 6. This program is a simplified ver-
sion of a function from a network device driver [Ball and Rajamani 2002b]. Intuitively,
the variable LOCK represents a global lock; when the lock has been acquired, the value
of LOCK is 1, a and when the lock is released, the value of LOCK is 0. We would like to
verify that at the end of the do-loop, the lock is acquired (i.e., LOCK = 1). In the code,
this assertion is specified by a check that the lock is acquired (on line 5) and a call to
error if the check fails. If the abstraction consists of the relations LOCK = 0, LOCK = 1,
old = new, and old �= new, the abstract reachability analysis can prove this property.
The abstraction of the set of reachable set of states at line 4 is

(LOCK = 1 ∧ new = old) ∨ (LOCK = 0 ∧ new �= old)

which captures the intuition that at line 4, either the lock is acquired and new is equal
to old, or the lock is not acquired and the value of new is different from old (in fact,
new = old + 1).

On the other hand, if the program is analyzed using only the predicates LOCK = 0 and
LOCK = 1, the abstract reachability analysis does not track the relationship between
new and old, and hence cannot prove the property.

Notice that if the abstract domain has finite height, the abstract reachability algo-
rithm is guaranteed to terminate. Even if the abstract domain has infinite height, the
abstract reachability algorithm is still applicable, but usually augmented with widen-
ing techniques that ensure termination in a finite number of steps, at the cost of reduced
precision [Cousot and Halbwachs 1978].

4.2. Example: Polyhedral Domains

In the polyhedral abstract domain, the abstract elements are polyhedral sets over an
n-dimensional space of program variables ordered by set inclusion. The intersection
operation for the domain is implemented simply as polyhedron intersection, and union
is implemented as convex hull. The Pre # and Post# operations are implemented as
intersections and projections of polyhedra for transition relations ρ that are linear
relations on X ∪ X ′, and approximated for others.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:20 R. Jhala and R. Majumdar

The polyhedral domain has been successfully used to check for array bounds
checks [Cousot and Halbwachs 1978], and efficient implementations are available
(e.g., Bagnara et al. [2008]). The domain is not finite height, so the abstract reachability
algorithm may not terminate after a finite number of steps. To ensure termination, the
reachability analysis uses widening, and several widening heuristics have been studied
[Cousot and Halbwachs 1978; Bagnara et al. 2005].

Faster, but less expressive, abstract domains that can represent a subclass of poly-
hedra, such as intervals [Cousot and Cousot 1976] or octagons [Miné 2006] have been
used as well.

4.3. Example: Predicate Abstraction

The predicate abstraction domain [Agerwala and Misra 1978; Graf and Saı̈di 1997;
Saı̈di and Shankar 1999; Das et al. 1999] is parameterized by a fixed finite set � of
first order formulas with free variables from the program variables, and consists of
the lattice of Boolean formulas over � ordered by implication. Let ψ be a region. The
predicate abstraction of ψ with respect to the set � of predicates is the smallest (in
the implication ordering) region Abs(ψ, �) which contains ψ and is representable as a
Boolean combination of predicates from �:

Abs(ψ, �) =
∧

{φ | φ is a Boolean formula over � ∧ ψ ⇒ φ}

The region Abs(ψ, �) can be computed by recursively splitting as follows [Das et al.
1999]:

Abs(ψ, �) ·=⎧⎪⎨
⎪⎩

true if � = ∅ and ψ satisfiable

false if � = ∅ and ψ unsatisfiable

(p ∧ Abs(ψ ∧ p, �′)) ∨ (¬p ∧ Abs(ψ ∧ ¬p, �′)) if � = {p} ∪ �′

The satisfiability checks can be discharged by a decision procedure [Nelson 1981;
Dutertre and de Moura 2006; de Moura and BjØrner 2008]. In the worst case, the
computation is exponential in the number of predicates, and several heuristics with
better performance in practice have been proposed [Saı̈di and Shankar 1999; Flanagan
and Qadeer 2002].

Many implementations of predicate-based software model checkers (including SLAM

and BLAST) implement an over-approximation of the predicate abstraction that can be
computed efficiently in order to avoid the exponential cost. Cartesian predicate abstrac-
tion is one such precision-efficiency tradeoff: it can be computed more efficiently than
full predicate abstraction but can be quite imprecise in the worst case. Cartesian ab-
straction formalizes the idea of ignoring relations between components of tuples, and
approximates a set of tuples by the smallest Cartesian product containing the set [Ball
et al. 2001]. Formally, the cartesian abstraction of ψ with respect to the set � of predi-
cates is the smallest (in the implication ordering) region CartAbs(ψ, �) which contains
ψ and is representable as a conjunction of predicates from �. The region CartAbs(ψ, �)
can be computed as:

CartAbs(ψ, �) ·=
{

true if � = ∅
p ∧ CartAbs(ψ, �′) if � = {p} ∪ �′ and (ψ ∧ ¬p) unsatisfiable

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:21

Cartesian predicate abstraction was implemented for C programs as part of SLAM in a
tool called c2bp [Ball et al. 2001], and since then in other software verifiers.

4.4. Example: Control Abstraction

So far, we have used the abstract domain to reduce the space of data values, while keep-
ing each path of the program precise. Thus, our algorithms so far are path-sensitive.
In an orthogonal direction, we can develop abstract reachability algorithms in which
different paths of the program are merged into equivalence classes. For example, in a
flow-sensitive, path-insensitive analysis, the reachability algorithm will merge the set of
abstract states coming into a program location from any of its predecessor locations. In
a flow-insensitive analysis, the ordering on program transitions is abstracted, and the
program is considered as a bag of transitions which can fire in any order. Historically,
model checking has always assumed path-sensitivity in the analysis, and dataflow anal-
ysis has rarely assumed path-sensitivity (or even flow-sensitivity). A uniform frame-
work for abstract reachability analysis, which gives flow-insensitive, flow-sensitive, and
path-sensitive analyses as special cases is provided in Beyer et al. [2007b].

We have primarily considered the verification of sequential programs. We can reduce
the verification of nonrecursive concurrent programs (e.g., nonrecursive multithreaded
programs), to sequential programs, by taking the product of the control flow graphs of
the different threads [Dwyer and Clarke 1994], and then applying the sequential anal-
ysis. However, in many cases, combinatorial explosion makes a product construction
prohibitively expensive. In such cases, one approach is to perform a control abstraction
for the individual threads, before analyzing the product. To do so, one can first use a
data abstraction (e.g., predicate abstraction, polyhedra) to compute finite-state abstrac-
tions of the individual threads, and next, apply (bi)simulation quotienting [Bouajjani
et al. 1990] to obtain a small control skeleton for each thread. While the direct products
may be too large to analyze, it can be feasible to analyze the products of the reduced
state machines. This approach was suggested by the MAGIC software model checker
[Chaki et al. 2004]. One can refine this approach by using compositional reasoning to
iteratively compute an abstraction for each thread that is sound with respect to the
behavior of the other threads, to obtain a thread-modular style of reasoning [Flanagan
et al. 2002, 2005; Henzinger et al. 2003]. Instead of (bi)simulation quotients, one can
use the L∗ algorithm from machine learning to compute a small state machine that
generates the observable traces for each thread [Pasareanu et al. 2008]. Intuitively,
in each of the above cases, the small state machine computed for each thread can be
viewed as a summary of the behavior of the thread relevant to proving the property of
the concurrent program.

4.5. Combined Abstractions

Finally, one can build powerful analyses by combining several different abstractions,
each designed for capturing different kind of property of the program. One way to
achieve the combination is to analyze the program in two (or more) stages. In the first
stage, one can use a particular abstraction (e.g., polyhedra or octagons) to compute
invariants, which can be used to strengthen the abstract regions computed in the sec-
ond stage. This approach, which is implemented in the F-SOFT [Jain et al. 2006] and
IMPACT [McMillan 2006] model checkers, can make verification much faster if if the first
phase can cheaply find invariants that are crucial for the second phase, but which are
expensive to compute using a more general abstraction of the second phase. A second
approach is to simultaneously combine multiple abstractions using the notion of a re-
duced product [Cousot and Cousot 1979]. The Astree analysis tool Blanchet et al. [2002,

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:22 R. Jhala and R. Majumdar

Fig. 7. Counterexample-guided Abstraction Refinement.

2003] is probably the best example of using combinations of abstract domains to enable
precise and scalable verification. The software model checker BLAST combines predicate
abstraction with arbitrary other abstractions specified via a lattice [Fischer et al. 2005;
Beyer et al. 2007b]. This approach allows one to extend model checkers with abstrac-
tions targeted at particular domains in a modular manner. Finally, Gulwani and Tiwari
[2006] shows a general framework for combining abstract interpretations for different
theories, analogous to the manner in which decision procedures for different theories
are combined [Nelson and Oppen 1980].

5. ABSTRACTION REFINEMENT

In general, abstract model checking is sound, that is, programs proved to be safe by the
abstract analysis are actually safe, but incomplete, that is, the abstract analysis can
return a counterexample even though the program is safe. In case the abstract anal-
ysis produces a counterexample, we would like to design techniques that determine
whether the counterexample is genuine, that is, can be reproduced on the concrete pro-
gram, or spurious, that is, does not correspond to a real computation but arises due
to imprecisions in the analysis. In the latter case, we would additionally like to auto-
matically refine the abstract domain, that is, construct a new abstract domain that can
represent strictly more sets of concrete program states. The intent of the refined do-
main is to provide a more precise analysis which rules out the current counterexample
and possibly others. This iterative strategy was proposed as localization reduction in
Kurshan [1994] and Alur et al. [1995] and generalized to counterexample-guided refine-
ment (CEGAR) in Ball and Rajamani [2000b], Clarke et al. [2000], and Saidi [2000].
Figure 7 formalizes this iterative refinement strategy in procedure CEGAR, which takes
as input a program P , and error location E and an initial, possibly trivial, abstract do-
main A. The procedure iteratively constructs refinements of the abstract domain A
until either it suffices to prove the program safe, or the procedure finds a genuine
counterexample.

5.1. Counterexamples and Refinement

The most common form of counterexample-guided refinement in software model check-
ing has the following ingredients. The input to the counterexample analysis algorithm
is a path in the control flow graph ending in the error location. The path represents
a possible counterexample produced by abstract reachability analysis. The first step

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:23

Fig. 8. Abstract Counterexample.

of the algorithm constructs a logical formula, called the trace formula, from the path,
such that the formula is satisfiable iff the path is executable by the concrete program.
Second, a decision procedure is used to check if the trace formula is satisfiable. If
satisfiable, the path is reported as a concrete counterexample to the property. If not,
the proof of unsatisfiability is mined for new predicates that can rule out the cur-
rent counterexample when the abstract domain is augmented with these predicates.
The CEGAR loop makes progress by eliminating at least one counterexample in each
step. Since each iteration refines the abstract domain from the previous iteration, this
guarantees that all previously excluded counterexamples remain excluded in the next
iteration.

Counterexamples. An abstract counterexample ρ̄ for a program P is a path

�0
ρ0−→ �1

ρn−1−−→ �n (1)

of P where �0 is the initial location and �n is the error location.
Consider again the program from Figure 8, and an abstract reachability analysis

using only the predicates LOCK = 0 and LOCK = 1. The abstract reachability analysis can
return a counterexample path like the one shown in Figure 8. The vertices correspond
to the labels � and the edges to transitions ρ. To the left of each edge we write the
program operation corresponding to the transition. This counterexample is spurious,
that is, does not correspond to a concrete program execution. Intuitively, this is because
after the second transition the variables 1 and old are equal, after the fourth transition,
where new is incremented they are disequal, and so, it is not possible to break out of
the loop as happens in the fifth transition. The abstract model checking does not track
the equality of new and old and hence admits this spurious path.

Trace Formulas. To convert an abstract counterexample into a trace formula, we
rename the state variables at each transition of the counterexample and conjoin the

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:24 R. Jhala and R. Majumdar

resulting transition constraints to get the following formula:

n−1∧
i=0

ρi(X i, X i+1) (2)

Notice that the trace formula is equivalent to:

—the bounded model checking formula for the unrolled version of the program corre-
sponding to the path,

—the strongest postcondition of true with respect to the straight-line program corre-
sponding to the path (when all variables other than those in X n are existentially
quantified), and

—the weakest liberal precondition of true with respect to the straight-line program
corresponding to the path (when all variables other than those in X 0 are existentially
quantified).

Thus, the trace formula is satisfiable iff the path is executable. To avoid constraints of
the form xi+1 = xi for each x not modified by an operation, we can convert the path to
static single-assignment (SSA) form [Flanagan and Saxe 2000; Henzinger et al. 2004],
after which the renamed operations directly get translated into constraints. The trace
formula can be further optimized by statically slicing out parts of the path that are not
relevant to the reachability of the error states [Jhala and Majumdar 2005].

Figure 8 shows the individual constraints of the trace formula on the right side of
the trace. The names LOCKi refer to the different values of the (state) variable LOCK at
different points along the trace. We have used the SSA optimization—the constraint
corresponding to the incrementing of new stipulates that the incremented value new4 is
one greater than the previous value new0.

Syntax-Based Refinement. Suppose the trace formula is unsatisfiable. One simple
way to deduce new predicates that are sufficient to rule out the current spurious coun-
terexample is to find an unsatisfiable core of atomic predicates appearing in the formula,
whose conjunction is inconsistent. There are several ways of finding such a set. First,
one can use a greedy algorithm to find a minimal set of constraints that is inconsistent.
This was the underlying predicate discovery mechanism in SLAM [Ball and Rajamani
2002a]. Second, one can query a proof producing decision procedure [Necula and Lee
2000] to find a proof of unsatisfiability of the constraints, and choose the atomic formu-
las that appear as the leaves in this proof. After finding the atomic predicates, we can
simply drop the subscripts and add the resulting predicates to the tracked set, thereby
refining the abstraction. This was originally implemented in BLAST [Henzinger et al.
2002] and subsequently in other tools.

Consider the trace shown in Figure 8. The trace formula, given by the conjunction
of the constraints on the right side of the trace, is unsatisfiable, as it contains the
conjunction of

old2 = new0, new4 = new0 + 1, new4 = old2

which is inconsistent. Thus, by dropping the subscripts, we can refine the abstraction
with the new predicates

old = new, new = new + 1, new = old

which, after dropping redundant and inconsistent predicates, leaves just the predicate
new = old. Notice that when this predicate is added to the set of predicates, the resulting

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:25

set, namely

{LOCK = 0, LOCK = 1, new = old}
suffices to refute the counterexample. That is, the given path is not a counterexample
in the abstract model generated from these predicates.

Finally, another syntax-based refinement strategy is to bypass the trace formula
construction, and instead, compute the sequence of predecessors

ϕn = true ϕi−1 = Pre (ϕi, ρi)

along the counterexample path, starting at the error location and going all the way back
to the initial location. The abstraction can then be refined by adding the atomic predi-
cates appearing in each ϕi. This technique was proposed by Namjoshi and Kurshan
[2000]. It is used in F-SOFT in conjunction with several other heuristics such as
the use of atomic predicates appearing in the proof of unsatisfiability of the trace
formula.

Interpolation-Based Refinement. Though the syntax-based methods suffice to elim-
inate a particular counterexample, they are limited by the fact that they essentially
capture relationships that are explicit in the program text, but can miss relationships
that are implicit. An alternate refinement strategy, suggested in Henzinger et al. [2004],
uses Craig Interpolation to find predicates that capture the implicit relationships that
are required to verify a given safety property.

Let φ− and φ+ be two formulas whose conjunction is unsatisfiable. An interpolant ψ
for (φ−, φ+) is a formula such that (a) φ− implies ψ , (b) ψ ∧ φ+ is unsatisfiable, and (c)
the free variables in ψ are a subset of the free variables that are common to φ− and
φ+. An interpolant always exists in case (φ−, φ+) are first-order formulas [Craig 1957],
and an interpolant can be constructed in time linear in the size of a resolution proof
for formulas in the combination theories of equality with uninterpreted functions and
linear arithmetic [McMillan 2004].

Now consider an unsatisfiable trace formula (2), and for each j ∈ {0, . . . , n − 1},
consider the j -cut: ⎛

⎝ j∧
i=0

ρi(X i, X i+1),
n−1∧

i= j+1

ρi(X i, X i+1)

⎞
⎠

Clearly, the conjunction of the two formulas (the trace formula) is unsatisfiable. Also,
the common variables between the two formulas of the cut are from X j+1. Intuitively,
the first part of the cut defines the set of states that can be reached by executing the
prefix of the counterexample trace up to step j , and the second part defines the set of
states that can execute the suffix. The common variables between the two parts are
variables that are live across step j , that is, defined in the prefix and used in the suffix.
Thus, an interpolant for the j -cut (a) contains states that are reached by executing
the prefix, (b) cannot execute the complete suffix, and (c) contain only live variables.
Thus, the interpolant serves as an abstraction at step j which is enough to rule out
the counterexample. Now suppose we compute interpolants I j for each j -cut which
additionally satisfy an inductiveness condition I j (X) ∧ ρ j (X , X ′) → I j+1(X ′). Then,
adding predicates appearing in the interpolants and performing abstract reachability
with these predicates is enough to rule out the counterexample. The counterexample
refinement technique in Henzinger et al. [2004] computes the cut for each j and compute
interpolants for each j -cut. By using the same proof in the construction of interpolants,
the procedure additionally ensures the inductiveness condition on interpolants.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:26 R. Jhala and R. Majumdar

The advantage of interpolation as a technique for refinement is that it not only discov-
ers new predicates, but also determines the control locations at which these predicates
are useful. Thus, instead of keeping a global set of predicates, one can keep a map from
locations to sets of predicates, and perform predicate abstraction with respect to the
local set of predicates. In experiments on device drivers (reported in Henzinger et al.
[2004]) this locality results in an order of magnitude improvement in the running times
of the CEGAR loop.

Consider the trace formula from Figure 8. The 3-cut of the trace formula corresponds
to the pair of formulas

φ− ·= LOCK1 = 0 ∧
LOCK2 = 1 ∧ old2 = new0 ∧
true
LOCK4 = 0 ∧ new4 = new0 + 1

φ+ ·= new4 = old2 ∧
LOCK4 = 0

The variables that are common to φ− and φ+ are new4, old2 and LOCK4, which are the SSA
renamed versions of new, old and LOCK that are live at the cut label 4 :. One interpolant
for this cut is

ψ
·=new4 �= old2

Note that this interpolant is over the common variables, is implied by φ− and is in-
consistent with φ+. Indeed this interpolant captures exactly the key relationship that
holds at label 4 that is needed to prove safety. The interpolant yields the predicate
new �= old at label 4. Similarly, the i-cuts for 0 ≤ i ≤ 5, we get the interpolants ψi
where

ψ0
·= true ψ1

·= true

ψ2
·= old2 = new0 ψ3

·= old2 = new0

ψ4
·= old2 �= new0 ψ5

·= false

and hence, by using the predicate old = new at locations 2 :, 3 : and 4 : only, we can
prove the program safe.

Relative Completeness. The term relative completeness refers to the property that iter-
ative counterexample refinement converges, given that there exist program invariants
in a restricted language which are sufficient to prove the property of interest.

Ensuring relative completeness is not trivial. Consider the example shown in
Figure 9. To verify that the error is not reachable, we must infer the invariant that
x = y and x ≥ 0. Unlike the program in Figure 6, neither of these facts appears syntac-
tically in the program. Figure 10 shows the (spurious) counterexample for the abstract
model generated from the predicates x = 0 and y = 0. This counterexample corresponds
to the unrolling of the loops once, and syntax based refinement strategies return the
new predicates x = 1 and y = 1. In general, the refinement step can diverge, generating

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:27

Fig. 9. Program.

Fig. 10. Abstract Counterexample.

the sequence of predicates

x = 0, y = 0
x = 1, y = 1
x = 2, y = 2
...

...

for counterexamples where the loops are unrolled 0, 1, 2, . . . times.
For syntactic techniques [Ball et al. 2002] provides a relative completeness result

using a non-deterministic strategy to extract predicates from particular counterexam-
ples. In practice, the strategy is implemented (e.g., in the SLAM model checker) using
heuristics specific to the problem domain.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:28 R. Jhala and R. Majumdar

Relative completeness can be ensured for interpolation-based techniques by restrict-
ing the language from which predicates are drawn, [Jhala and McMillan 2006]. For ex-
ample, one can stratify the language of predicates L into L0 ⊂ L1 . . . such that L = ∪iLi.
Next, we restrict the interpolation to find predicates in Li iff there are no predicates
in Li−1 that refute the counterexample. In this way, the iterative refinement becomes
relatively complete in the sense that if there is some safety proof where the invariants
are drawn from L, then there is some L j from which the invariants are drawn, and the
restricted iterative refinement will be guaranteed to terminate by finding predicates
from L j . One way to stratify the language is to let Li be the language of predicates
where the magnitude of each constant is less than i. In essence, this stratification bi-
ases the iterative refinement loop to find predicates involving “small constants”. Jhala
and McMillan [2006] shows how to structure decision procedures to force them to pro-
duce interpolants from a restricted language. Rybalchenko and Sofronie-Stokkermans
[2007] shows a more general technique for computing interpolants that satisfy different
kinds of conditions, such as interpolants in which specific variables, even if shared, do
not occur.

In the example of Figure 9, the restricted interpolation method directly finds the
predicates x = y and x ≥ 0 which belong inL0, the language of predicates with constants
less than 0. This simple restriction goes a long way towards making CEGAR complete.

Syntactic techniques can be shown complete also for certain classes of systems, for ex-
ample, timed systems and other systems with a finite bisimulation quotient [Henzinger
et al. 2002], and broadcast protocols and other well-structured systems [Dimitrova and
Podelski 2008].

Refining Multiple Paths. Several augmentations to the above refinement scheme have
been suggested. First, instead of refining one path at a time, the procedure can be called
with a set of abstract counterexamples which are refined together while optimizing the
set of inferred predicates [Chaki et al. 2003]. In Beyer et al. [2007b], counterexample
analysis is performed on a path program, the least syntactically valid subprogram con-
taining the counterexample. A path program represents a (possibly infinite) family of
possible counterexamples. The goal of refining path programs (through path invari-
ants) is to find suitable program invariants that simultaneously rule out the entire
family. Unfortunately, since a path program can contain loops, the simple partitioning
and interpolation technique from above is not immediately applicable. In Beyer et al.
[2007b], counterexample refinement is performed by inferring path invariants using
constraint-based invariant synthesis.

Refining Other Domains. While we have focused on refining predicate abstractions
by adding new predicates, the idea of counterexample refinement can be used for other
abstract domains. For example, Jhala and McMillan [2005] shows how symmetric inter-
polation can be used to refine (propositional) transition relations in a counterexample
guided manner, Gulavani et al. [2008] shows how a polyhedral domain can be refined
using counterexample analysis. For control abstractions in thread-modular reasoning,
Henzinger et al. [2004] show how environment assumptions for concurrent programs
can be automatically constructed and refined.

Refinement techniques have been generalized to domains beyond hardware and soft-
ware, for example, in the verification of real-time and hybrid systems [Alur et al. 2006;
Jha et al. 2007].

5.2. Abstraction-Refinement-Based Model Checkers

Slam. The SLAM model checker [Ball and Rajamani 2002b] was the first implementa-
tion of CEGAR for C programs. It introduced Boolean programs—imperative programs

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:29

where each variable is Boolean—as an intermediate language to represent program ab-
stractions. A tool (called c2bp) implemented predicate abstraction for C programs [Ball
et al. 2001]. The input to c2bp is a C program and a set of predicates, and the output is
a Boolean program, where each Boolean variable corresponds to a predicate, and the
assignments and conditionals on the variables correspond to the Cartesian predicate
abstraction of the C program. A tool called BEBOP then implemented a symbolic model
checker for (recursive) Boolean programs [Ball and Rajamani 2000a]. Finally, abstrac-
tion refinement was performed by newton, which implemented a greedy heuristic to
infer new predicates from the trace formula. SLAM was used successfully within Mi-
crosoft for device driver verification [Ball et al. 2006] and developed into a commercial
product (Static Driver Verifier, SDV).

The SLAM project introduced several key ideas in software model checking, including
the generalization of predicate abstraction in the presence of pointers and dynamically
allocated memory [Ball et al. 2001], modular predicate abstraction [Ball et al. 2005],
and BDD-based model checking in the presence of procedure calls [Ball and Rajamani
2000a]. SLAM inspired a resurgence of interest in the verification of software implemen-
tations and a suite of tools geared to program verification.

Blast. The BLAST model checker [Beyer et al. 2007c] implements an optimization
of CEGAR called lazy abstraction. The core idea of BLAST is the observation that the
computationally intensive steps of abstraction and refinement can be optimized by a
tighter integration which would enable the reuse of work performed in one iteration in
subsequent iterations. Lazy abstraction [Henzinger et al. 2002] tightly couples abstrac-
tion and refinement by constructing the abstract model on-the-fly, and locally refining
the model on-demand. The former eliminates an often wasteful and expensive model-
construction phase and instead, performs abstraction on the reachable part of the state
space. This is achieved by lazily building an abstract reachability tree whose nodes are
labeled by abstract regions. The regions at different nodes of the tree, and hence, at
different parts of the state space, can be over different sets of predicates. To locally
refine the search when a counterexample is found, BLAST finds the “pivot” node from
which the remainder of the counterexample is infeasible and rebuilds the subtree from
the pivot node onwards. This ensures that parts of the state-space known to be free of
errors, namely different subtrees, are not re-analyzed. Further, this permits the use
of different predicates at different program points which drastically reduces the size
of the abstract state space that must be analyzed. Upon termination with the outcome
“program correct,” the proof is not an abstract model on a global set of predicates,
but an abstract model whose predicates change from state to state. Thus, by always
maintaining the minimal necessary information to validate or invalidate the property,
lazy abstraction scales to large systems without sacrificing precision. BLAST combines
lazy abstraction with procedure summaries [Sharir and Pnueli 1981; Reps et al. 1995]
and scoped interpolation [Henzinger et al. 2004] to model check recursive programs.
Finally, BLAST can be extended with arbitrary lattices [Fischer et al. 2005], thus yield-
ing a general mechanism for refining any dataflow analysis with iterative predicate
abstraction.

Magic. The MAGIC model checker was designed to enable the modular verification of
concurrent, message passing C programs. MAGIC allows the user to specify arbitrary
nondeterministic labeled transition systems (LTS) as specifications, and verifies that
the set of traces (over messages and events) generated by a concurrent C program is con-
tained in the language generated by the LTS. MAGIC implements a two-level abstraction
strategy to combat the state explosion that arises from the product of multiple threads.
First, an (eager) predicate abstraction is carried out for each individual thread, yield-
ing a finite state machine representing the thread’s behavior. Second, an action-guided

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:30 R. Jhala and R. Majumdar

abstraction is carried out to minimize each thread’s state machine while preserving
the sequences of messages and events generated by the state machine. Finally, the
product of the reduced state machines is computed and model checked. The entire pro-
cedure is wrapped inside a CEGAR loop, that uses spurious counterexamples to infer
new predicates which yield refined (reduced) state machines. Finally, MAGIC also im-
plements several methods to minimize the number of predicates, by finding predicates
that simultaneously refute multiple paths [Chaki et al. 2003].

F-Soft. The F-SOFT model checker [Ivancic et al. 2005] combines CEGAR-based
predicate abstraction refinement with several other abstract domains that efficiently
yield the kinds of invariants needed to check standard runtime errors in C programs
(e.g., buffer overflows, null dereferences). For these errors, a CEGAR based predicate
abstraction can eventually find the right domain, but a multi-stage framework that
eagerly combines numerical domains with CEGAR can be much more efficient. The
numerical domains can altogether eliminate some easy checks, or yield invariants that
help the subsequent iterative analysis converge more quickly [Jain et al. 2006]. To
this end F-SOFT implements symbolic model checking algorithms that combine BDDs
and polyhedra [Yang et al. 2006], and techniques that combine widening with iterative
refinement [Wang et al. 2007].

Other Tools. The IMPACT model checker [McMillan 2006] implements an algorithm
that entirely eliminates all abstract (post) image computations. Instead IMPACT builds an
abstract reachability tree by directly using the sequence of interpolants generated from
the trace formulas to strengthen the regions labeling the nodes of the tree. This process
is repeated using the lazy abstraction paradigm until the program is proved safe, or a
counterexample is found. McMillan [2006] shows that by directly using interpolation
within the lazy abstraction framework, one can achieve very dramatic improvements
in performance.

The ARMC model checker [Podelski and Rybalchenko 2007] implements the CEGAR
scheme using a constraint-based logic programming language, resulting in an elegant
implementation. The solver can generate interpolants for linear arithmetic constraints
in combination with free function symbols [Beyer et al. 2007a]. The full-fledged linear
arithmetic constraint solver implemented in the constraint-based logic programming
language allows ARMC to handle programs with intensive operations on numerical
data, which is needed, for example, for checking real-time bounds for embedded sys-
tems [Meyer et al. 2006].

6. PROCEDURAL ABSTRACTION

So far, we have considered programs without procedures. We now extend the class
of simple programs imp to the class imp+proc of programs with potentially recursive
procedure calls.

6.1. Programs with Procedures

A procedural imperative program P is a tuple (F, f0) where F is a finite set of procedures,
and f0 is a special initial procedure in F from which execution begins. A procedure f
is a simple imperative program (�f, X f, �f0, T f). Each procedure f has a unique input
parameter xf

0 in X f. The states of a procedure f are the elements of v.X f. The set of
transitions comprises:

—Intra- procedural transitions of the form (�, Intra ρ , �′),

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:31

—Call transitions of the form (�, Call x := f(e), �′), and,
—Return transitions of the form (�, Ret return e, �′).

For each kind of transition, the source and target locations (i.e., � and �′ respectively),
belong to the same procedure. For simplicity, we make two assumptions. First, the
sets of variables of each procedure are distinct—that is, each procedure has its own
local variables and there are no global variables. Second, the formal parameters of
each procedure are not modified by the transitions of the procedure. We write � to
abbreviate ∪f�

f, X to abbreviate ∪f�
f, T to abbreviate ∪fT f.

6.2. InterProcedural Reachability

Even if all the variables X range over finite domains, the state space of a procedural
program is infinite, as the stack can grow unboundedly due to recursive calls. As a re-
sult, we cannot use direct graph reachability (as in Algorithm EnumerativeReachability)
to verify safety properties of programs with procedures. The key to analyzing procedu-
ral programs lies in designing an algorithm that uses the following two observations
that avoid the need for tracking the control stack explicitly at each state. First, the
behaviors of the entire program can be reconstituted from the input-output behav-
iors of the individual procedures. Second, even though the number of configurations
of the whole program are infinite, each procedure has a finite number of input-output
behaviors.

To use these observations, we extend the standard reachability procedure with a form
of memoization thus equipping it to compute input-output summaries for each proce-
dure. If all the program variables have a finite domain, then the size of the summaries—
which are simply sets of pairs of input parameter values and output expression values—
is finite. Consequently, the extended procedure can compute the summaries as a least
fixpoint in finite time, thereby yielding an algorithm for model checking programs with
procedures. Thus, to compute summaries, we extend the reachability procedure from
from Figure 2 with the following data structures.

(1) An input state for a procedure f is a valuation where all the variables except the
formal parameter xf0 are set to 0. The input of a state s ∈ v.X f, written Init(s), is the
input state for f where the formal xf0 has the value s(xf0). As the formal parameters
xf0 of each procedure remain unmodified, each state has encoded within it the input
with which the corresponding procedure was called.

(2) The callers of an input state s of f, written Callers[s], correspond to tuples
(sc, Call opc, �′

c) such that there is a reachable configuration (�c, sc) and a call transi-
tion (�c, opc, �′

c) that, when executed from state sc, yields the input state s for f.
(3) The exits of an input state s of f, written Exits[s], correspond to pairs (se, ope) such

that from the input configuration (�f0, s) some configuration (�, se) is reachable, and
there is a return transition (�, return e, ·) in f.

Intuitively, the callers and exits allow us to build a memoized version of the enumer-
ative reachability algorithm. Whenever a call transition is reached, the known exits for
the corresponding input state are propagated at the caller. Whenever a return transition
is reached, the return value is propagated to all the known callers of the corresponding
input state.

This intuition is formalized in Figure 11 which shows the interprocedural reach-
ability algorithm that extends Algorithm EnumerativeReachability to handle proce-
dure calls and returns. InterProceduralReachability is a worklist-based algorithm that

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:32 R. Jhala and R. Majumdar

Fig. 11. Interprocedural Enumerative Reachability.

simultaneously computes the reachable input states for each procedure, the callers of
each input state and the exits of each input state. For each procedure, the least fixpoint
set of input states corresponds to all the (finitely many) reachable inputs of the proce-
dure, and the respective callers and exits correspond to the possible calling states and
return values for that input state.

The algorithm maintains a worklist of configurations, namely pairs of locations and
states. At each iteration, a configuration is picked off the worklist. If the configuration
has previously been reached, the algorithm moves to the next worklist element. If the
configuration is new, its successors are added to the worklist as follows.

—For each enabled intraprocedural transition for the configuration, the succes-
sors are computed using Post , and added to the worklist, similar to Algorithm
EnumerativeReachability.

—For each enabled call transition of the form x := f(e) the algorithm: (1) computes
the input state for the call, by calling post with the transition that assigns the formal
xf0 the actual parameter e, (2) adds the calling state to the set of known callers for the
input state, and (3) propagates each known exit for the input state to the caller, by

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:33

adding to the worklist the successors corresponding to assigning the return values
at the exit to x.

—For each enabled return transition of the form return e the algorithm: (1) computes
the input state for the exit state from which the return occurs, (2) adds the exit state
to the set of known exits for the input state, and (3) propagates the return value at
the exit state to each of the known callers of the input state.

We can prove that this algorithm computes all the reachable configurations by in-
duction on the length of the shortest trace leading to the configuration. We can prove
that the algorithm terminates by appealing to the fact that the sets being populated,
namely the reach set, callers and exits are all finite.

Graph-Based Algorithms. Algorithm InterProceduralReachability is a reformulation
of the classical tabulation-based approach to interprocedural dataflow analysis pre-
sented in Sharir and Pnueli [1981]. Reps et al. [1995] showed how the technique could
be phrased as a special graph-reachability algorithm, leading to an algorithm with
running time cubic in the number of reachable configurations. By using bitvectors to
represent sets of configurations and bitvector operations to manipulate the sets, one
can obtain a subcubic running time [Chaudhuri 2008]. The idea of performing reacha-
bility on a graph while ensuring the path defines a word in a context free language has
also been used in the context of Datalog query evaluation [Yannakakis 1990], and the
approach ultimately uses a dynamic programming algorithm for parsing context free
languages.

Symbolic Algorithms. As in the case of (simple) explicit state model checking, the
above enumerative algorithms run in time that is polynomial in the number of reachable
configurations. However, assuming that each variable can take on at least two values,
the number of reachable configurations is exponential in the number of local variables
of each procedure, and hence, exponential in the size of the program’s representation.
However, the technique of summarization can be used to lift symbolic algorithms, which
work with compact representations of sets of states, to the interprocedural setting. For
example, to obtain a symbolic version of InterProceduralReachability, we need only to:

(1) view each s as a set of states,
(2) view the membership in the reach set as inclusion in the reach set,
(3) view each Post operation as a symbolic operation, as in Section 3.

Ball and Rajamani [2000a] describes BEBOP, the first BDD-based interprocedural safety
model checker that takes as input a Boolean program, that is a procedural program
where each variable is Boolean valued, and a distinguished error location and deter-
mines whether the error location is reachable in the Boolean program. In particular,
this article shows how procedure summaries can be symbolically implemented using
BDDs and show how to efficiently generate counterexample traces from the runs of the
checker. Finally, weighted pushdown systems [Reps et al. 2005] are a general analysis
framework that encompasses interprocedural reachability of Boolean programs as well
as a rich class of dataflow analysis problems.

An alternate class of algorithms for the analysis of procedural programs comes from
the symbolic analysis of pushdown processes [Bouajjani et al. 1994; Walukiewicz 1996].
These algorithms use the language-theoretic observation that the set of stack configu-
rations reachable at any location of a pushdown automaton is a regular language, and
use symbolic representations based on automata to represent sets of stacks.

Abstraction. So far, we have considered programs where the variables take on
finitely many values. We can use abstraction to extend the finite-state approach to

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:34 R. Jhala and R. Majumdar

programs with variables over infinite domains. As for programs in imp, there are two
approaches. The first is to eagerly abstract the program into a finite state procedural
program that overapproximates the behaviors of the original program. This method
was popularized by the SLAM model checker. The second is to lazily carry out the ab-
straction during the model checking. For example, to obtain an abstract version of
InterProceduralReachability, we need only to:

(1) view each s as an abstract set of states,
(2) view the membership in the reach set as inclusion in the abstract reach set,

(3) view each Post operation as an overapproximate Post# operation, as in Section 4.

This approach is adopted by BLAST, which uses predicate abstraction to lazily build
abstract summaries.

In either case, to ensure soundness, the abstract states constructed when analyzing
a procedure f must describe valuations of only those variables that are in scope inside
procedure f. For example, when predicate abstraction is used eagerly or lazily, to model
check procedural programs, we must ensure that all the predicates used to abstract
procedure f are well-scoped, that is, contain variables that are in-scope at f.

The efficiency of the model checking is greatly enhanced by using abstractions that
yield summaries that can be applied at multiple callsites, instead of individual sum-
maries that can only be applied at specific call-sites. For example, it is typically more
efficient to use relational abstractions [Cousot and Cousot 1979] that can describe the
outputs in terms of the inputs, instead of pairs of input-output states, where each pair
corresponds to a different callsite. For example, a relational summary that specifies
that the output of a procedure is one greater than the input, is more compact and
reusable than a tabulational summary that specifies that if the input is 0 (respectively,
1, 2), the output is 1 (respectively, 2, 3).

Ball et al. [2005] shows how relational summaries can be computed by us-
ing predicate abstraction over predicates containing symbolic constants, which are
immutable values representing the input parameters of different functions. Algo-
rithm InterProceduralReachability exploits this idea by requiring that the formals remain
unmodified. As a result each concrete output state (e.g., [xf0 �→ 0, ret �→ 1]) implicitly
encodes the input state that generated it, and hence a relational abstraction of the
output state (e.g., ret = xf0 + 1) describes an input-output behavior of the function.
Henzinger et al. [2004] shows how Craig Interpolation can be used to address the prob-
lem of automatically discovering well-scoped predicates with symbolic constants that
are relevant to verifying a given safety property.

Top-Down vs. Bottom-Up. The algorithm described above computes the set of reach-
able inputs for each procedure in a top-down manner, that is, using the callsites. Another
approach is to aggressively compute the most general behavior for each procedure, by
seeding the worklist with all the possible input states for each procedure. This bottom-
up approach suffers from the disadvantage of computing possibly useless information.
On the other hand, it enjoys several engineering advantages. A procedure call graph
has vertices corresponding to procedures and which has directed edges from f1 to f2 if
there is a call transition in f1 to procedure f2. Suppose that there is no recursion, and
so the procedure call graph is acyclic. In this setting, the bottom-up approach yields
two benefits. First, we can analyze each procedure in isolation, processing the leaf pro-
cedures of the call-graph first and moving up the graph. This can drastically lower the
memory needed to analyze large programs. Second, as procedures can be analyzed in
isolation, we can parallelize the analysis as we can concurrently analyze two procedures
each of whose callees has been previously analyzed. Bottom-up analyses typically use

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:35

relational abstractions, as when analyzing a procedure f, no information is available
about the states from which f can be called.

Saturn is a bottom-up interprocedural model checker that exploits the engineering
advantages outlined above to scale to the entire Linux kernel [Xie and Aiken 2005].
SATURN computes input-output summaries over a fixed set of predicates as follows. Each
input or output configuration is a conjunction of the predicates. SATURN unfolds the
transition relation for the body of the procedure (plugging in the summaries for called
procedures), and then uses SAT-based Bounded Model Checking to determine which
input-output configurations are feasible. The summary computed for the procedure is
the disjunction of all the satisfiable configurations.

Houdini embodies a dual approach for inferring pre- and post-conditions for proce-
dures [Flanagan et al. 2001]. Intuitively, the input-output behavior of each procedure
can be summarized by the pair of the conjunction of all precondition clauses, and, the
conjunction of all postcondition clauses. HOUDINI generates pre- and post-conditions
from a candidate set of predicates as follows. It begins with summaries corresponding
to the conjunction of all predicates, and then uses SMT-based Bounded Model Checking
(ESC/JAVA [Flanagan et al. 2002]) to iteratively drop the precondition (respectively, post-
condition) predicates that do not provably hold at some call (respectively, exit) location.
It can be shown that the above converges to a least fixpoint, where each summary’s pre-
condition (respectively, postcondition) captures the strongest overapproximation of the
input states (respectively, exit states) for the procedure, expressible as a conjunction of
the candidate predicates.

6.3. Concurrency and Recursion

For concurrent programs where each sequential thread belongs to the class imp+proc,
the reachability problem is undecidable when synchronizations between threads is
taken into account [Ramalingam 2000]. The intuition behind this result is that the ex-
ecutions of procedural programs are isomorphic to context-free languages (CFL) over
the alphabet of local (e.g., call) and synchronization (e.g., lock or rendezvous) actions.
Thus, a configuration (c1, c2) of a concurrent program with two threads can be reached
iff the intersection L1 ∩ L2 of two context free languages over the alphabet of synchro-
nization actions is non-empty. Formally, for any two context free languages L1 and L2,
one can build a program P1| |P2 synchronizing over the common alphabet of L1 and L2
and a configuration (c1, c2) of P1| |P2 such that the configuration (c1, c2) is reachable iff
L1 ∩ L2 is non-empty. As the emptiness of CFL intersection is undecidable, it follows
that the reachability problem for concurrent procedural programs is undecidable.

Several authors have proposed techniques to over-approximate the set of reachable
configurations. These techniques relax the synchronization sequences possible in the
original program, for example, by ignoring the ordering of synchronization operations
[Bouajjani et al. 2003], or by approximating the context free language by a regular one
[Chaki et al. 2006]. Alternatively, one use the notion of transactions, that is, sequences
of actions of a thread that execute atomically with respect to other threads, to design a
sound but incomplete summarization-based model checking algorithm for concurrent
procedural programs [Qadeer et al. 2004]. In special cases, such as concurrent threads
synchronizing solely using nested locks, the reachability problem is, somewhat surpris-
ingly, decidable [Kahlon and Gupta 2007]. The above paper also gives model checking
algorithms for various subclasses of concurrent recursive programs (modeled as in-
teracting pushdown automata) with respect to specifications in fragments of temporal
logic.

The reachability problem for concurrent procedural programs becomes decidable if
one bounds the number of allowed context switches, that is, the number points along

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:36 R. Jhala and R. Majumdar

a computation where control passes from one thread to another [Qadeer and Rehof
2005]. Recently, symbolic implementations have been suggested for context bounded
reachability [Suwimonteerabuth et al. 2008]. Furthermore, [Lal et al. 2008] shows that
the machinery of weighted pushdown systems can be used to generalize the context-
bounding approach to a large class of flow-analyses for concurrent programs. Note that
by bounding the number of context switches corresponds to an underapproximation
of the reachable states; in particular, such an analysis can miss unsafe computations
that require more than the given number of context switches to reach the error state.
However, in practice, context bounding provides a useful underapproximation to reach-
ability. Empirical results suggest that a low value of the context bound suffices to
discover subtle bugs [Qadeer and Wu 2004; Musuvathi and Qadeer 2007].

7. HEAP DATA STRUCTURES

So far, we have assumed a simple program model where we have ignored the ef-
fect of potentially unbounded data structures on the heap. These, however, represent
one of the biggest challenges to scalable and precise software verification. The difficulty
of automatically reasoning about data structures stems from the need to reason about
relationships between the unbounded number of values comprising the structure. Thus,
the verification tool requires some way to generalize relationships over specific values
into quantified facts that hold over the structure, and dually, to instantiate quantified
facts to obtain relationships over particular values.

The class of imp+heap extends the class of imp by having a global and unbounded
memory array, and operations read and write to read the memory at an index or to write
a value (which could be another index) to an index. The reads and writes on the array
are governed by McCarthy’s axioms:

read(write(memory, index, value), index′) = read(memory, index′)

if index �= index′ and

read(write(memory, index, value), index′) = value

if index = index′. The presence of the heap complicates analysis, since two syntactically
distinct expressions e1 and e2 could refer to the same memory location, and hence
updating the memory by writing to location e1 require updating information about the
contents of the syntactically different location e2.

We now briefly discuss some of the approaches that have been proposed. Our coverage
of this topic is deliberately brief as the literature on shape analysis merits its own
survey, and as the scalable verification of heap-based data structures is perhaps the
least understood direction in software model checking.

Alias Analysis determines whether two pointers refer to the same heap cell [Muchnick
1997]. There is a wide variety of alias analyses that span the precision-scalability spec-
trum [Andersen 1994; Steensgard 1996; Hind 2001; Whaley and Lam 2004; Hardekopf
and Lin 2007]. Software model checkers like SLAM, BLAST, and F-SOFT use a precom-
puted alias analysis to determine whether an assignment ∗x := e can affect the value
of ∗y. The SATURN verifier uses a combination of predicate abstraction, bounded model
checking and procedure summarization to computes a precise path- and context- sen-
sitive pointer analysis [Hackett and Aiken 2006] at the same time as the rest of the
analysis. However, alias analysis is only useful for reasoning about explicitly named
heap cells, but not unbounded data structures. The common assumption in alias anal-
yses is to abstract every memory cell allocated dynamically from the same program

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:37

location into one abstract cell. This means, for example, that subsequent algorithms
that depend on the alias analysis cannot distinguish between different cells of a data
structure (e.g., a linked list) whose cells are allocated from a single program point. This
leads to imprecision.

Shape Analysis attempts to characterize collections of heap cells reachable from par-
ticular pointers, for example, to determine whether the cells form a list or a tree and
so on [Chase et al. 1990; Ghiya and Hendren 1996], by allowing finer distinctions be-
tween heap cells. Early shape analyses used dataflow analyses over specialized lattices
designed to capture properties of particular structures (e.g., to check whether the heap
was organized as a tree or as a cycle). Sagiv et al. [2002] show how three-valued logic
could be used as a foundation for a parameterized framework for designing shape anal-
yses. The framework is instantiated by supplying predicates that capture different re-
lationships between cells (e.g., that one cell points to another, one cell is reachable from
another), and by supplying the functions that determine how the predicates are updated
by particular assignments. The tool TVLA [Lev-Ami and Sagiv 2000] implements these
ideas and has been used to verify non-trivial data structure properties. Similar ideas
were used to build a model checker capable of verifying concurrent, heap-manipulating
programs [Yahav 2001]. The three-valued predicates used in shape analysis can be com-
bined with a numerical domain to verify properties of array manipulating programs
[Gopan et al. 2005].

Separation Logic was designed to enable modular reasoning about heap-
manipulating programs [Reynolds 2002]. Separation logic extends classical Hoare logic
[Hoare 1969] with two operators; separating conjunction (written as ∗) and separating
implication (written as −∗), which are used to construct assertions over disjoint parts
of the heap. For example, an assertion of the form A∗B says that there is one set of heap
cells that satisfy A and a disjoint set of cells that satisfy B. The key advantage of this
logic is that it allows one to succinctly specify which parts of the heap are touched by a
given piece of code, and allows one to compose properties of sub-heaps to get properties
of the entire heap. While the logic was originally designed as a calculus for manually
verifying low-level pointer manipulating programs, it has subsequently become the ba-
sis for several abstract interpretation based verifiers. To do so, the analysis designer
specifies: (1) recursively defined predicates over the separating operators that repre-
sent shape properties, and, (2) a mechanism to generalize (i.e., fold) and instantiate
(i.e., unfold) such predicates [Distefano et al. 2006; Magill et al. 2007; Yang et al. 2008].
A variant of this approach is to extract the abstract domain from programmer-specified
(recursive) checker definitions [Chang and Rival 2008], and shows how the resulting
shape domain can be combined with other abstractions to synthesize richer invariants
like sortedness.

Reachability Predicates and logics built around them [Nelson 1983] provide another
way to reason about heaps. The challenge is to design a decidable logic that is ex-
pressive enough to capture interesting invariants. Often such logics use a transitive
closure operator to express reachability predicates [Immerman et al. 2004]. Among
the most expressive of such logics is weak monadic second-order logic (MSOL). MSOL
can express transitive closure and is decidable over trees [Doner 1965]. The PALE

tool is built on top of MSOL and enables reasoning about tree-like data structures
[MØller and Schwartzbach 2001]. Similarly, the HAVOC tool uses an expressive and
decidable logic for reasoning about reachability in lists [Lahiri and Qadeer 2008].
Both of these tools give completeness guarantees but require the user to provide loop
invariants.

Quantified Loop Invariants are often required to prove properties of unbounded data
structures. Techniques for automatically inferring quantified loop invariants are suit-
able for shape analysis if the underlying logics supports reasoning about reachability

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:38 R. Jhala and R. Majumdar

predicates. Indexed predicate abstraction [Lahiri and Bryant 2004] and Boolean heaps
[Podelski and Wies 2005] generalize the predicate abstraction domain such that it en-
ables the inference of universally quantified invariants. In particular, Boolean heaps
have been used to infer quantified invariants for linked lists and trees. These methods
consider predicates that range over heap cells similar to the predicates used in three-
valued shape analysis. Gulwani et al. [2008] show how to combine different abstract
domains to obtain universally quantified domains that can capture properties of linked
lists. Craig interpolation has also been used to find universally quantified invariants
for linked lists [McMillan 2008].

8. LIVENESS AND TERMINATION

Next, we turn from safety properties that specify that nothing bad happens, to liveness
properties that state, informally, that something good eventually happens.

8.1. Finite State

For finite state programs, and liveness properties specified in a temporal logic such as
LTL [Pnueli 1977], there is an automata-theoretic algorithm to check if the program
satisfies the temporal logic property [Vardi and Wolper 1986]. Briefly, the algorithm
constructs a Büchi automaton from the negation of the LTL property, and checks that
the intersection of language of program behaviors and the language of the Büchi au-
tomaton is empty [Vardi and Wolper 1986; Vardi 1995]. Emptiness of the intersection
can be checked by performing a nested depth-first search, looking for accepting cycles
in the automaton [Courcoubetis et al. 1992]. This algorithm is implemented in the Spin
model checker. A symbolic version of checking Büchi automaton emptiness was given
in Emerson and Lei [1986], and is implemented in SMV using BDD operations.

To verify arbitrary LTL properties of procedural programs, we need to track the
contents of the control stack. Bouajjani et al. [1994] shows how to precisely model
check linear and branching time properties of pushdown systems by using automata
to symbolically represent sets of stack configurations. Esparza and Schwoon [2001]
describes MOPED, which combines BDD-based symbolic representation for data, that is,
program variables, with automata-based representation for stacks, in order to obtain
an LTL model checking algorithm for Boolean programs.

8.2. Infinite State

We now move to checking liveness properties for infinite state systems. We focus on
program termination, a particular liveness property that stipulates that a program has
no infinite computations. Formally, P is terminating if every computation 〈�0, s0〉 →
· · · 〈�k , sk〉 reaches some state 〈�k , sk〉, which has no successor.

For many systems, termination can be proved only under certain assumptions about
the nondeterministic choices made during program execution. The programmer often
models certain aspects of the system through non-deterministic choice, with an implicit
assumption that such choices are resolved in a “fair” manner. For example, one can
model a scheduler as non-deterministically providing a resource to one or other process,
with the assumption that both processes are picked infinitely often. Similarly, one can
model asynchrony by modeling non-deterministic “stutter” steps, together with the
assumption that the process makes progress infinitely often. The standard way to rule
out certain undesirable infinite behaviors from the scope of verification is through
fairness conditions [Francez 1986]. Typically, a fairness condition can be translated to
an automaton on infinite words [Vardi 1995]. Fair termination is the property that a
program terminates on all runs that satisfy the fairness requirements.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:39

Just as safety properties can be reduced to reachability problems, liveness properties
can be reduced to checking termination under fairness requirements [Vardi 1991]. The
techniques for proving termination generalize to fair termination by taking a product
of the program with an automaton on infinite words modeling the fairness condition,
and checking for well-foundedness only for final states of the automaton. For this rea-
son, we shall concentrate in the rest of the section on techniques to prove program
termination.

Proofs for program termination ultimately rely on well-foundedness and ranking
functions. A relation R ⊆ A× A is well-founded if there is no infinite sequence a0, a1, . . .
such that for each i ≥ 0 we have ai Rai+1. For example, the usual < relation on the
natural numbers is well-founded, but the < relation on the integers is not. Let A be a
set and R ⊆ A × A a well-founded relation on A. A ranking function r is a mapping
that associates a rank from A with each program states, such that for any state s and
any successor s′ of s, we have R(r(s), r(s′)). A program terminates if there is a ranking
function from the reachable program states to some set A and well-founded relation R
on A [Lehmann et al. 1982]. Intuitively, a program terminates if each reachable state
of the program is associated with a rank, the rank decreases with every transition, and
there is no infinitely decreasing sequence of ranks. It is crucial to restrict attention
to the reachable states: the transition relation of a terminating program may not by
itself be well-founded, for example due to the presence of unreachable non-terminating
loops.

In general, checking program termination is undecidable, and so there is no algorith-
mic technique to compute ranking function. For certain specialized classes of programs
ranking functions can be found algorithmically [Colón and Sipma 2001, 2002; Tiwari
2004; Podelski and Rybalchenko 2004a; Bradley et al. 2005], leading to an algorithmic
technique to prove termination for these classes.

Furthermore, we cannot compute and reason about the exact set of reachable tran-
sitions of an infinite-state program. Modern termination checking tools reduce termi-
nation verification to checking the well-foundedness of a transition invariant, which
is an overapproximation of the transitive closure of the transition relation restricted
to the reachable states. By explicitly adding program variables to store “previous” val-
ues of the program variables, one can reason about transitions in the original program
through invariants in the expanded program. Consequently, invariant generation tech-
nology developed for safety verification carries over directly to proving termination.

In general, it can be hard to find a suitable single ranking function. In these cases, it is
preferable to compose a termination argument out of simpler termination arguments.
One way to do this is through an idea from Podelski and Rybalchenko [2004b]—the
notion of disjunctive well-foundedness. A relation T is disjunctively well-founded if it
is a finite union T = T1 ∪ . . .∪ Tk of well-founded relations. Every well-founded relation
is (trivially) disjunctively well-founded, but not conversely. However, the paper shows
that a relation R is well-founded if the transitive closure R+ of R is contained in
some disjunctively well-founded relation T . The relation T can be found as the union
of transition invariants computed for parts of the program. In addition, techniques
based on transition invariants can be applied to directly reason about fairness [Pnueli
et al. 2005]. These observations from the basis of ARMC and TERMINATOR, which prove
termination for C programs [Cook et al. 2006].

8.3. Nontermination

In theory, every terminating program has a transition relation whose well-foundedness
is witnessed by some rank function. However, in practice, this rank function may not be
easy to find, and the inability to find a proof of termination (i.e., a transition invariant

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:40 R. Jhala and R. Majumdar

and a well-founded ranking) does not immediately signify that the program has an
infinite execution. Thus, for programs for which we cannot prove termination, we re-
quire specialized methods that can prove nontermination and hence, prove that there
is a genuine “counterexample” that refutes the liveness property. Nontermination has
received relatively lesser attention in program verification. One way is through finding
recurrence sets [Gupta et al. 2008; Velroyen and Rümmer 2008]. A set of states R is
recurrent if for every state s ∈ R, there is some successor s′ of s such that s′ ∈ R. It can
be shown that a transition relation is not well-founded iff there is some recurrent set,
and a program is non-terminating if one can find a recurrent set R which intersects
the set of reachable states.

9. MODEL CHECKING AND SOFTWARE QUALITY

In the preceding sections, we have traced the main developments in software model
checking. We now indicate some recent interactions and synergies between model check-
ing and allied fields.

9.1. Model Checking and Testing

Testing involves running software on a set of inputs. Testing is the primary technique to
ensure software quality in the software industry. Sometimes the term dynamic analysis
is used for testing, denoting that the program is actually executed and its outputs
observed, as opposed to static analysis in which a mathematical model of the system
is analyzed (e.g., in abstraction-based model checking). Like most classifications, the
boundaries are somewhat blurred, and some tools mix dynamic and static analysis.
For example, Spin allows users to write arbitrary C code for part of the model that is
executed during the model checking search.

Systematic Exploration. Each of the execution-based model checkers described in
Section 2.4 can be viewed as a testing tool that systematically explores the space of
behaviors. For a large software system, the possible number of behaviors is so large
that exhaustive testing is unlikely to finish within the software development budget.
Thus, the goal of systematic testing is to explore a subset of program behaviors that
are “most likely” to uncover problems in the code, and a model checker can be used in
“bug-finding” mode in which it searches as many behaviors as allowed within system
resources. Indeed, typically these tools work by “amplifying” the effectiveness of a given
test suite for the program being verified. They run the program using workloads drawn
from the test suite, but they systematically explore the effects of different scheduling
choices, failures etc. In this setting, optimizations derived for model checking, such
as partial order reduction, are transferrable mutatis mutandis into optimizations of
the testing process to rule out tests “similar” (in a precise sense) to those already
run. Further, state space exploration tools can be configured to provide systematic
underapproximations to program behaviors by fixing parameters such as input domain,
search depth, or the number of context switches in concurrent code, and then checking
behaviors within this underapproximation exhaustively.

Test Generation by Symbolic Evaluation. Model checking can be combined with sym-
bolic execution, in order to generate test cases. For example, in Beyer et al. [2004] and
Xia et al. [2005] a software model checker is used to find program paths satisfying
certain coverage conditions (e.g., a path reaching a particular location, or taking a par-
ticular branch), and the symbolic constraints generated from the path are solved by a
constraint solver to produce test inputs. While the idea of using symbolic execution for
test case generation is old [Clarke 1976], the combination with model checking allows

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:41

search for test inputs satisfying particular coverage requirements to benefit from the
search strategy of the model checker over an abstracted state space.

More recently, combined concrete and symbolic execution (or concolic execution)
[Godefroid et al. 2005; Sen et al. 2005; Cadar et al. 2006] has been suggested as a
strategy to combine symbolic execution and testing. In this technique, first proposed in
Godefroid et al. [2005] and independently in Cadar et al. [2006], the program is run on
concrete inputs (chosen, e.g., at random) and while it is running, symbolic constraints
on the execution path (as a function of symbolic inputs) are generated (e.g., through
program instrumentation). By systematically negating symbolic constraints at condi-
tional branches, and solving these constraints using a decision procedure, one generates
a set of test inputs exploring every program path. The dynamic execution ensures that
(a) parts of the code which do not depend on symbolic inputs are not tracked symboli-
cally (this has been a major performance bottleneck of “pure” symbolic execution), and
(b) program semantics hard to capture statically, for example, dynamic memory alloca-
tion, can be tracked at run time. Additionally, run time values can be used to simplify
symbolic constraints (at the cost of missing certain executions). For example, consider
the program

x = input();
for (i = 0; i < 1000; i++) a[i] = 0;

Pure symbolic execution techniques would symbolically unroll the loop 1000 times, and
the resulting constraints would slow down a decision procedure. In contrast, dynamic
symbolic execution runs the loop concretely without generating additional symbolic
constraints.

In Gulavani et al. [2006] and Beckman et al. [2008], the two ideas of CEGAR-based
software model checking and dynamic symbolic execution have been combined to si-
multaneously search an abstract state space to produce a proof of correctness using
predicate abstraction and to search for a failing test case using dynamic symbolic execu-
tion on counterexamples returned by the model checker. If dynamic symbolic execution
finds the counterexample to be infeasible, usual counterexample analysis techniques
can be used to refine the abstraction. The algorithm combines the abilities of CEGAR,
to quickly explore abstract state spaces, and of dynamic symbolic execution, to quickly
explore particular program paths for feasibility.

9.2. Model Checking and Type Systems

Type systems are perhaps the most pervasive of all software verification techniques.
Historically, the goal of types has been to classify program entities with a view towards
ensuring that only well-defined operations are carried out at run-time. One can view
a simple type system, such as the type system of Java or ML, as a technique for com-
puting very coarse invariants over program variables and expressions. For example,
the fact that x has type int is essentially the invariant that in every reachable state
of the program, an integer value is held in x. Thus, type systems provide a scalable
technique for computing coarse-grained invariants. Typically, these invariants have
been “flow-insensitive” meaning they are facts that hold at every program point, and
hence, they cannot be used to verify richer temporal properties. However, several recent
approaches relax this restriction, and open the way to applying types to verify richer
safety properties.

Typestates. Strom and Yemini [1986] extend types with a finite set of states cor-
responding to the different stages of the value’s lifetime. For example, a file handle
type can be in two states: open if the handle refers to an open file, and, closed if the

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:42 R. Jhala and R. Majumdar

handle refers to a closed file. The types of primitive operations like open() or close()
are annotated with pre- and post-conditions describing the appropriate input and out-
put typestates, and a dataflow (or type-and-effect) analysis is used to determine the
typestates of different objects at different program points, and hence, verify temporal
properties like a file should not be read or written after it has been closed. Examples of
such analyses include type qualifiers [Foster et al. 2002] and typestate interpretations
[Fahndrich and DeLine 2004], which map from typestates to predicates over an object’s
fields, which can be exploited to verify object-oriented programs using inheritance. Each
of these algorithms can be viewed as model checking the program over a fixed abstrac-
tion generated by the product of the control-flow graph and the typestates [Chen and
Wagner 2002]. Consequently, the algorithms are more efficient than general purpose
software model checkers, but less precise as they as they ignore branches and other
path information. The tool ESP [Das et al. 2002] combined typestates with symbolic
execution, and showed that the resulting combination can provide significantly higher
precision (compared to path-insensitive typestate algorithms) but with high scalability
(compared to fully path sensitive model checkers).

Dependent Types. Martin-Löf [1984] provide a complementary approach for encoding
invariants inside the type system, by refining the types with predicates that describe
sets of values. For example, the refined type:

{ν :int | 0 ≤ ν ∧ ν < n} list

describes a list of integers, where each integer, represented by ν is greater than 0 and
less than the value of some program variable n. The NUPRL proof assistant [Constable
1986] introduced the idea of using subset typing with dependent typing in the the con-
text of intuitionistic type theory. The PVS proof assistant [Owre et al. 1996] takes this
idea further by applying it to the setting of classical higher-order logic. By separating
type- and proof- checking, PVS reduces the number of proof obligations that need to be
discharged. Further, PVS can also generate code for a fairly large executable fragment,
and is one of the first languages whose type system ensures that well-typed programs
can never crash (except by running out of resources). The above systems allow very rich
invariants to be encoded in the types but require the user to help discharge the sub-
typing obligations. In contrast, work on dependent ML [Xi and Pfenning 1999] shows
how to extend ML with a restricted form of dependent types over a (parameterized) con-
straint domain C. Type checking is shown to be decidable modulo the decidability of the
domain, thus allowing the programmer to specify and verify pre- and post-conditions
that can be expressed over C. It is still assumed that the dependent types (which cor-
respond to pre- and post-conditions and loop invariants in deductive verification) are
provided by the programmer. Work on Hoare type theory [Nanevski et al. 2008] makes
the connection between Hoare-style verification and types more explicit. The above
approaches require that programmers provide type annotations corresponding to pre-
and post- conditions for all functions. [Rondon et al. 2008] shows how the machinery of
software model checking (predicate abstraction to be precise) can be brought to bear on
the problem of inferring dependent type annotations, in much the same way as model
checking can be viewed as a mechanism for synthesizing invariants. As a result one
can combine the complementary strengths of model checking (local path- and value-
information) and type systems (higher-order functions, recursive data, polymorphism)
to verify properties that are well-beyond the abilities of either technique in isolation.
Large scale combinations of software model checking algorithms for safety verification,
which typically target imperative first-order programs, and dependent type systems,
which typically target higher-order functional programs, is an interesting, but under-
explored problem.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:43

Hybrid type checking [Flanagan 2006] provides a pragmatic compromise: one starts
with an expressive dependent type system and tries to prove as many assertions as
possible statically, inserting dynamic checks in the program for those assertions that
cannot be proved statically.

10. CONCLUSION

Software model checkers and related algorithmic verification tools hold the potential to
close the gap between the programmer’s intent and the actual code. However, the cur-
rent generation of software model checking tools work best only for control-dominated
protocol properties, and we are still far away from proving functional properties of com-
plex software systems, such as data invariants. There are many remaining problems,
both in scaling current techniques to large programs, and in devising algorithmic anal-
yses for modern software systems. For example, scaling verification techniques in the
presence of expressive heap abstractions and concurrent interactions remain outstand-
ing open problems.

Many modern programming language features, such as object-orientation and dy-
namic dispatch, abstract data types, higher-order control flow and continuations, etc.
are skirted in current algorithms and tools, and we would like to see verification tools
exploiting language-level features. Similarly, common practice in large-scale software
engineering, such as design patterns, the use of information hiding and layering, incre-
mental development with regression tests, and design and architectural information is
not exploited by current tools, but could be crucial in scaling tools to large scale soft-
ware projects. An associated problem is to integrate software model checking into the
general software engineering process. This leads to quite a few technical challenges,
for example, how to model the environment of a software module, how to represent
libraries and other third-party components for which code is not available, and how
to make the verification process incremental. Finally, many tools make simplifying as-
sumptions about the low-level machine semantics and data layout. While in principle,
one can model the exact machine-level semantics, it is not clear if this level of mod-
eling will preserve the scalability of tools. The problem of language-level semantics is
exacerbated by software written in multiple programming languages communicating
through inter-language APIs. Often, these APIs are brittle and a source of potential
bugs. However, analyzing multi-language software has to model the semantics of the
API precisely, and ensure that inter-language API calls do not break program invariants
on either side. Each of these directions would form excellent research topics.

Despite the shortcomings, we believe software model checking has made excellent
progress in the past decade by selecting winning combinations of ideas from many dis-
ciplines, and in several settings, verification techniques can complement or outperform
more traditional quality assurance processes based on testing and code inspection in
terms of cost and effectiveness.

On the whole, it is unlikely that just software model checking tools will turn soft-
ware development into a routine effort. Developing reliable software is too complex a
problem, and has social aspects in addition to technical ones. However, we believe that
the emergence of automatic tools and their use in the development process will help
amplify programmer productivity by checking for partial properties of code, leaving the
programmer more time to focus on more complex issues.

ACKNOWLEDGMENTS

We thank Jay Misra and Tony Hoare for encouraging us to write this survey and several useful comments
along the way. We thank Michael Emmi, Aarti Gupta, Roman Manevich, Andreas Podelski, Sriram Rajamani,

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:44 R. Jhala and R. Majumdar

Andrey Rybalchenko, Natarajan Shankar, Ashish Tiwari, and the anonymous reviewers for feedback on
earlier drafts.

REFERENCES

ABADI, M. AND LAMPORT, L. 1993. Composing specifications. ACM Trans. Prog. Lang. Syst. 15, 1, 73–132.
ABADI, M. AND LAMPORT, L. 1995. Conjoining specifications. ACM Trans. Prog. Lang. Syst. 17, 3, 507–534.
AGERWALA, T. AND MISRA, J. 1978. Assertion graphs for verifying and synthesizing programs. Tech. Rep. 83,

University of Texas, Austin, TX.
ALPERN, B. AND SCHNEIDER, F. 1987. Recognizing safety and liveness. Distributed Computing 3, 3, 117–126.
ALUR, R., DANG, T., AND IVANČIĆ, F. 2006. Counterexample-guided predicate abstraction of hybrid systems.

Theoret. Comput. Sci. 354, 2, 250–271.
ALUR, R. AND HENZINGER, T. 1999. Reactive modules. Form. Meth. Syst. Des. 15, 1, 7–48.
ALUR, R., HENZINGER, T., MANG, F., QADEER, S., RAJAMANI, S., AND TASIRAN, S. 1998. MOCHA: Modularity in

model checking. In CAV 98: Computer-Aided Verification. Lecture Notes in Computer Science, vol. 1427.
Springer-Verlag, Berlin, Germany, 521–525.

ALUR, R., ITAI, A., KURSHAN, R., AND YANNAKAKIS, M. 1995. Timing verification by successive approximation.
Inf. Comput. 118, 1, 142–157.

ANDERSEN, L. 1994. Program analysis and specialization for the c programming language. Ph.D. disserta-
tion. DIKU, University of Copenhagen, Copenhagen.

APT, K. AND OLDEROG, E.-R. 1991. Verification of Sequential and Concurrent Programs. Springer-Verlag,
Berlin, Germany.

ARMANDO, A., MANTOVANI, J., AND PLATANIA, L. 2006. Bounded model checking of software using SMT solvers
instead of SAT solvers. In Model Checking Software: SPIN Workshop. Lecture Notes in Computer Science,
vol. 3925. Springer-Verlag, Berlin, Germany, 146–162.

BABIC, D. AND HU, A. 2008. Calyso: scalable and precise extended static checking. In ICSE 08: Proceedings
of the International Conference on Software Engineering. ACM, 211–220.

BAGNARA, R., HILL, P. M., MAZZI, E., AND ZAFFANELLA, E. 2005. Widening operators for weakly-relational nu-
meric abstractions. In SAS 05: Proceedings of the Static Analysis Symposium. Lecture Notes in Computer
Science, vol. 3672. Springer-Verlag, New York, 3–18.

BAGNARA, R., HILL, P. M., AND ZAFFANELLA, E. 2008. The Parma Polyhedra Library: Toward a complete set of
numerical abstractions for the analysis and verification of hardware and software systems. Sci. Comput.
Prog. 72, 1-2, 3–21.

BALL, T., BOUNIMOVA, E., COOK, B., LEVIN, V., LICHTENBERG, J., MCGARVEY, C., ONDRUSEK, B., RAJAMANI, S. K., AND

USTUNER, A. 2006. Thorough static analysis of device drivers. EuroSys. 73–85.
BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI, S. K. 2001. Automatic predicate abstraction of C pro-

grams. In PLDI 01: Proceedings of the Symposium on Programming Languages Design and Implemen-
tation. ACM, New York, 203–213.

BALL, T., MILLSTEIN, T. D., AND RAJAMANI, S. K. 2005. Polymorphic predicate abstraction. ACM Trans. Prog.
Lang. Syst. 27, 2, 314–343.

BALL, T., PODELSKI, A., AND RAJAMANI, S. K. 2001. Boolean and Cartesian abstractions for model checking
C programs. In TACAS 01: Proceedings of the Symposium on Tools and Algorithms for Construction
and Analysis of Systems. Lecture Notes in Computer Science, vol. 2031. Springer-Verlag, New York,
268–283.

BALL, T., PODELSKI, A., AND RAJAMANI, S. K. 2002. Relative completeness of abstraction refinement for soft-
ware model checking. In TACAS 02: Proceedings of the Symposium on Tools and Algorithms for Con-
struction and Analysis of Systems. Lecture Notes in Computer Science, vol. 2280. Springer-Verlag, New
York, 158–172.

BALL, T. AND RAJAMANI, S. 2002a. Generating abstract explanations of spurious counterexamples in C pro-
grams. Tech. Rep. MSR-TR-2002-09, Microsoft Research.

BALL, T. AND RAJAMANI, S. 2002b. The SLAM project: debugging system software via static analysis. In
POPL 02: Proceedings of the Symposium on Principles of Programming Languages. ACM, New York,
1–3.

BALL, T. AND RAJAMANI, S. K. 2000a. Bebop: A symbolic model checker for Boolean programs. In SPIN 00:
Proceedings of the SPIN Workshop. Lecture Notes in Computer Science 1885. Springer-Verlag, 113–130.

BALL, T. AND RAJAMANI, S. K. 2000b. Boolean programs: a model and process for software analysis. Tech.
Rep. MSR Technical Report 2000-14, Microsoft Research.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:45

BECKMAN, N., NORI, A. V., RAJAMANI, S. K., AND SIMMONS, R. J. 2008. Proofs from tests. In ISSTA 08: Proceed-
ings of the International Symposium on Software Testing and Analysis. ACM, New York, 3–14.

BEYER, D., CHLIPALA, A. J., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. 2004. Generating tests from
counterexamples. In ICSE 04: Proceedings of the International Conference on Software Engineering.
ACM, New York, 326–335.

BEYER, D., HENZINGER, T., MAJUMDAR, R., AND RYBALCHENKO, A. 2007a. Invariant synthesis in combination
theories. In VMCAI 07: Proceedings of the Symposium on Verification, Model Checking, and Abstract
Interpretation. Lecture Notes in Computer Science, vol. 4349. Springer-Verlag, Berlin, Germany, 378–
394.

BEYER, D., HENZINGER, T., MAJUMDAR, R., AND RYBALCHENKO, A. 2007b. Path invariants. In PLDI 07: Pro-
ceedings of the Symposium on Programming Language Design and Implementation. ACM, New York,
300–309.

BEYER, D., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. 2007c. The software model checker blast. Softw.
Tools Tech. Trans. 9, 5-6, 505–525.

BEYER, D., HENZINGER, T. A., AND THÉODULOZ, G. 2007. Configurable software verification: Concretizing the
convergence of model checking and program analysis. In CAV 07: Proceedings of the Symposium on
Computer-Aided Verification. Lecture Notes in Computer Science, vol. 4590. Springer-Verlag, Berlin,
Germany, 504–518.

BIERE, A., CIMATTI, A., CLARKE, E. M., FUJITA, M., AND ZHU, Y. 1999. Symbolic model checking using SAT
procedures instead of BDDs. In DAC 99: Proceedings of the Design Automation Conference. ACM, New
York, 317–320.

BLANCHET, B., COUSOT, P., COUSOT, R., FERET, J., MAUBORGNE, L., MINE, A., MONNIAUX, D., AND RIVAL, X. 2002.
Design and implementation of a special-purpose static program analyzer for safety-critical real-time
embedded software. In The Essence of Computation, Complexity, Analysis, Transformation: Essays Ded-
icated to Neil D. Jones. Lecture Notes in Computer Science, vol. 2566. Springer-Verlag, Berlin, Germany,
85–108.

BLANCHET, B., COUSOT, P., COUSOT, R., FERET, J., MAUBORGNE, L., MINE, A., MONNIAUX, D., AND RIVAL, X. 2003.
A static analyzer for large safety-critical software. In PLDI 03: Proceedings of the Symposium on Pro-
gramming Languages Design and Implementation. ACM, New York, 196–207.

BOUAJJANI, A., ESPARZA, J., AND MALER, O. 1994. Reachability analysis of pushdown automata: application to
model checking. In CONCUR 97: Proceedings of the Symposium on Concurrency Theory. Lecture Notes
in Computer Science, vol. 1243. Springer-Verlag, Berlin, Germany, 135–150.

BOUAJJANI, A., ESPARZA, J., AND TOUILI, T. 2003. A generic approach to the static analysis of concurrent
programs with procedures. In POPL 03: Proceedings of the Symposium on Principles of Programming
Languages. ACM, New York, 62–73.

BOUAJJANI, A., FERNANDEZ, J.-C., AND HALBWACHS, N. 1990. Minimal model generation. In CAV 90: Proceed-
ings of the Symposium on Computer-aided Verification. Lecture Notes in Computer Science, vol. 531.
Springer-Verlag, Berlin, Germany, 197–203.

BRADLEY, A., MANNA, Z., AND SIPMA, H. 2005. The polyranking principle. In ICALP 05: Proceedings of the
International Colloquium on Automata, Languages, and Programming. Lecture Notes in Computer Sci-
ence, vol. 3580. Springer-Verlag, Berlin, Germany, 1349–1361.

BRAT, G., DRUSINSKY, D., GIANNAKOPOLOU, D., GOLDBERG, A., HAVELUND, K., LOWRY, M., PASAREANU, C., VENET, A.,
WASHINGTON, R., AND VISSER, W. 2004. Experimental evaluation of verification and validation tools on
Martian rover software. Form. Meth. Syst. Des. 25.

BRUTTOMESSO, R., CIMATTI, A., FRANZÉN, A., GRIGGIO, A., AND SEBASTIANI, R. 2008. The MathSAT 4 SMT solver.
In CAV 08: Proceedings of the Symposium on Computer-Aided Verification. Lecture Notes in Computer
Science, vol. 5123. Springer-Verlag, Berlin, Germany, 299–303.

BRYANT, R. 1986. Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput.
C-35, 8, 677–691.

BURCH, J., CLARKE, E., MCMILLAN, K., DILL, D., AND HWANG, L. 1992. Symbolic model checking: 1020 states
and beyond. Inf. Comput. 98, 2, 142–170.

BUSTAN, D. AND GRUMBERG, O. 2003. Simulation-based minimization. ACM Trans. Comput. Logic 4, 181–
206.

CADAR, C., GANESH, V., PAWLOWSKI, P., DILL, D., AND ENGLER, D. 2006. EXE: automatically generating inputs
of death. In CCS 02: Proceedings of the Conference on Computer and Communications Security. ACM,
New York.

CHAKI, S., CLARKE, E., GROCE, A., OUAKNINE, J., STRICHMAN, O., AND YORAV, K. 2004. Efficient verification of
sequential and concurrent C programs. Form. Meth. Syst. Des. 25, 2-3, 129–166.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:46 R. Jhala and R. Majumdar

CHAKI, S., CLARKE, E., KIDD, N., REPS, T., AND TOUILI, T. 2006. Verifying concurrent message-passing C pro-
grams with recursive calls. In TACAS 06: Proceedings of the Symposium on Tools and Algorithms for the
Construction and Analysis of Systems. Lecture Notes in Computer Science, vol. 3920. Springer-Verlag,
Berlin, Germany, 334–349.

CHAKI, S., CLARKE, E. M., GROCE, A., AND STRICHMAN, O. 2003. Predicate abstraction with minimum predi-
cates. In CHARME. 19–34.

CHANDRA, S., GODEFROID, P., AND PALM, C. 2002. Software model checking in practice: an industrial case
study. In ICSE 02: Proceedings of the International Conference on Software Engineering. ACM, New
York, 431–441.

CHANG, B. E. AND RIVAL, X. 2008. Relational inductive shape analysis. In POPL 08: Proceedings of the
Symposium on Principles of Programming Languages. ACM, New York, 247–260.

CHASE, D., WEGMAN, M., AND ZADECK, F. 1990. Analysis of pointers and structures. In PLDI 90: Proceed-
ings of the Symposium on Programming Languages Design and Implementation. ACM, New York,
296–310.

CHAUDHURI, S. 2008. Sub-cubic algorithms for recursive state machines. In POPL 08: Proceedings of the
Symposium on Principles of Programming Languages. ACM, New York, 159–169.

CHEN, H. AND WAGNER, D. 2002. MOPS: an infrastructure for examining security properties of software. In
Proceedings of the ACM Conference on Computer and Communications Security 2002. 235–244.

CLARKE, E. M. AND EMERSON, E. A. 1981. Synthesis of synchronization skeletons for branching time tem-
poral logic. In Logic of Programs. Lecture Notes in Computer Science, vol. 131. Springer-Verlag, Berlin,
Germany, 52–71.

CLARKE, E. M., FILKORN, T., AND JHA, S. 1993. Exploiting symmetry in temporal logic model checking. In CAV
93: Proceedings of the Symposium on Computer-Aided Verification. Lecture Notes in Computer Science,
vol. 697. Springer-Verlag, Berlin, Germany, 450–462.

CLARKE, E. M., GRUMBERG, O., JHA, S., LU, Y., AND VEITH, H. 2000. Counterexample-guided abstraction re-
finement. In CAV 00: Proceedings of the Symposium on Computer-Aided Verification. Lecture Notes in
Computer Science, vol. 1855. Springer-Verlag, Berlin, Germany, 154–169.

CLARKE, E. M., GRUMBERG, O., AND LONG, D. 1992. Model checking and abstraction. In POPL 92: Proceedings
of the Symposium on Principles of Programming Languages. ACM, New York, 343–354.

CLARKE, L. 1976. A system to generate test data and symbolically execute programs. IEEE Trans. Softw.
Eng. 2, 2, 215–222.

COLÓN, M. AND SIPMA, H. 2001. Synthesis of linear ranking functions. In TACAS 01: Proceedings of the
Symposium on Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in
Computer Science, vol. 2031. Springer-Verlag, Berlin, Germany, 67–81.

COLÓN, M. AND SIPMA, H. 2002. Practical methods for proving program termination. In CAV 02: Proceed-
ings of the Symposium on Computer-Aided Verification. Lecture Notes in Computer Science, vol. 2404.
Springer-Verlag, Berlin, Germany, 442–454.

CONSTABLE, R. 1986. Implementing Mathematics with the Nuprl Proof Development System. Prentice-Hall,
Englewood Cliffs, NJ.

COOK, B., PODELSKI, A., AND RYBALCHENKO, A. 2006. Termination proofs for systems code. In PLDI 06: Pro-
ceedings of the Symposium on Programming Languages Design and Implementation. ACM, New York,
415–426.

COOK, S. A. 1978. Soundness and completeness of an axiom system for program verification. SIAM J.
Comput. 7, 1, 70–90.

CORBETT, J., DWYER, M., HATCLIFF, J., PASAREANU, C., ROBBY, LAUBACH, S., AND ZHENG, H. 2000. Bandera: Ex-
tracting finite-state models from Java source code. In ICSE 00: Proceedings of the International Confer-
ence on Software Engineering. 439–448.

COURCOUBETIS, C., VARDI, M., WOLPER, P., AND YANNAKAKIS, M. 1992. Memory-efficient algorithms for the
verification of temporal properties. Form. Meth. Syst. Des. 1, 275–288.

COUSOT, P. AND COUSOT, R. 1976. Static determination of dynamic properties of programs. In ISOP.
106–130.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: a unified lattice model for the static analysis of
programs. In POPL 77: Proceedings of the Symposium on Principles of Programming Languages. ACM,
New York, 238–252.

COUSOT, P. AND COUSOT, R. 1979. Systematic design of program analysis frameworks. In POPL 79: Proceed-
ings of the Symposium on Principles of Programming Languages. ACM, New York, 269–282.

COUSOT, P. AND COUSOT, R. 2000. Temporal abstract interpretation. In POPL 00: Proceedings of the Sympo-
sium on Principles of Programming Languages. ACM, New York, 12–25.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:47

COUSOT, P. AND HALBWACHS, N. 1978. Automatic discovery of linear restraints among variables of a program.
In POPL 78: Proceedings of the Symposium on Principles of Programming Languages. ACM, New York.

CRAIG, W. 1957. Linear reasoning. J. Symbol. Logic 22, 250–268.
DAS, M., LERNER, S., AND SEIGLE, M. 2002. ESP: Path-sensitive program verification in polynomial time. In

PLDI 02: Proceedings of the Symposium on Programming Language Design and Implementation. ACM,
New York, 57–68.

DAS, S., DILL, D. L., AND PARK, S. 1999. Experience with predicate abstraction. In CAV 99: Proceedings of
the Symposium on Computer-Aided Verification. Lecture Notes in Computer Science, vol. 1633. Springer-
Verlag, Berlin, Germany, 160–171.

DE MILLO, R., LIPTON, R., AND PERLIS, A. 1979. Social processes and proofs of theorems and programs. Com-
mun. ACM 22, 271–280.

DE MOURA, L. AND BJØRNER, N. 2008. Z3: An efficient SMT solver. In TACAS 08: Proceedings of the Sympo-
sium on Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer
Science, vol. 4963. Springer-Verlag, Berlin, Germany, 337–340.

DE MOURA, L. AND RUESS, H. 2003. Bounded model checking and induction: From refutation to verification.
In CAV 03: Proceedings of the Symposium on Computer-Aided Verification. Lecture Notes in Computer
Science, vol. 2725. Springer-Verlag, Berlin, Germany, 14–26.

DE MOURA, L., RUESS, H., AND SOREA, M. 2002. Lazy theorem proving for bounded model checking over
infinite domains. In CADE 02: Proceedings of the Symposium on Automated Deduction. Lecture Notes
in Computer Science, vol. 2392. Springer-Verlag, Berlin, Germany, 438–455.

DIJKSTRA, E. 1976. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, NJ.
DILL, D. 1996. The Murphi verification system. In CAV 96: Proceedings of the Symposium on Computer-

Aided Verification. Lecture Notes in Computer Science, vol. 1102. Springer-Verlag, Berlin, Germany,
390–393.

DIMITROVA, R. AND PODELSKI, A. 2008. Is lazy abstraction a decision procedure for broadcast protocols? In
VMCAI 08: Proceedings of the Symposium on Verification, Model Checking, and Abstract Interpretation.
Lecture Notes in Computer Science, vol. 4905. Springer-Verlag, Berlin, Germany, 98–111.

DISTEFANO, D., O’HEARN, P. W., AND YANG, H. 2006. A local shape analysis based on separation logic. In
TACAS 06: Proceedings of the Symposium on Tools and Algorithms for the Construction and Anal-
ysis of Systems. Lecture Notes in Computer Science, vol. 3920. Springer-Verlag, Berlin, Germany,
287–302.

DONER, J. E. 1965. Decidability of the weak second-order theory of two successors. Notices Amer. Math.
Soc. 12, 365–468.

DUTERTE, B. AND DE MOURA, L. 2006. A fast linear-arithmetic solver for DPLL(T). In CAV 06: Proceedings
of the International Conference on Computer-Aided Verification. Lecture Notes in Computer Science, vol.
4144. Springer-Verlag, Berlin, Germany, 81–94.

DWYER, M. AND CLARKE, L. 1994. Data flow analysis for verifying properties of concurrent programs. In FSE
94: Proceedings of the Symposium on Foundations of Software Engineering. ACM, New York, 62–75.

EDELKAMP, S., LEUE, S., AND LLUCH-LAFUENTE, A. 2004. Directed explicit-state model checking in the valida-
tion of communication protocols. Softw. Tools Tech. Trans. 5, 247–267.

EEN, N. AND SORENSSON, N. 2003. An extensible SAT solver. In SAT 2003: Proceedings of the 6th International
Conference on Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol.
2919. Springer-Verlag, Berlin, Germany, 502–518.

EMERSON, E. 1990. Temporal and modal logic. In Handbook of Theoretical Computer Science, J. van
Leeuwen, Ed. vol. B. Elsevier Science Publishers, Amsterdam, the Netherlands, 995–1072.

EMERSON, E. AND LEI, C. 1986. Efficient model checking in fragments of the propositional μ-calculus. In
Proceedings of the 1st Annual Symposium on Logic in Computer Science. IEEE Computer Society Press,
Los Alamitos, CA, 267–278.

EMERSON, E. AND SISTLA, A. 1996. Symmetry and model checking. Form. Meth. Syst. Des. 9, 105–131.
ESPARZA, J. AND SCHWOON, S. 2001. A BDD-based model checker for recursive programs. In CAV.

324–336.
FAHNDRICH, M. AND DELINE, R. 2004. Typestates for objects. In ECOOP 04: Proceedings of the Symposium on

Object-Oriented Programming. Lecture Notes in Computer Science, vol. 3086. Springer-Verlag, Berlin,
Germany, 465–490.

FISCHER, J., JHALA, R. AND MAJUMDAR, R. 2005. Joining dataflow with predicates. In ESEC/FSE 2005: Pro-
ceedings of the Symposium on Foundations of Software Engineering. ACM, New York, 227–236.

FLANAGAN, C. 2006. Hybrid type checking. In POPL 06: Proceedings of the Symposium on Principles of
Programming Languages. ACM, New York.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:48 R. Jhala and R. Majumdar

FLANAGAN, C., FREUND, S. AND QADEER, S. 2002. Thread-modular verification for shared-memory programs.
In ESOP 02: Proceedings of the European Symposium on Programming. Lecture Notes in Computer
Science, vol. 2305. Springer-Verlag, Berlin, Germany, 262–277.

FLANAGAN, C., FREUND, S., QADEER, S., AND SESHIA, S. 2005. Modular verification of multithreaded programs.
Theoret. Comput. Sci. 338, 153–183.

FLANAGAN, C., JOSHI, R., AND LEINO, K. R. M. 2001. Annotation inference for modular checkers. Inf. Proc.
Lett. 77, 2-4, 97–108.

FLANAGAN, C., LEINO, K., LILLIBRIDGE, M., NELSON, G., SAXE, J. B., AND STATA, R. 2002. Extended static checking
for Java. In PLDI 02: Proceedings of the Symposium on Programming Language Design and Implemen-
tation. ACM, New York, 234–245.

FLANAGAN, C. AND QADEER, S. 2002. Predicate abstraction for software verification. In POPL 02: Proceedings
of the Symposium on Principles of Programming Languages. ACM, New York, 191–202.

FLANAGAN, C. AND SAXE, J. 2000. Avoiding exponential explosion: generating compact verification conditions.
In POPL 00: Proceedings of the Symposium on Principles of Programming Languages. ACM, New York,
193–205.

FLOYD, R. 1967. Assigning meanings to programs. In Mathematical Aspects of Computer Science. American
Mathematical Society, 19–32.

FOSTER, J., TERAUCHI, T., AND AIKEN, A. 2002. Flow-sensitive type qualifiers. In PLDI 02: Proceedings of the
Symposium on Programming Language Design and Implementation. ACM, New York, 1–12.

FRANCEZ, N. 1986. Fairness. Springer-Verlag, Berlin, Germany.
FRASER, R., KAMHI, G., ZIV, B., VARDI, M., AND FIX, L. 2000. Prioritized traversal: efficient reachability anal-

ysis for verification and falsification. In CAV 00: Proceedings of the Symposium on Computer-Aided
Verification. Lecture Notes in Computer Science, vol. 1855. Springer-Verlag, Berlin, Germany, 389–402.

GANAI, M. AND GUPTA, A. 2006. Accelerating high-level bounded model checking. In ICCAD 06: Proceedings
of the International Conference on Computer-Aided Design. ACM, New York, 794–801.

GHIYA, R. AND HENDREN, L. J. 1996. Is it a tree, a DAG, or a cyclic graph? A shape analysis for heap-directed
pointers in C. In POPL 96: Proceedings of the Symposium on Principles of Programming Languages.
ACM, New York, 1–15.

GIESL, J. AND KAPUR, D. 2001. Decidable classes of inductive theorems. In IJCAR 2001: Proceedings of the
International Joint Conference on Automated Reasoning. Lecture Notes in Computer Science, vol. 2083.
Springer-Verlag, Berlin, Germany, 469–484.

GODEFROID, P. 1996. Partial-Order Methods for the Verification of Concurrent Systems—An Approach to
the State-Explosion Problem. Lecture Notes in Computer Science, vol. 1032. Springer-Verlag, Berlin,
Germany.

GODEFROID, P. 1997. Model checking for programming languages using Verisoft. In POPL 97: Proceedings
of the Symposium on Principles of Programming Languages. ACM, New York, 174–186.

GODEFROID, P., KLARLUND, N., AND SEN, K. 2005. DART: Directed Automated Random Testing. In PLDI 05:
Proceedings of the Symposium on Programming Language Design and Implementation. ACM, New York,
213–223.

GOPAN, D., REPS, T. W., AND SAGIV, S. 2005. A framework for numeric analysis of array operations. In POPL
05: Proceedings of the Symposium on Principles of Programming Languages. ACM, New York, 338–350.

GRAF, S. AND SAı̈DI, H. 1997. Construction of abstract state graphs with PVS. In CAV. Lecture Notes in
Computer Science, vol. 1254. Springer-Verlag, Berlin, Germany, 72–83.

GULAVANI, B. S., CHAKRABORTY, S., NORI, A. V., AND RAJAMANI, S. K. 2008. Automatically refining abstract
interpretations. In TACAS 08: Proceedings of the Symposium on Tools and Algorithms for the Construc-
tion and Analysis of Systems. Lecture Notes in Computer Science, vol. 4963. Springer-Verlag, Berlin,
Germany, 443–458.

GULAVANI, B. S., HENZINGER, T. A., KANNAN, Y., NORI, A. V., AND RAJAMANI, S. K. 2006. Synergy: A new algorithm
for property checking. In FSE 06: Proceedings of the Symposium on Foundations of Software Engineering.
ACM, New York, 117–127.

GULWANI, S., MCCLOSKEY, B., AND TIWARI, A. 2008. Lifting abstract interpreters to quantified logical domains.
In POPL 08: Proceedings of the Symposium on Principles of Programming Languages. ACM, New York,
235–246.

GULWANI, S. AND TIWARI, A. 2006. Combining abstract interpreters. In PLDI 2006: Proceedings of the Sym-
posium on Programming Language Design and Implementation. ACM, New York, 376–386.

GUPTA, A., HENZINGER, T., MAJUMDAR, R., RYBALCHENKO, A., AND XU, R. 2008. Proving non-termination. In
POPL 08: Proceedings of the Symposium on Principles of Programming Languages. ACM, New York,
147–158.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:49

GUPTA, A., MAJUMDAR, R., AND RYBALCHENKO, A. 2009. From tests to proofs. In TACAS 09: Proceedings of
the Symposium on Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in
Computer Science, vol. 5505. Springer-Verlag, Berlin, Germany, 262–276.

HACKETT, B. AND AIKEN, A. 2006. How is aliasing used in systems software? In FSE 06: Proceedings of the
Symposium on Foundations of Software Engineering. ACM, New York, 69–80.

HARDEKOPF, B. AND LIN, C. 2007. The ant and the grasshopper: Fast and accurate pointer analysis for
millions of lines of code. In PLDI 07: Proceedings of the Symposium on Programming Language Design
and Implementation. ACM, New York, 290–299.

HART, P., NILSSON, N., AND RAPHAEL, B. 1968. A formal basis for the heuristic determination of minimum
cost paths. IEEE Trans. Syst. Sci. Cybernetics SSC4 2, 100–107.

HAVELUND, K. AND PRESSBURGER, T. 2000. Model checking Java programs using Java Pathfinder. Softw. Tools
Tech. Trans. (STTT) 2, 4, 72–84.

HENZINGER, T., JHALA, R., MAJUMDAR, R., AND MCMILLAN, K. 2004. Abstractions from proofs. In POPL 04:
Proceedings of the Symposium on Principles of Programming Languages. ACM, New York, 232–244.

HENZINGER, T., JHALA, R., MAJUMDAR, R., AND QADEER, S. 2003. Thread-modular abstraction refinement. In
CAV 03: Proceedings of the Symposium on Computer-Aided Verification. Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany.

HENZINGER, T., JHALA, R., MAJUMDAR, R., AND SUTRE, G. 2002. Lazy abstraction. In POPL 02: Proceedings of
the Symposium on Principles of Programming Languages. ACM, New York, 58–70.

HENZINGER, T., QADEER, S., AND RAJAMANI, S. 1998. You assume, we guarantee: methodology and case studies.
In CAV 98: Proceedings of the Symposium on Computer-Aided Verification, Lecture Notes in Computer
Science, vol. 1427. Springer-Verlag, Berlin, Germany, 440–451.

HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. 2004. Race checking by context inference. In PLDI
2004: Proceedings of the Symposium on Programming Languages Design and Implementation. ACM,
New York, 1–12.

HIND, M. 2001. Pointer analysis: Haven’t we solved this problem yet? In Proceedings of the ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering (PASTE’01). ACM,
New York, 54–61.

HOARE, C. 1969. An axiomatic basis for computer programming. Commun. ACM 12, 576–580.
HOLZMANN, G. 1997. The Spin model checker. IEEE Trans. Softw. Eng. 23, 5 (May), 279–295.
IMMERMAN, N., RABINOVICH, A., REPS, T., SAGIV, M., AND YORSH, G. 2004. The boundary between decidability

and undecidability for transitive-closure logics. In CSL. 160–174.
IP, C. AND DILL, D. 1996. Better verification through symmetry. Form. Meth. Syst. Des. 9, 41–75.
IVANCIC, F., YANG, Z., GANAI, M. K., GUPTA, A., AND ASHAR, P. 2008. Efficient SAT-based bounded model

checking for software verification. Theoret. Comput. Sci. 404, 3, 256–274.
IVANCIC, F., YANG, Z., GANAI, M. K., GUPTA, A., SHLYAKHTER, I., AND ASHAR, P. 2005. F-soft: Software verification

platform. In CAV 05: Proceedings of the Symposium on Computer-Aided Verification. Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany, 301–306.

JAIN, H., IVANČIĆ, F., GUPTA, A., SHLYAKHTER, I., AND WANG, C. 2006. Using statically computed invariants
inside the predicate abstraction and refinement loop. In CAV 06: Proceedings of the Symposium on
Computer-Aided Verification. Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
137–151.

JHA, S. K., KROGH, B. H., WEIMER, J. E., AND CLARKE, E. M. 2007. Reachability for linear hybrid automata us-
ing iterative relaxation abstraction. In Proceedings of the 12th ACM International Conference on Hybrid
Systems: Computation and Control. ACM, New York, 287–300.

JHALA, R. AND MAJUMDAR, R. 2005. Path slicing. In PLDI 05: Proceedings of the Symposium on Programming
Language Design and Implementation. ACM, New York, 38–47.

JHALA, R. AND MCMILLAN, K. 2006. A practical and complete approach to predicate refinement. In TACAS
06: Proceedings of the Symposium on Tools and Algorithms for the Construction and Analysis of
Systems. Lecture Notes in Computer Science, vol. 2987. Springer-Verlag, Berlin, Germany, 298–
312.

JHALA, R. AND MCMILLAN, K. L. 2005. Interpolant-based transition relation approximation. In CAV 05:
Proceedings of the Symposium on Computer-Aided Verification. Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany, 39–51.

JONES, C. 1983. Tentative steps toward a development method for interfering programs. ACM Trans. Pro-
gramming Languages Systems 5, 4, 596–619.

KAHLON, V. AND GUPTA, A. 2007. On the analysis of interacting pushdown systems. In POPL 07: Proceedings
of the Symposium on Principles of Programming Languages. ACM, New York, 303–314.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:50 R. Jhala and R. Majumdar

KATZ, S. AND PELED, D. 1992. Verification of distributed programs using representative interleaving se-
quences. Distrib. Comput. 6, 2, 107–120.

KILLIAN, C. E., ANDERSON, J. W., JHALA, R., AND VAHDAT, A. 2007. Life, death, and the critical transition:
Finding liveness bugs in systems code (awarded best paper). In Proceedings of the 4th Symposium on
Networked Systems Design and Implementation (NSDI). ACM, New York, 243–256.

KING, J. 1976. Symbolic execution and program testing. Commun. ACM 19, 7, 385–394.
KORF, R. 1985. Depth-first iterative deepening: an optimal admissible tree search. Artif. Intell. 27, 97–

109.
KROENING, D., CLARKE, E., AND YORAV, K. 2003. Behavioral consistency of C and Verilog programs using

bounded model checking. In DAC 03: Proceedings of the Symposium on Design Automation Conference.
ACM, New York, 368–371.

KURSHAN, R. 1994. Computer-Aided Verification of Coordinating Processes. Princeton University Press,
Princeton, NJ.

LAHIRI, S. K. AND BRYANT, R. E. 2004. Constructing quantified invariants via predicate abstraction. In Pro-
ceedings of the 5th International Conference on Verification Model Checking, and Abstract Interpretation
(VMCAI). Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 267–281.

LAHIRI, S. K. AND QADEER, S. 2008. Back to the future: revisiting precise program verification using SMT
solvers. In POPL 08: Proceedings of the Symposium on Principles of Programming Languages. ACM,
New York, 171–182.

LAL, A., TOUILI, T., KIDD, N., AND REPS, T. W. 2008. Interprocedural analysis of concurrent programs under
a context bound. In TACAS 08: Proceedings of the Symposium on Tools and Algorithms for the Construc-
tion and Analysis of Systems. Lecture Notes in Computer Science, vol. 4963. Springer-Verlag, Berlin,
Germany, 282–298.

LAMPORT, L. 1983. Specifying concurrent program modules. ACM Trans. Prog. Lang. Syst. 5, 2, 190–222.
LEE, D. AND YANNAKAKIS, M. 1992. Online minimization of transition systems. In Proceedings of the 24th

Annual Symposium on Theory of Computing. ACM, New York, 264–274.
LEHMANN, D., PNUELI, A., AND STAVI, J. 1982. Impartiality, justice, and fairness: The ethics of concur-

rent termination. In ICALP 81: Proceedings of the International Conference on Automata, Languages,
and Programming. Lecture Notes in Computer Science 115. Springer-Verlag, Berlin, Germany, 264–
277.

LEINO, K. R. M. AND NELSON, G. 1998. An extended static checker for Modula-3. In CC 98: Proceedings of the
Symposium on Compiler Construction. Lecture Notes in Computer Science, vol. 1383. Springer-Verlag,
Berlin, Germany, 302–305.

LEV-AMI, T. AND SAGIV, S. 2000. TVLA: A system for implementing static analyses. In Proceedings of the
5th International Symposium on Static Analysis (SAS). Lecture Notes in Computer Science, vol. 1824.
Springer-Verlag, Berlin, Germany, 280–301.

LLUCH-LAFUENTE, A. 2003. Directed search for the verification of communication protocols. Ph.D. disserta-
tion, Univ., Freiburg, Freiburg, Germany.

LOISEAUX, C., GRAF, S., SIFAKIS, J., BOUAJJANI, A., AND BENSALEM, S. 1995. Property-preserving abstractions
for the verification of concurrent systems. Form. Meth. Syst. Des. 6, 11–44.

MAGILL, S., BERDINE, J., CLARKE, E. M., AND COOK, B. 2007. Arithmetic strengthening for shape analysis. In
Proceedings of the 14th International Symposium on Static Analysis. Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany, 419–436.

MANNA, Z. AND PNUELI, A. 1992. The Temporal Logic of Reactive and Concurrent Systems: Specification.
Springer-Verlag, Berlin, Germany.

MARTIN-LÖF, P. 1984. Constructive mathematics and computer programming. Roy. Soc. London Philos.
Trans. Ser. A 312, 501–518.

MCMILLAN, K. 1993. Symbolic Model Checking: An Approach to the State-Explosion Problem. Kluwer Aca-
demic Publishers.

MCMILLAN, K. L. 2004. An interpolating theorem prover. In TACAS: Proceedings of the Symposium on
Tools and Algorithms for the Construction and Analysis of Systems. Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany, 16–30.

MCMILLAN, K. L. 2006. Lazy abstraction with interpolants. In CAV 2006: Proceedings of the Symposium
on Computer-Aided Verification. Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany,
123–136.

MCMILLAN, K. L. 2008. Quantified invariant generation using an interpolating saturation prover. In Pro-
ceedings of the Symposium on Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany, 413–427.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:51

MEYER, R., FABER, J., AND RYBALCHENKO, A. 2006. Model checking duration calculus: A practical ap-
proach. In ICTAC 06: Proceedings of the 3rd International Colloquium on Theoretical Aspects of
Computing. Lecture Notes in Computer Science, vol. 4281. Springer-Verlag, Berlin, Germany, 332–
346.

MINÉ, A. 2006. The octagon abstract domain. Higher-Order Symb. Comput. 19, 1, 31–100.
MISRA, J. AND CHANDY, K. 1981. Proofs of networks of processes. IEEE Trans. Softw. Eng. SE-7, 4, 417–

426.
MØLLER, A. AND SCHWARTZBACH, M. I. 2001. The Pointer assertion logic engine. In PLDI: Proceedings of the

Symposium on Programming Language Design and Implementation. ACM, New York, 221–231.
MOSKEWICZ, M., MADIGAN, C., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: Engineering an efficient

SAT solver. In DAC 01: Proceedings of the Design Automation Conference. ACM, New York, 530–
535.

MUCHNICK, S. 1997. Advanced Compiler Design and Implementation. Morgan-Kaufman, San Francisco,
CA.

MUSUVATHI, M. AND ENGLER, D. R. 2004. Model checking large network protocol implementations. In NSDI.
155–168.

MUSUVATHI, M. AND QADEER, S. 2007. Iterative context bounding for systematic testing of multithreaded
programs. In PLDI: Proceedings of the Symposium on Programming Languages Design and Implemen-
tation. ACM, New York, 446–455.

NAMJOSHI, K. S. AND KURSHAN, R. P. 2000. Syntactic program transformations for automatic abstraction.
In CAV 00: Proceedings of the Symposium on Computer-Aided Verification. Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, 435–449.

NANEVSKI, A., MORRISETT, G., SHINNAR, A., GOVEREAU, P., AND BIRKEDAL, L. 2008. Ynot: Reasoning with the
awkward squad. In Proceedings of the 13th ACM SIGPLAN International Conference on Functional
Programming, ICFP. ACM, New York.

NECULA, G. C. AND LEE, P. 2000. Proof generation in the Touchstone theorem prover. In CADE 00: Proceed-
ings of the Symposium on Computer-Aided Deduction. Lecture Notes in Computer Science, vol. 1831.
Springer-Verlag, Berlin, Germany, 25–44.

NELSON, G. 1981. Techniques for program verification. Tech. Rep. CSL81-10, Xerox Palo Alto Research
Center, Palo Alto, CA.

NELSON, G. 1983. Verifying reachability invariants of linked structures. In POPL 83: Proceedings of the
Symposium on Principles of Programming Languages. ACM, New York, 38–47.

NELSON, G. AND OPPEN, D. 1980. Fast decision procedures based on congruence closure. J. ACM 27, 2, 356–
364.

OWRE, S., RAJAN, S., RUSHBY, J., SHANKAR, N., AND SRIVAS, M. 1996. PVS: Combining specification, proof
checking, and model checking. In CAV 96: Proceedings of the Symposium on Computer-Aided Verification.
Lecture Notes in Computer Science, vol. 1102. Springer-Verlag, Berlin, Germany, 411–414.

PASAREANU, C. S., GIANNAKOPOULOU, D., BOBARU, M. G., COBLEIGH, J. M. AND BARRINGER, H. 2008. Learning to
divide and conquer: applying the L∗ algorithm to automate assume-guarantee reasoning. Form. Meth.
Syst. Des. 32, 3, 175–205.

PENIX, J., VISSER, W., PARK, S., PASAREANU, C., ENGSTROM, E., LARSON, A., AND WEININGER, N. 2005. Verifying
time partitioning in the DEOS scheduling kernel. Form. Meth. Syst. Des. 26.

PNUELI, A. 1977. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on Foun-
dations of Computer Science. IEEE Computer Society Press, Los Alamitos, CA, 46–57.

PNUELI, A., PODELSKI, A., AND RYBALCHENKO, A. 2005. Separating fairness and well-foundedness for the
analysis of fair discrete systems. In TACAS 05: Proceedings of the Symposium on Tools and Algorithms
for the Construction and Analysis of Systems. Lecture Notes in Computer Science, vol. 3440. Springer-
Verlag, Berlin, Germany, 124–139.

PODELSKI, A. AND RYBALCHENKO, A. 2004a. A complete method for the synthesis of linear ranking functions.
In VMCAI. 239–251.

PODELSKI, A. AND RYBALCHENKO, A. 2004b. Transition invariants. In LICS 04: Proceedings of the Symposium
on Logic in Computer Science. IEEE, Computer Society Press, Los Alamitos, CA.

PODELSKI, A. AND RYBALCHENKO, A. 2007. Armc: The logical choice for software model checking with ab-
straction refinement. In PADL 07: Proceedings of the Symposium on Practical Aspects of Declarative
Programming. Lecture Notes in Computer Science, vol. 4354. Springer-Verlag, Berlin, Germany, 245–
259.

PODELSKI, A. AND WIES, T. 2005. Boolean Heaps. In SAS: Proceedings of the Static Analysis Symposium.
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 267–282.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:52 R. Jhala and R. Majumdar

QADEER, S., RAJAMANI, S. K., AND REHOF, J. 2004. Summarizing procedures in concurrent programs. In
POPL 04: Proceedings of the Symposium on Principles of Programming Languages. ACM, New York,
245–255.

QADEER, S. AND REHOF, J. 2005. Context-bounded model checking of concurrent software. In TACAS: Pro-
ceedings of the Symposium on Tools and Algorithms for the Construction and Analysis of Systems. Lecture
Notes in Computer Science. Springer-Verlag, Berlin, Germany, 93–107.

QADEER, S. AND WU, D. 2004. Kiss: Keep It Simple and Sequential. In PLDI: Proceedings of the Symposium
on Programming Languages Design and Implementation. ACM, New York, 14–24.

QUEILLE, J. AND SIFAKIS, J. 1981. Specification and verification of concurrent systems in CESAR. In Proceed-
ings of the 5th International Symposium on Programming, M. Dezani-Ciancaglini and U. Montanari, Eds.
Lecture Notes in Computer Science, vol. 137. Springer-Verlag, Berlin, Germany, 337–351.

RAMALINGAM, G. 2000. Context-sensitive synchronization-sensitive analysis is undecidable. ACM Trans.
Prog. Lang. Syst. 22, 2, 416–430.

REPS, T., HORWITZ, S., AND SAGIV, M. 1995. Precise interprocedural dataflow analysis via graph reachability.
In POPL 95: Proceedings of the Symposium on Principles of Programming Languages. ACM, New York,
49–61.

REPS, T. W., SCHWOON, S., JHA, S., AND MELSKI, D. 2005. Weighted pushdown systems and their application
to interprocedural dataflow analysis. Sci. Comput. Prog. 58, 1-2, 206–263.

REYNOLDS, J. C. 2002. Separation logic: A logic for shared mutable data structures. Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin, Germany, 55–74.

RONDON, P., KAWAGUCHI, M., AND JHALA, R. 2008. Liquid types. In PLDI: Proceedings of the Symposium on
Programming Language Design and Implementation. ACM, New York, 158–169.

RUSSELL, S. AND NORVIG, P. 2003. Artificial Intelligence: A Modern Approach, 2nd ed. Prentice-Hall,
Englewood Cliffs, NJ.

RYBALCHENKO, A. AND SOFRONIE-STOKKERMANS, V. 2007. Constraint solving for interpolation. In VMCAI. 346–
362.

SAGIV, S., REPS, T. W., AND WILHELM, R. 2002. Parametric shape analysis via 3-valued logic. ACM Trans.
Prog. Lang. Syst. 24, 3, 217–298.

SAIDI, H. 2000. Model checking guided abstraction and analysis. In SAS 00: Proceedings of the Static-
Analysis Symposium. Lecture Notes in Computer Science, vol. 1824, Springer-Verlag, Berlin, Germany,
377–396.

SAÏDI, H. AND SHANKAR, N. 1999. Abstract and model check while you prove. In CAV 99: Proceedings of the
Symposium on Computer-Aided Verification. Lecture Notes in Computer Science, vol. 1633. Springer-
Verlag, Berlin, Germany, 443–454.

SANKARANARAYANAN, S., SIPMA, H. B., AND MANNA, Z. 2005. Scalable analysis of linear systems using mathe-
matical programming. In VMCAI. 25–41.

SCHMIDT, D. 1998. Data flow analysis is model checking of abstract interpretation. In POPL 98: Proceedings
of the Symposium on Principles of Programming Languages. ACM, New York, 38–48.

SCHMIDT, D. A. AND STEFFEN, B. 1998. Program analysis as model checking of abstract interpretations. In
SAS 98: Proceedings of the Static Analysis Symposium. Lecture Notes in Computer Science, vol. 1503.
Springer-Verlag, ACM, New York, 351–380.

SEN, K., MARINOV, D., AND AGHA, G. 2005. CUTE: A concolic unit testing engine for C. In FSE.
SHARIR, M. AND PNUELI, A. 1981. Two approaches to interprocedural data dalow analysis. In Program Flow

Analysis: Theory and Applications. Prentice-Hall, Englewood Cliffs, NJ, 189–233.
SHEERAN, M., SINGH, S., AND STALMARCK, G. 2000. Checking safety properties using induction and a SAT-

solver. In FMCAD 00: Proceedings of the Symposium on Formal Methods in Computer-Aided Design.
Lecture Notes in Computer Science, vol. 1954. Springer-Verlag, Berlin, Germany, 108–125.

SHOSTAK, R. 1984. Deciding combinations of theories. J. ACM 31, 1, 1–12.
SILVA, J. P. M. AND SAKALLAH, K. A. 1996. Grasp—A new search algorithm for satisfiability. In ICCAD

96: Proceedings of the International Conference on Computer-Aided Design. ACM, New York, 220–
227.

SISTLA, A., GYURIS, V., AND EMERSON, E. 2000. SMC: A symmetry-based model checker for verification of
safety and liveness properties. ACM Trans. Softw. Eng. Method. 9, 133–166.

SOMENZI, F. 1998. Colorado University decision diagram package. http://vlsi.colorado.edu/pub/.
STARK, E. 1985. A proof technique for rely/guarantee properties. In FSTTCS 1985: Foundations of Software

Technology and Theoretical Computer Science, S. N. Maheshwari, Ed. Lecture Notes in Computer Science,
vol. 206. Springer-Verlag, Berlin, Germany, 369–391.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

Software Model Checking 21:53

STEENSGARD, B. 1996. Points-to analysis in almost linear time. In POPL 96: Proceedings of the Symposium
on Principles of Programming Languages. ACM, New York, 32–41.

STEFFEN, B. 1991. Data flow analysis as model checking. In TACS 91: Proceedings of the Symposium on
Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 536. Springer-Verlag,
Berlin, Germany, 346–365.

STERN, U. AND DILL, D. L. 1998. Using magnetic disk instead of main memory in the murhi verifier. In CAV
98: Proceedings of the Symposium on Computer-Aided Verification. Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany, 172–183.

STROM, R. AND YEMINI, S. 1986. Typestate: A programming language concept for enhancing software relia-
bility. IEEE Trans. Softw. Eng. 12, 1, 157–171.

SUNSHINE, C. 1978. Survey of protocol definition and verification techniques. Comput. Netw. 2, 346–350.
SUNSHINE, C., THOMPSON, D., ERICKSON, R., GERHART, S., AND SCHWABE, D. 1982. Specification and verification

of communication protocols in AFFIRM using state transition models. IEEE Trans. Softw. Eng. 8, 5,
460–489.

SUWIMONTEERABUTH, D., ESPARZA, J., AND SCHWOON, S. 2008. Symbolic context-bounded analysis of multi-
threaded Java programs. In SPIN. 270–287.

TIWARI, A. 2004. Termination of linear programs. In CAV 04: Proceedings of the Symposium on Computer-
Aided Verification. Lecture Notes in Computer Science, vol. 3114. Springer-Verlag, Berlin, Germany,
70–82.

TURING, A. M. 1936. On computable numbers, with an application to the eintscheidungsproblem. In Pro-
ceedings of the London Mathematical Soceity. 230–265.

VALMARI, A. 1992. A stubborn attack on state explosion. Form. Meth. Syst. Des. 1, 4, 297–322.
VARDI, M. 1991. Verification of concurrent programs—the automata-theoretic framework. Ann. Pure Appl.

Logic 51, 79–98.
VARDI, M. 1995. An automata-theoretic approach to linear temporal logic. In Logics for Concurrency—

Structure versus Automata (8th Banff Higher Order Workshop Proceedings). Lecture Notes in Computer
Science, vol. 1043. Springer-Verlag, Berlin, Germany, 238–266.

VARDI, M. AND WOLPER, P. 1986. Automata-theoretic techniques for modal logics of programs. J. Comput.
Syst. Sci. 32, 183–221.

VARDI, M. AND WOLPER, P. 1994. Reasoning about infinite computations. Inf. Comput. 115, 1, 1–37.
VELROYEN, H. AND RÜMMER, P. 2008. Non-termination checking for imperative programs. In TAP: Tests and

Proofs. Lecture Notes in Computer Science, vol. 4966. Springer-Verlag, Berlin, Germany, 154–170.
VISSER, W., HAVELUND, K., BRAT, G., PARK, S., AND LERDA, F. 2003. Model checking programs. Automat. Softw.

Eng. J. 10.
WALUKIEWICZ, I. 1996. Pushdown processes: Games and model checking. In CAV 96: Proceedings of the

Symposium on Computer-Aided Verification. Lecture Notes in Computer Science, vol. 1102. Springer-
Verlag, Berlin, Germany, 62–74.

WANG, C., YANG, Z., GUPTA, A., AND IVANCIC, F. 2007. Using counterexamples for improving the precision of
reachability computation with polyhedra. In CAV 07: Proceedings of the Symposium on Computer-Aided
Verification. Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 352–365.

WHALEY, J. AND LAM, M. S. 2004. Cloning-based context-sensitive pointer alias analysis using binary de-
cision diagrams. In PLDI 04: Proceedings of the Symposium on Programming Language Design and
Implementation. ACM, New York, 131–144.

XI, H. AND PFENNING, F. 1999. Dependent types in practical programming. In POPL 99: Proceedings of the
Symposium on Principles of Programming Languages. ACM, New York, 214–227.

XIA, S., VITO, B. D., AND MUÑOZ, C. 2005. Automated test generation for engineering applications.
In ASE 05: Proceedings of the Symposium on Automated Software Engineering. ACM, New York,
283–286.

XIE, Y. AND AIKEN, A. A. 2005. Scalable error detection using Boolean satisfiability. In POPL 05: Proceedings
of the Symposium on Principles of Programming Languages. ACM, New York.

YAHAV, E. 2001. Verifying safety properties of concurrent Java programs using 3-valued logic. In POPL 01:
Proceedings of the Symposium on Principles of Programming Languages. ACM, New York, 27–40.

YANG, C. H. AND DILL, D. L. 1998. Validation with guided search of the state space. In DAC 98: Proceedings
of the Symposium on Design Automation Conference. ACM, New York, 599–604.

YANG, H., LEE, O., BERDINE, J., CALCAGNO, C., COOK, B., DISTEFANO, D., AND O’HEARN, P. W. 2008. Scalable shape
analysis for systems code. In CAV 08: Proceedings of the Symposium on Computer-Aided Verification.
Lecture Notes in Computer Science, vol. 5123. Springer-Verlag, Berlin, Germany, 385–398.

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

21:54 R. Jhala and R. Majumdar

YANG, J., TWOHEY, P., ENGLER, D., AND MUSUVATHI, M. 2004. Using model checking to find serious file system
errors. In OSDI 04: Proceedings of the Symposium on Operating System Design and Implementation.
Usenix Association.

YANG, Z., WANG, C., GUPTA, A., AND IVANCIC, F. 2006. Mixed symbolic representations for model checking
software programs. In MEMOCODE. 17–26.

YANNAKAKIS, M. 1990. Graph theoretic methods in database theory. In Proceedings of the 9th ACM Sympo-
sium on Principles of Database Systems. ACM, New York, 203–242.

Received December 2008; revised May 2009; accepted June 2009

ACM Computing Surveys, Vol. 41, No. 4, Article 21, Publication date: October 2009.

