
LighTS: A Lightweight, Customizable Tuple Space
Supporting Context-Aware Applications

Gian Pietro Picco, Davide Balzarotti and Paolo Costa
Dip. di Elettronica e Informazione, Politecnico di Milano, Italy

{picco, balzarot, costa}@elet.polimi.it

ABSTRACT
The tuple space model inspired by Linda has recently been
rediscovered by distributed middleware. Moreover, some re-
searchers also applied it in the challenging scenarios involv-
ing mobility and more specifically context-aware computing.
Context information can be stored in the tuple space, and
queried like any other data.

Nevertheless, it turns out that conventional tuple space
implementations fall short of expectations in this new do-
main. On one hand, many of the available systems provide
a wealth of features, which make the resulting implementa-
tion unnecessarily bloated and incompatible with the tight
resource constraints typical of this field. Moreover, the tra-
ditional Linda matching semantics based on value equal-
ity are not appropriate for context-aware computing, where
queries are often formulated over value ranges, and where
there is a prominent need to deal with imprecise informa-
tion coming from multiple sources.

In this paper, we describe a new tuple space implementa-
tion called LighTS. Originally developed as the tuple space
core of the Lime [11] system, LighTS provides a flexible
framework that makes it easy to introduce extensions to
the tuple space and in general to customize the tuple space
implementation. The design and programming interface of
LighTS is presented, and its flexibility demonstrated by il-
lustrating extensions that proved useful in the development
of context-aware applications.

1. INTRODUCTION
The tuple space model inspired by Linda [8] has recently

been rediscovered by distributed middleware. Commercial
systems (e.g., TSpaces [1], JavaSpaces [2], GigaSpaces [3])
as well as academic ones (e.g., MARS [6], TuCSoN [13],
Klaim [12], Lime [11]) are currently available.

In particular, Lime adapts and extends Linda towards mo-
bility, by transforming its global and persistent tuple space
into one that is federated and transiently shared according
to connectivity. Moreover, Lime has recently been used to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’05,March 13-17, 2005, Santa Fe, New Mexico, USA.
Copyright 2005 ACM 1-58113-964-0/05/0003 ...$5.00.

develop context-aware applications. It is interesting to look
briefly into the lessons learned from these experiences, in
that they motivate the contributions we put forth in this pa-
per. The work in [10] describes a simple location-aware ap-
plication supporting collaborative exploration of geographi-
cal areas, e.g., to coordinate the help in a disaster recovery
scenario. Users are equipped with portable computing de-
vices and a localization system (e.g., GPS), are freely mo-
bile, and are transiently connected through ad hoc wireless
links. The key functionality provided is the ability for a
user to request the displaying of the current location and/or
trajectory of any other user, provided wireless connectivity
is available towards her. The implementation exploits tuple
spaces as repositories for context information—i.e., location
data. The primitives of Lime are then used to seamlessly
perform queries not only on a local tuple space, but on all
the spaces in range. For instance, a user’s location can be
determined by performing a read operation for the location
tuple associated to the given user identifier. The “lesson
learned” distilled from this experience is simple and yet rel-
evant: tuple spaces can be successfully exploited to store
not only the application data needed for coordination, but
also data representing the physical context. The advantage is
the provision of a single, unified programming interface—the
coordination primitives—for accessing both forms of data,
therefore simplifying the programmer’s chore.

Nevertheless, as discussed in [10], the traditional match-
ing semantics of Linda, based on comparing the exact values
of tuple fields, is insufficient for the needs of context-aware
applications. Indeed, context-aware queries rarely revolve
around exact values. For instance, in a sensor monitoring
application, it may be required to find the identifiers of all
the temperature sensors registering a value between 20 and
25 degrees. Or, in the application of [10] it may be needed
to find the users within 500m, or those within r meters from
the point (x, y). Often, even these queries are too precise,
in that the user may have enough information only to for-
mulate requests as informal as “find the sensors recording
a hot temperature”, or “find the users close to me”. These
needs sometimes surface also in conventional applications,
but they are definitely exacerbated in context-aware ones.

In this paper, we set out to close the gap between the
tuple space model and context-aware applications, by ex-
tending LighTS, the tuple space engine at the core of the
Lime system. In contrast with available tuple space sys-
tems, LighTS [4] was designed to be extremely lightweight
and minimal, by providing a local tuple space with support
only for the basic Linda operations. Indeed, distribution,

event notification, transactions—features typically provided
by other systems—are built on top of LighTS by Lime.
Nevertheless, the lack of sophisticated features is compen-
sated by a design that renders LighTS highly customiz-
able and extensible. In essence, the tuple space abstrac-
tion provided by LighTS was conceived as a framework (in
the object-oriented sense) rather than a closed system. The
built-in instantiation of such framework provides the tradi-
tional Linda abstractions, similarly to many other systems.
At the same time, however, the modularity and encapsula-
tion provided by its object-oriented design leaves room for
customization, empowering the programmer with the ability
to easily change performance aspects (e.g., changing the tu-
ple space engine) or semantics features (e.g., redefine match-
ing rules or add new features). This flexibility and extensi-
bility, together its small footprint and simple design, are the
defining features of LighTS.

We put forth two contributions. First, we present the
overall architecture and programming interface of LighTS,
and describe the mechanisms supporting customization and
extension. Second, we show how these mechanisms can
be exploited straightforwardly to suit the needs of context-
aware applications. In particular, we describe the design of
two additional matching semantics (one based on compari-
son over value ranges and one based on fuzzy logic), and of
a new feature which enables data aggregation at the tuple
level. Finally, the ability to change the back-end of the im-
plementation enables us to provide different deployment al-
ternatives, including support for devices running Java2 Mi-
cro Edition (J2ME).

The paper is organized as follows. Section 2 is a concise
overview of Linda. Section 3 presents the overall design
of LighTS, and shows how the resulting framework can be
easily extended both in terms of performance and semantics.
Section 4 discusses the extensions we introduced to better
suit the requirements posed by context-aware applications.
Section 5 briefly reports about implementation details and
availability of the software package. Finally, Section 6 ends
the paper with brief concluding remarks.

2. LINDA IN A NUTSHELL
In Linda, processes communicate through a shared tuple

space that acts as a repository of elementary data structures,
or tuples. A tuple space is a multiset of tuples, accessed con-
currently by several processes. Each tuple is a sequence of
typed fields, as in 〈“foo”, 9, 27.5〉, containing the informa-
tion being communicated. Tuples are added to a tuple space
by performing an out(t) operation, and can be removed by
executing in(p). Tuples are anonymous, thus their selection
takes place through pattern matching on the tuple content.
The argument p is often called a template or pattern, and
its fields contain either actuals or formals. Actuals are val-
ues; the fields of the previous tuple are all actuals, while the
last two fields of 〈“foo”, ?integer, ?float〉 are formals. For-
mals act like “wild cards”, and are matched against actuals
when selecting a tuple from the tuple space. For instance,
the template above matches the tuple defined earlier. If
multiple tuples match a template, the one returned by in
is selected non-deterministically. Tuples can also be read
from the tuple space using the non-destructive rd(p) oper-
ation. Both in and rd are blocking, i.e., if no matching
tuple is available in the tuple space the process performing
the operation is suspended until a matching tuple becomes

available. A typical extension to this synchronous model is
the provision of a pair of asynchronous primitives inp and
rdp, called probes, that allow non-blocking access to the
tuple space. Moreover, some variants of Linda (e.g., [14])
provide also bulk operations, which can be used to retrieve
all matching tuples in one step1.

3. THE DESIGN OF LIGHTS
In this section we present the core features of LighTS,

followed by the mechanisms for customizing and extending
the framework, which are exploited in Section 4 to build new
features useful for context-aware applications.

3.1 The Core API of LighTS
The core of LighTS is contained in the lights package

and is constituted by a set of interfaces that model the fun-
damental concepts of Linda (i.e., tuple spaces, tuples, and
fields) and by a built-in implementation of these interfaces.

Tuple spaces. Figure 1 shows2 the interface ITupleSpace,
which must be implemented by every tuple space object.
The interface contains the basic Linda operations described
in Section 2, i.e., insertion (out), blocking queries (in, rd),
probes (inp, rdp), and bulk operations (outg, ing, rdg). Tu-
ple spaces are expected to be created with a name, enabling
an application to manage multiple tuple spaces, as suggested
in [7]. The name of a tuple space can be retrieved through
the method getName. Finally, ITupleSpace provides also a
method count that returns the number of tuples currently
in the tuple space.

Being an interface, ITupleSpace specifies only a syntac-
tic contract between the implementor and the user of the
implementing object, and nothing can be said about the
semantics of the actual implementation. Therefore, for in-
stance it is not possible to prescribe that accesses to the
tuple space must be mutually exclusive, as usually required
by Linda. This is an intrinsic limitation in expressivenes of
the Java language (and other object-oriented approaches).
Nevertheless, the built-in TupleSpace class, which imple-
ments ITupleSpace, behaves like a traditional Linda tuple
space by preserving atomicity of operations. Moreover, tu-
ple insertion is performed by introducing in the tuple space a
copy of the tuple parameter, to prevent side effects through
aliasing. Since tuples may contain complex objects, copying
relies on the semantics of Java serialization, which already
deals with aliases inside object graphs. Upon insertion, a
deep copy of the tuple parameter is obtained through seri-
alization and immediate deserialization. A similar process is
performed when a non-destructive read operation (rd, rdp,
or rdg) is performed. Nevertheless, our TupleSpace imple-
mentation can be configured to reduce the impact of serial-
ization and trade space for speed, by storing a copy of the
byte array containing the serialized tuple together with the
tuple itself. This way, read operations are faster since they
need to perform only a deserialization step to return their re-
sult. The desired configuration is specified at creation time
through the constructor, which also enables setting the name
of the tuple space.

1Linda implementations often include also an eval opera-
tion which provides dynamic process creation and enables
deferred evaluation of tuple fields. For the purposes of this
work, however, we do not consider this operation further.
2Exceptions are omitted for the sake of readability.

public interface ITupleSpace {
String getName ();
void out(ITuple tuple);
void outg(ITuple [] tuples);
ITuple in(ITuple template);
ITuple inp(ITuple template);
ITuple [] ing(ITuple template);
ITuple rd(ITuple template);
ITuple rdp(ITuple template);
ITuple [] rdg(ITuple template);
int count(ITuple template);

}
public interface ITuple {

ITuple add(IField field);
ITuple set(IField field , int index);
IField get(int index);
ITuple insertAt(IField field , int index);
ITuple removeAt(int index);
IField [] getFields ();
int length ();
boolean matches(ITuple tuple);

}
public interface IField {

Class getType ();
IField setType(Class classObj);
boolean matches(IField field);

}
public interface IValuedField extends IField {

boolean isFormal ();
java.io.Serializable getValue ();
IValuedField setValue(java.io.Serializable obj);

}

Figure 1: The core interfaces of LighTS.

Tuples. Figure 1 shows the interface ITuple, which pro-
vides methods for manipulating tuples. A field at a given
position in the tuple (from 0 to length()-1) can be read
(get), changed (set), or removed (removeAt). A new field
can be appended at the end of the tuple (add), as well
as at any other position (insertAt). The fields compos-
ing the tuple can also be read collectively into an array
(getFields). No syntactic distinction is made between tu-
ples and templates—they are both ITuple objects.

The key functionality, however, is provided by the matches
method, which is expected to embody the rules governing
tuple matching and therefore is the one whose redefinition
enables alternative semantics. This method is assumed to
be automatically invoked by the run-time whenever a match
must be resolved, and to proceed by comparing the tuple ob-
ject on which matches is invoked—behaving as a template—
against the tuple passed as a parameter. By virtue of en-
capsulation, the matching rule implemented in matches is
entirely dependent on the template’s class, implementing
ITuple. Nevertheless, by virtue of polymorphism and dy-
namic typing, the behavior of the run-time is the same re-
gardless of the details of the matching rule, since the only
assumption it makes is to operate on a template implement-
ing ITuple.

The default semantics of matches as implemented in the
built-in Tuple is the traditional one. When matches is in-
voked on a template against a parameter tuple it returns
true if:

1. the template and the tuple have the same arity, and

2. the ith template field matches the ith tuple field.

Field matching is described next.

Fields. Figure 1 shows the interfaces representing tuple
fields. IField provides the minimal abstraction of a typed
tuple field. Methods are provided for accessing the field’s

type (getType, setType). As with ITuple, IField contains
a method matches, where the implementing classes specify
the matching semantics, as exemplified later on.

The features of IField are enough to represent a for-
mal but not an actual field, in that there is no notion of a
field’s value. This abstraction is provided by the interface
IValuedField which extends IField with the accessors nec-
essary to deal with the value (getValue, setValue), as well
as with a way to test whether the current field is a formal
(isFormal). Note that setValue accepts any Object as a
parameter. Moreover, the field’s type is automatically set
to the parameter’s class.

The need for two separate interfaces is not immediately
evident if one considers only the pragmatic need of sup-
porting the basic Linda operations. As a matter of fact,
the built-in Field implements both interfaces. However,
this separation provides a cleaner decoupling when match-
ing semantics that do not rely on exact value match are
considered, as in the examples we provide later in this and
the next section. The built-in Field is defined so that
this.matches(f) returns true if:

1. this and f have the same type;

2. if this and f are both actuals (i.e., isFormal() returns
false for both of them) they also have the same value.

Equality of types and values relies on the equals method—
as usual in Java.

Programming example. Let us walk through the simple
task of inserting two tuples in a tuple space and retrieving
one of them. We assume a statement import lights.* has
been specified. First, we need to create a tuple space:
ITupleSpace ts = new TupleSpace (" SAC05 ");

Then, we need to create the two tuples. Fields can be cre-
ated as:
IField f1 = new Field (). setValue (" Paolo ");
IField f2 = new Field (). setValue(new Integer (10));

and then assembled in a tuple:
ITuple t1 = new Tuple ();
t1.add(f1);
t1.add(f2);

In alternative, we can leverage of the fact that ITuple meth-
ods always return an ITuple object (although not strictly
necessary from a purely semantic standpoint) and combine
multiple statements in a single one:
ITuple t2 = new Tuple ()

.add(new Field (). setValue (" Davide "))

.add(new Field (). setValue(new Integer (20));

The tuples can be inserted one at a time, or together in a
single atomic step, as in:
ts.outg(new ITuple [] = {t1 , t2});

Templates are created just like tuples:
ITuple p = new Tuple()

.add(new Field (). setType(String.class)

.add(new Field (). setValue(new Integer (10));

Finally, the probe operation
ITuple result = ts.rdp(p);

will return a copy of the first tuple in result. More exam-
ples are available at [4] and [5].

3.2 Customizing LighTS
The LighTS framework is designed to provide the min-

imal set of features implementing a Linda-like tuple space

and, at the same time, to offer the necessary building blocks
for customizing and extending it. We now discuss the most
relevant customization opportunities, which are exploited in
the extension packages included in the LighTS distribution.

Changing the tuple space engine. The tuple space im-
plementation in the lights core package is very simple3.
Notably, the data structure holding tuples is simply an in-
memory java.util.Vector object, which is scanned lin-
early upon a query operation. This design is motivated
by the need to support deployment on resource-constrained
devices—a requirement of the Lime project—and admit-
tedly may not perform reasonably in other scenarios.

Nevertheless, the information hiding provided by the core
interfaces greatly simplifies the task of realizing more sophis-
ticated implementations (e.g., providing persistence, check-
pointing, or more scalable matching algorithms), with little
or no impact on the application code. At one extreme, one
could even sneak a commercial system (e.g., TSpaces or Gi-
gaSpaces) behind the LighTS interfaces, e.g., to enable the
development of applications that can be deployed on top of
different tuple spaces engines. In a research context, this is
particularly useful to evaluate different alternatives without
the need to fully rewrite the application.

To simplify this development strategy, lights.adapters
provides the building blocks necessary to replace the built-in
implementation in lights. The classes TupleSpace, Tuple,
and Field in such package provide wrappers that on one
hand implement the required lights interfaces, and on the
other contain an adapter object implementing the required
functionality, and to which interface operations are dele-
gated4. The abstract class TupleSpaceFactory, to be de-
rived by the actual adaptation package, enables selection of
the appropriate set of adapter classes at start-up. To il-
lustrate these features, an adapter for TSpaces is included
in the current LighTS distribution. Also, a tuple space
adapter for J2ME has been implemented, which again con-
firms not only the versatility of the framework, but also that
its inherent simplicity eases its deployment even on devices
with tight resource constraints.

Changing the matching semantics. Tuple space sys-
tems vary considerable in terms of their matching seman-
tics. For instance, TSpaces enables the use of subtyping
rules in matching field types, and relies on the (re)definition
of the equals method for matching field values. Instead,
JavaSpaces matches two fields by comparing their serial-
ized forms. Also, a JavaSpaces tuple (or entry in Sun’s jar-
gon) is represented by a class, and therefore subtyping rules
among tuples take part in matching. In TSpaces, this is
enabled only if tuples are derived from a specific root class,
otherwise it is not allowed by default Tuple class. Finally,
TSpaces requires two matching tuples to have the same ar-
ity, while JavaSpaces lifts this constraint when a tuple is a
subtype of another. This short comparison evidences that
several variations are possible, with tradeoffs in expressive-
ness, ease of use, and integration with object-orientation.
As a consequence, committing to a particular choice may
end up hampering development of some applications.

LighTS was designed since the beginning with this prob-
lem in mind. The default matching in LighTS relies on the

3Space limitations force us to redirect the reader looking for
more details to the online documentation and source [4].
4Extensions are currently not supported by adapters.

equals method, disallows field or tuple subtyping, and re-
quires equal tuple arity. Nevertheless, the lights.extensions
package contains several examples that show how easy it is
to provide alternative semantics, by exploiting interfaces and
other aspects of our object-oriented design.

The class SubtypeField, for instance, takes subtype com-
patibility into account during field matching. Providing this
feature is as simple as subclassing lights.Field and re-
defining matches by including the additional constraint
getType (). isAssignableFrom(field.getType)

where field is the input parameter of matches. Analo-
gously, NotEqualField supports matching on inequality.

Tuple matching can be redefined similarly. PrefixTuple

extends Tuple by allowing a template of arity l to return a
successful match against any tuple whose first l fields match,
in order, with the template ones—a need that often arises in
practice in tuple space based applications. Incidentally, this
also provides a straightforward way to retrieve all tuples in
the tuple space. Again, the only change required is in the
implementation of matches.

Modifications can be more complex. For instance, the
same package contains also a RegexField that allows match-
ing of string fields using regular expressions and requires
additional attributes and methods for setting and compil-
ing the expression using the Java library. Many other ex-
tensions are possible. One could easily implement SQL- or
XML-based matching, and many others. Thus far, develop-
ment of extensions has been driven by pragmatic needs that
arose during experiences with the Lime middleware. In the
next section, we illustrate some extensions we found useful
in developing context-aware applications.

4. SUPPORTING CONTEXT-AWARENESS
As we discussed in the introduction, the tuple space ab-

straction is particularly well-suited for context-awareness.
Context data can be stored in the tuple space, and made
accessible by leveraging of the nice decoupling properties of
the Linda approach. Nevertheless, the standard matching
based on exact values is largely insufficient for context-aware
applications. Here, we describe two alternative matching
semantics, and also show how to exploit tuples in a way
that supports data aggregation—another relevant concern
in context-aware computing.

4.1 Matching on Value Ranges
In context-aware applications, many queries require to de-

termine whether a given value from contextual data (e.g.,
temperature from a sensor) is within an allowed range (e.g.,
35-38oC). Building this capability on top of a conventional
system that provides only exact value matching entails con-
siderable programming effort and computational overhead.
For instance, a common hack is to retrieve tuples by match-
ing on the other fields, and explicitly code in the application
the matching on the field involving a value range.

LighTS overcomes this limitation by leveraging the mech-
anisms for extension we illustrated in the previous section.
The class RangeField in the extensions package provides
methods for specifying the lower and upper bounds of the
value range and whether they are included in it, as shown
in Figure 2. The snippet below shows how to match over
the aforementioned temperature range, without including
the lower bound of 35oC:

public class RangeField extends TypedField {
public RangeField ()
public RangeField setLowerBound(Comparable low ,

boolean included)
public RangeField setUpperBound(Comparable up ,

boolean included)
public Comparable getLowerBound ()
public Comparable getUpperBound ()
public boolean isLowerBoundIncluded ()
public boolean isUpperBoundIncluded ()
public boolean matches(IField field)

}

Figure 2: The class RangeField.

RangeField rf = new RangeField ()
.setLowerBound(new Float (35) , false)
.setUpperBound(new Float (38) , true);

ITuple result = tuplespace.rdp(new Tuple ().add(rf));

Bounds can be represented by any object implementing the
interface java.lang.Comparable. RangeField extends ligh-
ts.extensions.TypedField—a convenience abstract class
that serves the only purpose of implementing the IField

interface—by simply adding attributes holding information
about bound values and redefining matches with the trivial
constraint necessary to check that the field being compared
against falls in the required range. As the reader can see,
the extent of modifications necessary to implement the re-
quired semantics is minimal and extremely simple, while the
impact on expressiveness is remarkable.

4.2 Fuzzy Matching: Dealing with Uncertainty
In several applications the power of range matching is not

enough, as users may not have the knowledge required to
formulate precise queries. For instance, a user may request
to find a restaurant that is close to her, without bothering
about estimating a reasonable range based on the urban
density of the surrounding area. Indeed, people commonly
describe an object property using words like “hot”, “far”,
“tall”, or “cheap”. Although intuitive, these concepts bear
a high degree of imprecision and uncertainty, and cannot be
modeled using the traditional set theory. Nevertheless, the
problem can be tackled successfully by using fuzzy logic.

Basics of fuzzy logic. Unlike conventional logic, in fuzzy
logic [9] a predicate may assume any value in a continuous
range, usually defined between 0 (totally false) and 1 (to-
tally true). From a set theoretical standpoint, this means
that each logic element belongs to a particular set with a
certain degree of membership. The function that defines
the mapping between the elements of a particular universe
of discourse and their degree of membership to a given set
is called membership function.

For example, let us consider the problem of character-
izing water temperature. When water is freezing at 0oC
everybody agrees that it is definitely cold—and similarly

Temp

Membership value

25° 50° 75°

0.5

1.0
HotWarm

Cold

Figure 3: Membership functions and fuzzy sets.

hot when boiling at 100oC. But what about water at 75oC?
Modeling this situation entails defining the fuzzy sets, i.e.,
the intuitive concepts used in the logic descriptions—e.g.,
hot, warm, and cold in our case. Moreover, each set must
be associated to a membership function. Figure 3 shows a
possible choice for our example where the value 75oC (that
is called crisp) belongs to two different fuzzy sets or, in other
words, “water at 75oC” is at the same time warm and hot,
with two different degrees of membership.

To enable reasoning, fuzzy logic also provides operators to
combine fuzzy predicates in more complex formulas. These
are adaptations of the well-known intersection (AND), union
(OR), and complement (NOT), to deal with degrees of truth
expressed as real numbers. More details can be found in [9].

In LighTS, the tuple space contains crisp values, which
applications can query using conventional matching or the
fuzzy matching provided by lights.extensions.fuzzy.

Programming model. In our API, fuzzy sets and their
membership functions are combined in what we call a fuzzy
term. A collection of fuzzy terms represents, in program-
ming terms, a fuzzy type. As the reader may argue, match-
ing based on fuzzy logic requires the fuzzy type of two fields
to match.

The following code snippet shows how to model the water
temperature example with our API:
FuzzyTerm ft =

new FuzzyTerm ("warm", new PiFunction (50.0f ,25.0f);
FloatFuzzyType temp =

new FloatFuzzyType (" Temperature ",-100,100)
.addTerm(ft);

The first line defines a new fuzzy term representing the
warm concept. A term is defined by a name and a member-
ship function, in this case a PiFunction centered at 50oC
and with a width of 25oC, yielding the bell shape in Fig-
ure 3. Our library provides several pre-canned functions
(e.g., Triangle, Trapezoid, Ramp, Step, . . .), and enables
the programmer to easily create her own, by implementing
the interface IMembershipFunction.

The second line creates a new fuzzy type, and binds to it
the previously created term. (Details representing hot and
cold are omitted.) A fuzzy type is characterized by a name
and two parameters delimiting its domain. In general, the
crisp values in a fuzzy type could be of any nature, and
therefore a FuzzyType class is provided whose elements can
be any Object instance. In practice, however, real numbers
are used most of the times. Therefore, we provide a subclass
FloatFuzzyType, used in the example.

Integrating fuzzy logic and tuple spaces. We are now
ready to describe how to exploit fuzzy matching in LighTS.
The full API provided by our extension is illustrated by the
UML diagram in Figure 4. Two new classes are provided,
FuzzyField and FuzzyTuple, which implement respectively
IField and ITuple and enable use of fuzzy logic at two
different levels.

A FuzzyField can be included in a conventional template,
e.g., a lights.Tuple object. In this case, the overridden
method matches evaluates based on fuzzy logic, and returns
true only if the membership value of the crisp data found
in the field being compared is higher than a given thresh-
old, associated to the membership function.A FuzzyField

is still characterized by type and value, although these are
expressed in a fuzzy fashion. In the following code snippet
FuzzyField ff = new FuzzyField ()

FuzzyField

<<create>> FuzzyField()

set(field: IField) : IField

getFuzzyValue()

getFuzzyThreshold() : float

setFuzzyValue(fuzzyValue: FuzzyValue) : FuzzyField

setFuzzyThreshold(threshold: float) : FuzzyField

getFuzzyType() : FuzzyType

setFuzzyType(fuzzyType: FuzzyType) : IField

matches(field: IField) : boolean

fuzzyMatches(field: IField) : float

toString() : String

FuzzyTuple

getFuzzyTypeByName(name: String)

getCrispObjectByName(name: String,tuple: ITuple) : Object

getOperatorByName(term: String)

calc(formula: String,tuple: ITuple) : float

parse(formula: String,tuple: ITuple) : float

matches(tuple: ITuple) : boolean

setThreshold(threshold: float) : void

getThreshold() : float

getAdvancedQuery() : String

setAdvancedQuery(query: String) : void

getAndOperator()

getOrOperator()

setAndOperator() : FuzzyTuple

setOrOperator() : FuzzyTuple

FuzzyType

<<create>> FuzzyType(name: String)

getName() : String

addTerm(fuzzyTerm: FuzzyTerm) : void

getTerm(name: String) : FuzzyTerm

getTerms() : Iterator

getMembershipValue(term: String,crispObject: Object) : float

getTermsNumber() : int

gertTerm(crispObject: Object) : FuzzyTerm

FuzzyValue

<<create>> FuzzyValue(value: String)

setValue(value: String) : void

getValue() : String

setModifier(modifier: String) : void

getModifier() : String

FloatFuzzyType

<<create>> FloatFuzzyType(name: String,min: float,max: float)

<<create>> FloatFuzzyType(name: String,min: float,max: float,units: String)

setNearlyFunction() : void

setSmallerFunction() : void

setGreaterFunction() : void

getUnits() : String

getMax() : float

getMin() : float

getMembershipValue(term: String,crispValue: float) : float

getTerm(crispValue: float) : FuzzyTerm

generateTrianglePartition(terms: String[]) : void

generatePiPartition(terms: String[]) : void

isNearly(crisp: float,reference: float) : float

isGreater(crisp: float,reference: float) : float

isSmaller(crisp: float,reference: float) : float

FuzzyTerm

<<create>> FuzzyTerm(term: String)

getMembershipFunction() : IMembershipFunction

setMembershipFunction(membershipFunction: IMembershipFunction) : void

getTerm() : String

setTerm(term: String) : void

<<Interface>>

IMembershipFunction

getMembershipValue(object: Object) : float

Figure 4: The UML class diagram of the package lights.extensions.fuzzy.

.setType(Float)

.setFuzzyType(temp)

.setFuzzyValue(new FuzzyValue ("warm "));

a FuzzyField is created. First, the type of the crisp values is
set, to enable “pre-filtering” of matching values—the basic
type matching requirement of Linda is still in place. Then,
the fuzzy type defined above for temperature is associated
to the field, followed by the “warm” concept. Fuzzy con-
cepts are represented by an instance of the class FuzzyValue,
which enables the programmer to specify a fuzzy concept.
In addition, FuzzyValue provides the machinery to specify
concepts like “very hot” or “somewhat cold” and automati-
cally adjust the corresponding threshold. Space limitations
prevent us from going into further details: anyway, this is
performed using well-known techniques [9].

The true power of fuzzy logic, however, is unleashed only
when FuzzyFields are used in a FuzzyTuple. As usual,
a FuzzyTuple matches another tuple only if all the fields
match in order. However, in this case the conjunction of
the result of pairwise field matching is not performed us-
ing the boolean operator AND, but with its fuzzy counter-
part. The method FuzzyTuple.matches does not rely on
FuzzyField.matches, as this implements ITuple.matches

and therefore returns a boolean. Instead, it relies on the
method FuzzyField.fuzzyMatches, which returns a float
representing the degree of membership of the crisp value
in the fuzzy set specified by FuzzyValue. If the tuple con-
tains also traditional fields, their matches method is invoked,
and the boolean return value converted to 0.0f if false,
or to 1.0f if true. The float values are then combined by
FuzzyTuple.matches using the default fuzzy AND operator,
or a user-defined one. This feature enables the formulation
of complex fuzzy queries, possibly mixed with conventional
ones, e.g., retrieving the reading from a sensor that is close
and is recording a cold temperature.

Finally, FuzzyTuple also provides a simple language that
enables one to write more complex and flexible queries using

operators other than AND, also provided by our library.
This way, it is possible to write the equivalent of logical
formulas, as in:
(Distance is not Far) or (Price is Cheap)

The query string is input through setAdvancedQuery and
executed as part of the matching algorithm in FuzzyTuple.

4.3 Aggregating Data
A very common need in context-aware applications is the

ability to deal with aggregated information. For instance,
in the experience described in [10], the tuple space holds
tuples containing user locations expressed in Cartesian co-
ordinates. The task of selecting the users at a given distance
should be ideally as simple as specifying a template with the
required distance. In practice, however, it involves comput-
ing

p
(x− x0)2 + (y − y0)2, where (x0, y0) are the coordi-

nates of the agent issuing the query and (x, y) those of a
location tuple. Since Linda semantics does not provide a
form of matching based on a function of two or more fields,
this matching must be specified entirely outside the tuple
space framework, as part of the application logic.

LighTS tackles the problem by decoupling the represen-
tation of the tuples stored in the tuple space from those
manipulated by the application, by means of virtual tuples.

An example is useful in clarifying their use. Let us con-
sider the possibility of allowing the programmer to “see”
the concrete tuples stored in the tuple space in the form
p = 〈?UserID,?int,?int〉 as if they were instead virtual tuples
in the form p′ = 〈?UserID,?int〉, where the second field of p′

is the sum of the last two fields of p. If this were possible, a
rdg(t) using the virtual tuple t = 〈?UserID,50〉 could match
the concrete tuples 〈’u15’,20,30〉 and 〈’u23’,1,49〉. By sub-
stituting sum with distance, we would have found a solution
to the aforementioned problem of localizing users. The trick
can be accomplished with the following code snippet:
ITuple vt = new VirtualTuple(t) {

public ITuple virtualize(ITuple tuple) {

ITuple res = new Tuple ().add(tuple.get (0));
IValuedField f = (IValuedField) tuple.get (1);
int v1 = ((Integer) f.getValue ()). intValue ();
f = (IValuedField) tuple.get (2);
int v2 = ((Integer) f.getValue ()). intValue ();
res.add(new Field (). setValue(new Integer(v1+v2)));
return res;

}
};
vt.add(new Field (). setType(UserID.class))

.add(new Field (). setType(Integer.class))

.add(new Field (). setType(Integer.class));

The first line creates a new VirtualTuple and initializes it
with the template used at the application level—the virtual
tuple, in our case t = 〈?UserID,50〉. The last three lines de-
fine instead the template that filters out the concrete tuples
actually present in the tuple space. To enable matching, the
concrete tuples must be somehow transformed to fit the for-
mat of the virtual tuple. The transformation is specified by
the method virtualize, which in the example code above
is defined using an anonymous inner class. When a match
is requested on vt, its overridden matches method decides
whether the tuple being compared is a match by first com-
paring it with the standard rules against vt’s fields. If this
match is successful, the concrete tuple is transformed by
calling virtualize, and matched against the virtual tuple
t. This latter matching is governed by the semantics of the
matches method associated to the dynamic type of t, and
its result determines the overall matching outcome.

5. IMPLEMENTATION
LighTS is implemented in Java, using J2SE 1.4. The

package lights.utils contains additional features that sim-
plify the programmer’s life. The interface Tuplable, for in-
stance, simplifies the task of flattening a structured object
into a tuple and vice versa, thus reducing the gap between
the object-oriented and tuple space paradigms.

The core lights package is only about 150 lines of code.
The adapters and extensions (and especially the fuzzy

package) bring the total number of lines to 1,500. The sizes
of jar files are 15Kbytes and 75Kbytes respectively, demon-
strating the small footprint of the system.

Without the pretense to be accurate and exhaustive, but
with the only intent to get a feel of the performance of
LighTS, Table 1 reports some tests we ran against some
well-known commercial systems. These preliminary data
show how LighTS is always faster than its competitors,
which confirms that its lightweight design pays off. In part,
this can be attributed to the fact that the systems consid-
ered do not distinguish between local and remote communi-
cation, always using inter-process communication—a clear
loss when only a local tuple space is needed. The one case
in Table 1 where LighTS is slower than GigaSpaces is prob-
ably determined by the techniques exploited in this system
to deal with scalability. Definitive results would need to
take into account more sophisticated usage profiles—which
is nonetheless outside the scope of this paper.

6. CONCLUSIONS
In this paper we presented LighTS, a lightweight imple-

mentation of the tuple space model. Unlike available sys-
tems, LighTS is designed with minimality and extensibility
in mind. The advantages of this design choice are exempli-
fied by a number of extensions built to support the develop-
ment of context-aware applications. LighTS is released as

#tuples tuple size LighTS TSpaces GigaSpaces

100 1000 0.749 0.786 2.536
1000 1000 1.871 4.394 5.534
10000 1000 62.781 120.015 26.611
1000 100 1.806 4.207 5.473
1000 10000 2.111 4.386 5.899
1000 100000 4.166 9.369 10.172

Table 1: A simple performance test on tuple insertion and
reading. In each run, we insert several tuples with out, and
then read them in sequence with rd. The first field is an
integer counter (on which pattern matching is performed),
while the second is a byte array. Tests are ran 5 times and
results averaged. Tuple sizes are in bytes, times are in sec-
onds. The test machine is a Pentium 4, 2.4 GHz, 1 Gbyte
RAM running Sun’s JRE 1.4.2 under Debian Linux.

open source under the LGPL license, and is available at [4].

Acknowledgements.The work described in this paper was
partially supported by the Italian Ministry of Education,
University, and Research (MIUR) under the VICOM project,
and by the National Research Council (CNR) under the IS-
MANET project.

7. REFERENCES
[1] www.almaden.ibm.com/cs/TSpaces.

[2] www.sun.com/software/jini/specs/jini1.2html/

js-title.html.

[3] www.gigaspaces.com.

[4] lights.sourceforge.net.

[5] lime.sourceforge.net.

[6] G. Cabri, L. Leonardi, and F. Zambornelli. MARS: A
Programmable Coordination Architecture for Mobile
Agents. IEEE Internet Computing, 2000.

[7] N. Carriero, D. Gelernter, and L. Zuck.
Bauhaus-Linda. In Object-Based Models and
Languages for Concurrent Systems, LNCS 924.
Springer, 1995.

[8] D. Gelernter. Generative Communication in Linda.
ACM Computing Surveys, 7(1):80–112, Jan. 1985.

[9] G.J. Klir, B. Yuan, and U.H. Saint Clair. Fuzzy set
theory: foundations and applications. Prentice Hall,
1997.

[10] A.L. Murphy and G.P. Picco. Using Coordination
Middleware for Location-Aware Computing: A Lime
Case Study. In Proc. of the 6th Int. Conf. on
Coordination Models and Languages (COORD04),
LNCS 2949, pages 263–278. Springer, February 2004.

[11] A.L. Murphy, G.P. Picco, and G.-C. Roman. Lime: A
Middleware for Physical and Logical Mobility. In
Proc. of the 21st Int. Conf. on Distributed Computing
Systems (ICDCS), pages 524–533, May 2001.

[12] R. De Nicola, G. Ferrari, and R. Pugliese. Klaim: A
Kernel Language for Agents Interaction and Mobility.
IEEE Trans. on Software Engineering, 24(5), 1998.

[13] A. Omicini and F. Zambonelli. Tuple Centres for the
Coordination of Internet Agents. In Proc. of the Symp.
on Applied Computing (SAC’99), February 1999.

[14] A. Rowstron. WCL: A coordination language for
geographically distributed agents. World Wide Web
Journal, 1(3):167–179, 1998.

