
“main”
2007/6/27
page i

s��o#���@/�<Æ�§{9�ìøÍ@/�<Æ"é¶

2006�<Æ�̧��̧

$3����<Æ0A'õA½̈�7Hë�H

View-Dependent Simulation of

Articulated Bodies

with Haptic Feedback

(�� ÉÓ '� &ñ
 �Ð :�x ��� /BN �<Æ õ�

�̂� Ãº &ñ

2007

“main”

2007/6/27

page i

View-Dependent Simulation of

Articulated Bodies

with Haptic Feedback

s�¹	�̀¦çÈQm¹	Ü¼�Ð£2�<Ê

2007� 7�

�&ô@×Qì ��×QÅ

(��ÉÓ'�&ñ
�Ð:�x���/BN�<Æõ� �̂�Ãº&ñ

“main”

2007/6/27

page ii

�̂�Ãº&ñ
_�çÈQm¹	�̀¦�$�<Ê

y�õ� �̂� %ò
 ï�r

�æ
 �̂� "î

6 x 8̈� 5px

�̂� %ò
 ï�r

�&ô@×Qì ��×QÅ

“main”

2007/6/27

page iii

Contents

Abstract x

I. Introduction 1
1.1 Dissertation Goals . 3

1.2 Main Contributions . 4

1.2.1 View-Dependent Dynamics . 5

1.2.2 Continuous Collision Detection of Articulated Bodies 5

1.2.3 Interactive Character Control . 6

1.3 Organization . 7

II. Related Work 8
2.1 Physically-Based Character Simulation . 8

2.1.1 Physically-Based Animation . 8

2.1.2 Articulated-Body Dynamics . 9

2.1.3 Continuous Collision Detection . 9

2.2 Simplification of a Dynamics Simulation . 10

2.2.1 Simulation Levels of Detail . 10

2.2.2 View-Dependent Simplification . 10

2.2.3 Perceptually-Based Simplification . 11

2.3 Interactive Character Control . 11

2.3.1 Interfaces for Controlling Animation . 11

2.3.2 Haptic Interfaces . 12

2.4 Featherstone’s Divide and Conquer Algorithm 12

III. View-Dependent Dynamics of Articulated Bodies 14
3.1 View-Dependent Simulation . 14

3.1.1 Defining an Error Measure . 15

3.1.2 Simplifying the Dynamics . 17

3.2 Adaptive Articulated-Body Dynamics . 18

3.2.1 Hybrid Bodies . 18

3.2.2 Active Region Determination . 19

iii

“main”

2007/6/27

page iv

3.3 View-Dependent Metrics . 20

3.3.1 Simplifying the Simplification Problem . 20

3.3.2 Semi-Predictive Metrics . 21

3.3.3 Calculation ofNM using Bounding-Volume Hierarchies 22

3.3.4 Calculation ofNM using GPUs-Based Occlusion Queries 23

3.3.5 Comparisons Between the Two Methods for CalculatingNM 24

IV. Continuous Collision Detection for Adaptive Simulation of Articulated

Bodies 25
4.1 Preliminaries . 25

4.1.1 Continuous Collision Detection . 26

4.1.2 Adaptive Dynamics . 27

4.2 Kinematics . 28

4.2.1 Definitions . 29

4.2.2 Recursive Transformation Updates . 30

4.2.3 Bounding Transformations . 30

4.3 Continuous Collision Detection . 31

4.3.1 AABB Culling . 32

4.3.2 Computing Contact Information . 32

V. Haptic Puppetry for Interactive Games 34
5.1 Virtual Marionette . 34

5.1.1 Marionette Modeling . 35

5.1.2 String Modeling . 37

5.1.3 Modeling of the Control . 38

5.2 Haptic Interfaces . 39

5.2.1 Interface Design . 40

5.2.2 Haptic Force Computation . 40

VI. Results and Discussion 42
6.1 Implementation Platform . 42

6.2 Benchmarks and Applications . 43

6.2.1 View-Dependent Dynamics of Articulated Bodies 43

6.2.2 Continuous Collision Detection for Adaptive Simulation of Articulated Bodies 46

6.2.3 Haptic Puppetry . 48

6.3 Discussions . 51

VII.Conclusion 52

“main”

2007/6/27

page v

References 54

Ðaµ%K�5�³À 61

“main”

2007/6/27

page vi

Figures

2.1 An example of a chain-like articulated body and its assembly tree.Left: Two

sub-articulated bodies A and B are attached by a joint to form a new articulated

body C.Right: The corresponding assembly tree for the articulated body C. Here,

the root node represents the articulated body C; the internal nodes represent the

sub-articulated bodies A and B; the leaf nodes represent all the rigid bodies in C.. . 13

3.1 View-dependent dynamics simplification of a toy-like dog model in an interac-

tive application (offline rendering). a: the complete environment. The user con-

trols the model (sixteen rigid bodies) with a haptic interface.b: the user places the

dog behind the environment. Our algorithm automatically rigidifies the legs of the

model, resulting in a total of eight rigid groups.c: this back view shows the rigid

groups corresponding to the position shown inb (one color per rigid group). 15

3.2 Assembly tree of an articulated body.Adaptive articulated-body dynamics simu-

lates only some of the joints in the articulated bodies, which form theactive region. . 18

3.3 View-dependent motion metric.The view-dependent motion metric is obtained by

combining a priori motion metrics with visibility estimations.. 19

3.4 Visibility estimation from bounding volumes. The visibility estimatioñNM (C)
is taken as the minimum of two projections.a: Projected bounding volume of the

entire articulated body.b: Sum of the projected bounding volumes of individual

rigid bodies. 23

4.1 The two-stage pipeline of our continuous collision-detection algorithm (adapted

from [60]). The algorithm computes the time of collision and the contact location

from two successive configurations of an articulated model.. 26

4.2 The kinematic representation used in our continuous collision-detection algo-

rithm. The figure shows the principal joint transformationTB
A, the principal-to-

secondary handle transformationsTA
1 , TA

2 , TB
1 , TB

2 andTB
3 , and the child-to-parent

transformationsTC
A andTC

B. 28

vi

“main”

2007/6/27

page vii

4.3 Adaptive computation of rigid-body transformations using an assembly tree.

Only the nodes above the dotted curve are being simulated at the current time step,

which allows us to limit the transformation updates to a limited number of nodes: (a)

updating the principal joint, the principal-to-secondary and child-to-parent trans-

formations of the simulated nodes (green nodes); and (b) updating the world trans-

formations for the potentially colliding rigid bodies (yellow nodes).. 32

5.1 Modeling. A string is modelled as a chain of particles undergoing different forces

like spring force fs, inner friction ff , gravity fg, air friction fa, ground friction fx, fz,

ground absorption fabs and ground repulsion frep. 35

5.2 Different Joint Types. ball and socket joint, universal Joint, hinge joint (from left

to right) . 36

5.3 System Setup and Control Mapping.(a) shows the system setup and (b) shows of

mapping the control to the haptic stylus.. 39

5.4 System Diagram.The red block is an asynchronous process whereas the blue blocks

are synchronized with each another.. 40

6.1 View-dependent dynamics simplification of a falling character.Our algorithm

automatically simplifies the dynamics of the falling character while preserving the

overall visual aspect of the impact (e.g. legs motion, see also Fig. 6.2.2 for a close-

up on the final frames.). 44

6.2 View-dependent dynamics simplification. Top: Our algorithm automatically sim-

plifies the dynamics of a falling character as its distance to the viewer increases.

Bottom: Corresponding rigidification at this time step (one color per rigid group).

See also Fig. 6.1.1 for the corresponding motion strips.. 44

6.3 View-dependent Simulation of 100 Swinging Toy Dogs.100 toy-like dogs con-

sisting of 1600 rigid bodies are attached to virtual springs (not shown in the image)

in space and simulate dynamics in a view-dependent manner. In this scene, as many

dogs are occluded by other dogs, clipped against the viewport, or seen far from the

viewer, the number of simulated, active joints is reduced from 1500 to 493 on aver-

age without incurring visual deterioration in the simulation. Each simulation frame

takes 14 msec on average.. 45

6.4 Performance of our algorithm depending on visual error thresholds. As the

visual error threshold e increases, the number of active nodes is automatically de-

creased by the view-dependent algorithm (left), and the computational cost is re-

duced (right). 45

“main”

2007/6/27

page viii

6.5 Performance of our algorithm depending on the viewer’s distance.Our algo-

rithm automatically decreases the number of active joints when the distance d be-

tween the viewer and the pendulum increases (left), reducing the computational cost

of the simulation (right). 45

6.6 Benchmarking examples. In these figures, the number of active joints is 15 and

rigid bodies with identical colors belong to the same group of inactive links. Also,

for each row of the figures, the third column is a zoomed-up version of the second

column to show collision area.Top row: two wooden mannequin models consisting

of 29 rigid bodies, 11K triangles for each model are pulled together by a spring-like

string and collided with each other.Middle row: a pendulum consisting of 30 rigid

bodies and 119K triangles swings because of gravity and collides with itself.Bottom

row: a wooden mannequin falls under gravity and collides with static tableware.

The static environment consists of 153K triangles in total.. 47

6.7 CCD timings for three benchmarks and a comparison between them.Each

graph shows a timing profile of CCD performance with AABB culling and exact

contact computation steps for three benchmarking scenarios, and their comparison.

The CCD time complexity gradually increases as a function of the number of active

joints. 48

6.8 Animation sequences in our virtual marionette system.The virtual marionette is

standing up from a chair, and kicking and chasing a ball.. 50

“main”

2007/6/27

page ix

Tables

6.1 Model complexities of benchmarking models.The third and fourth column show

the triangle counts and number links of the benchmarking models, respectively.. . . 46

ix

“main”

2007/6/27

page x

Abstract

Recently, articulated-body simulation has been widely used in computer graphics as an efficient

way of modelling and animating virtual characters. In particular, physically-based articulated-body

simulation is able to realistically and naturally model the motion of articulated bodies as well as the

interactions between different bodies, or between a body and the surrounding, virtual environment.

Some of the major challenges in articulated-body simulation include offering a fast simulation

with a large number of characters and designing an effective and easy-to-use interface which allows

users to interactively control the characters. This dissertation makes three contributions to address

these challenges.

First of all, we propose a view-dependent dynamics simulation, generating an approximated

simulation by simplifying the articulated-body dynamics based on visual criteria. This method en-

ables an automatic trade-off between visual precision and computational efficiency. We also examine

general problems related to the subject, and propose a semi-predictive simplification method based

on motion with visibility estimations.

Secondly, we introduce a continuous collision detection (CCD) algorithm for adaptive articulated-

body dynamics. We define a new hierarchical set of transforms that represent the kinematics of an

articulated body and it is used in our algorithm to efficiently detect the first time of contact between

moving bodies, whose motions are governed by the view-dependent dynamics.

Finally, we introduce a new user interface combining a traditional marionette control method

with haptic interfaces to be able to generate a complex motion of an articulated body. It offers easy

and intuitive manipulation with force feedback to interactively control articulated bodies in virtual

environment.

We implement and evaluate each of these techniques with various benchmarking settings. The

experimental results shows that these techniques provide fast and effective solutions for physically-

based simulation of a large number of articulated-body and its interactive control.

x

“main”

2007/6/27

page 1

1

Chapter I

Introduction

The goal of character animation is to generate a desired motion of characters in virtual environment.

The simulation result, such as interactions between characters or between the characters and its

surrounding environment, as well as the motion of the character, should be natural and realistic to

the user (or viewer).

Physically-based simulation has been taking on an increasingly important role in numerous

graphical applications where a realistic motion is desired, in such areas as computer animation,

feature films, computer games, and virtual reality. In particular, articulated-body dynamics has been

used to realistically simulate the motions of diverse forms of animating characters such as humans,

hair, animals, plants, etc. Even though there has been extensive research in this field, but many

interesting issues have yet to be addressed.

One of the fundamental problems in articulated-body dynamics is the forward dynamics prob-

lem, which computes the motion of an articulated-body when the given forces are exerted on the

body. The use of forward dynamics is an effective way to control or simulate a large number of

articulated bodies in computer graphics or robotics [4, 11, 22, 23, 24, 30, 44]. Linear-time, optimal

solutions for forward dynamics are well-known (e.g.[23, 24]); however, current solutions prove to

be expensive when simulating numerous or complex articulated bodies as is common in feature films

“main”

2007/6/27

page 2

2

or computer games.

Another challenge in articulated-body dynamics is the modelling of interactions between bodies

through collision detection and response. Collision detection (CD) is the problem of testing for in-

terference between geometric models moving in space. Many applications in such areas as computer

graphics, robotics and geometric modeling require fast and reliable CD to simulate the interaction

between virtual objects. As a result, CD has been extensively studied and many efficient algorithms

are known. At a broad level, CD algorithms can be classified into two categories: discrete CD algo-

rithms which check for interferences between static instances of moving objects and continuous CD

(CCD) algorithms which must explicitly account for the object’s motion, and report the first time of

contact (TOC) if a collision occurs.

Recently, CCD has drawn much attention from different communities because of the need for

correctly dealing with dynamic nature in applications. The major advantage of CCD is that it always

maintains the non-penetration constraints for moving objects so that no collisions are ever missing

between simulation time steps, allowing the accurate modeling of rigid-body dynamics [5, 59]. In

haptic rendering, CCD can be used to compute the god-object of the haptic probe, which should

not penetrate the objects that the user is touching [49]. In robot motion planning, CCD plays an

important role in finding a continuous, collision-free path between two configurations of a moving

robot [66, 63].

In computer animation and interactive computer games, controlling the motion of an articulated

character intuitively is considered as a difficult task. One of the reasons is that, typically, an articu-

lated model used in the fields has a high degree-of-freedom (DOF) for joints so that it is challenging

to devise an easy-to-use interface to control an individual DOF. For example, the human model used

in typical gaming environments has more than 30 DOFs [10] and intuitive controlling each DOF in

the model is very difficult. In order to address these issues, techniques based on motion capturing or

manual motion composition have been proposed [37]. However, these techniques require huge mo-

tion database or tedious manual work to create sophisticated motions. Moreover, these methods are

often computed as off-line process so that creating an interactive response of characters at run-time

is very difficult.

“main”

2007/6/27

page 3

3

1.1 Dissertation Goals

The goal of this dissertation is performing a view-dependent simulation of articulated bodies

which then can be controlled by haptic interfaces. To achieve this goal, we introduce three relevant

solutions that can be combined together to produce a realistic simulation of articulated bodies.

The view-dependent dynamics algorithm provides a fast and natural simulation of articulated

bodies. It improves simulation performance by simplifying the forward dynamics based on visual

criteria, more specifically, the visibility. For example, when a body is occluded by an obstacle or by

another body, or when the body is clipped against the viewing window, we simplify the simulation

for those bodies which are not visible. Moreover, when the body is visible but its extent on the screen

space is very small, we also simplify this motion. Toward this end, our view-dependent dynamics

algorithm automatically chooses relevant joint motions from the expected size of motion on the

screen, and determine the level of simulation.

Closely coupled with the view-dependent forward dynamics algorithm, we introduce a CCD

algorithm. Our algorithm efficiently detects the first time of contact by taking advantage of the

simplification in adaptive dynamics simulation, and it guarantees non-penetration between objects

which is necessary to model proper interactions during the simulation.

While these two algorithms are related to the simulation of articulated bodies in virtual environ-

ment, we also propose an interface which allows users to interact with the virtual environment. Here,

haptic devices are used as a connecting metaphor between the virtual environment and the user. It

delivers user’s manipulation to the virtual environment, and returns feedback to the user based on

the results of the simulation.

In our approach, we combine a traditional marionette control method with haptic devices to

generate the complex motion of an articulated body. The haptic device is capable of naturally con-

trolling 3D characters, since it receives inputs in 3D space. It makes the interface simpler and more

intuitive than the one with a mouse or a keyboard, and it also provides an intuitive manipulation

method. Moreover, it enables more realistic and detailed control for the user with the force feedback

“main”

2007/6/27

page 4

4

delivered to the users.

These three solutions are integrated into a system of interactive, articulated-body simulation.

The sequence of procedures in this system can proceed as follows:

1. The user manipulates haptic devices by moving or tilting the tip of haptic devices.

2. The information from the haptic device is mapped to a control stick in the simulation envi-

ronment, which holds a stringed character. The forces generated by the movement of haptic

device are computed and are applied to an articulated character.

3. The motion of the character is computed by our view-dependent dynamics algorithm. The

simplification can be applied based on the metrics using visual criteria.

4. During the simulation, our CCD algorithm detects collision between the bodies or between

the body and its environment. An appropriate collision response such as colliding contact or

sliding contact is computed in this step to model proper interactions.

5. As a result of simulation, a desired motion is generated, and the force feedback, which maps

the string tension of the control stick, is delivered to the user.

6. These steps are repeated.

The resulting system provides an efficient, articulated-body simulation, which also allows the

users to interactively manipulate the bodies with high DOFs using haptic devices. The marionette

control interface with haptic devices enables the users to quickly and easily generate various complex

motions, which can be delivered via artistic or technical endeavours.

1.2 Main Contributions

We propose new methods for an effective view-dependent simulation of articulated bodies with

haptic feedback. Specifically, we address the following problems.

1.2.1 View-Dependent Dynamics

“main”

2007/6/27

page 5

5

We proposes a method forview-dependent articulated-body dynamics, which simplifies the

forward dynamics simulation of articulated bodies based on visual criteria. We propose asemi-

predictiveapproach, which relies on a combination of exact, a priori error computations and visibil-

ity estimations. Our method is able to simplify the dynamics of an articulated body not only based

on visibility criteria (i.e. the visible portion of the articulated body on the screen), but also based on

the relative importance that the articulated-body motion has to the viewer. We demonstrate our ap-

proach on several benchmarks and show how our view-dependent articulated-body dynamics method

allows an animator (or a physics engine) to finely tune the visual quality of a simulation, and obtain

potentially significant speed-ups during interactive or off-line simulations. As will be shown in the

benchmarking results, without incurring visual deterioration (e.g.popping), the view-dependent dy-

namics gracefully simplifies the level of details in the simulation and thus provide visually-plausible

simulation to the viewer.

1.2.2 Continuous Collision Detection of Articulated Bodies

To model the interactions during the simulation, we present a method of CCD for articulated

bodies whose motion is governed by such an adaptive simulation. We demonstrate how a new

hierarchical set of transforms can describe the kinematics of an articulated body, and how it can

be selectively and recursively updated during an adaptive simulation. This new approach to CCD

matches the reduced complexity of adaptive simulation, resulting in a potentially significant increase

in the speed with which articulated-body dynamics can be modelled.

Our CCD algorithm has the following characteristics:

• It extends the framework of adaptive articulated body dynamics to handle contacts.

• It includes a novel representation of hierarchical transforms which enables continuous colli-

sion detection to be performed adaptively with a number of degrees of freedom specified by

the user.

1.2.3 Interactive Character Control

“main”

2007/6/27

page 6

6

As an efficient control interface for animation characters, we propose the traditional marionette

control as a natural interface for articulated character control in computer games and computer ani-

mation. In our system, instead of controlling an individual joint parameter in an articulated character,

we use a virtual marionette to create sophisticated motions very quickly. The virtual marionette is

simulated using physically-based modelling paradigm. For the most of real-world marionettes, a

puppeteer manipulates the control - typically shaped as cross or bar - to create a swinging motion

of strings, which in turn moves the marionette itself. Our system relies on haptic interfaces to accu-

rately model the behavior of real marionette controls. The system translates input from marionette

controls into marionette motions and the resulting responsive forces are fed back into the haptic de-

vice. This results in the puppeteer having a better sense of control over the marionette that she or he

manipulates. Typically, two controllers are used for real-world marionette controls: one for primary

control and the other one for secondary, delicate control. In our system, we use two commodity

haptic interfaces such as Sensable’s OmniTM to model each of them.

Our virtual marionette system based on haptic interfaces provides the following benefits over

other existing animation system for articulated characters:

• Using our system, we can quickly create complicated motions for an articulated character in

games.

• Haptic interfaces in our system enable users to intuitively control the articulated character and

make them interact with virtual environments in real-time.

• Our system is based on physically-based modelling paradigm so that the generated motions

and their responses are similar to those experienced in the real world.

• Our puppetry can be used as a stand-alone game like [29].

1.3 Organization

“main”

2007/6/27

page 7

7

The organization of this dissertation is as follows: chapter 3 discusses the problem of view-

dependent simulation and proposes semi-predictive methods to address them. Chapter 4 presents a

CCD algorithm for adaptive, articulated-body dynamics simulation. Chapter 5 introduces a haptic

puppetry system, and explains the overall procedure of physically based simulation combined with

haptic interface. Finally, chapter 6 concludes the dissertation.

“main”

2007/6/27

page 8

8

Chapter II

Related Work

This chapter provides a brief survey of previous work related to physically-based simulation of

articulated bodies and its simplification, as well as interactive control of animation characters.

2.1 Physically-Based Character Simulation

2.1.1 Physically-Based Animation

Compared to other animation techniques like traditional, cell-based animation [38] and motion

capture-based animation [37], the physically-based animation technique has a particular strength

in creating a realistic animation responsive to the surrounding environments. At a broad level,

physically-based animation techniques can be classified into rigid body and deformable body sim-

ulation [20]. In our work, we are interested in rigid body simulation techniques for simulating the

marionette itself [72, 22] as well as deformable body simulation techniques for simulating strings

attached to the marionette [20].

More precisely, the rigid body simulator employed in our system is, in fact, an articulated

body simulator where many rigid bodies form links or chains. In computer graphics and robotics,

“main”

2007/6/27

page 9

9

articulated body simulation is often implemented using constraints-based techniques [72] based on

divide-and-conquer paradigm [22].

Deformable body simulation also has been widely studied in computer graphics, computer

animation, computer games, medical imaging, etc. The techniques to realize deformable body sim-

ulation can be classified into spring-mass system, finite element methods, and free form deforma-

tion [20]. Each method has its own advantage, but in our work, we are specifically interested in

spring-mass system, since our system requires high update rates for interactivity and our deformable

body is a simple string that can be easily modelled as a chain of mass-particles, inter-linked by a

spring.

2.1.2 Articulated-Body Dynamics

The use of forward dynamics to simulate the motion of articulated bodies has been extensively

studied [25]. Some of the best-known linear-time methods rely on a recursive formulation of the

motion equations [4, 11, 22, 30, 44], while others involve simplifying the motion equations including

the use of specialized spatial notations [23, 24].

Several techniques have been designed to simplify and reduce the cost of dynamic simulations.

Faure [21] proposed an iterative method to refine forward dynamics by correcting bilateral constraint

errors. Chenney et al. [14] used a view-dependent dynamics simplification. More recently, Redon

and Lin have introduced algorithms for adaptive simplification of forward quasi-statics [62] and

dynamics [56] of articulated bodies.

2.1.3 Continuous Collision Detection

There are six different approaches to CCD for a single body: algebraic equation solving [12,

16, 33, 57], swept volumes [2], adaptive bisection [58, 66], the use of kinetic data structures (KDS)

[3, 34, 36], approached based on Minkowski sums [8], and conservative advancement [73]. However,

these approaches only deal with a single body, and very few [58, 66, 73] is a more recent development

running at interactive rates. CCD for articulated models have been proposed with applications to

“main”

2007/6/27

page 10

10

simple, capsule-shaped avatar models in VR environments at interactive rates [61] and to more fully

articulated models with somewhat slower performance [60].

2.2 Simplification of a Dynamics Simulation

2.2.1 Simulation Levels of Detail

A number of approaches exist for adaptive simulation of a number of complex systems, includ-

ing deformable bodies [19, 27], cloth [41], fluid and smoke [42], hair [71, 9], or objects with a finite

but potentially large number of degrees of freedom such as particle systems [47] or articulated bod-

ies [54]. Often, these approaches resort to some type ofadaptivityto refine the simulation where the

current level of discretized simulation cannot appropriately emulate the full dynamics of the system,

independently of visual criteria (but possibly with application to view-dependent simplification).

2.2.2 View-Dependent Simplification

Some authors have specifically addressed the problem of simplifying a simulation based on

visual criteria. Carlson and Hodgins [13] use three levels of sophistication to animate creatures

in a virtual environment partly based on the distance of the creature to the camera (with arbitrary

thresholds, however). Perbet and Cani [53] animate prairies using three levels of detail based on the

viewer’s position (classified as near, medium and far). O’Brienet al. [47] simplifies the dynamics

of particle systems by clustering particles into groups, partly based on visual criteria. Chenney

and Forsyth [14] discuss a view-dependent culling of dynamic systems and introduce two important

criteria that should be satisfied by a dynamics simplification method, namelyconsistency(object

re-entering the view satisfy viewers’ expectations) andcompleteness(objects that should re-enter

the view do so). In particular, they classify the objects based on the viewers expectations, and focus

computing resources on the objects for which the viewers have certain expectations. However, they

do not discuss how to simplify the dynamics of visible objects. Chenneyet al. [15] focuses on the

consistency problem when the objects motions can be tightly bound. Their method only applies to

“main”

2007/6/27

page 11

11

continuously evolving systems with few degrees of freedom and no external influence, which forbids

interactive simulations and collision handling. Beaudoin and Keyser [7] present a method to simplify

plant motion, and propose rigorous methods to compute the errors caused by the approximations.

The levels of details are pre-computed and a generalization to other objects and external forces does

not seem straightforward.

2.2.3 Perceptually-Based Simplification

How an animation or a simulation is being perceived by humans has recently received research

attention. For example, O’Sullivan and Dingliana [52] discuss how viewers perceive collisions in a

dynamics simulation of rigid bodies. Harrisonet al.[28] study how noticeable changes in the lengths

of articulated-body links are, depending on viewers attention. O’Sullivan [51] discusses the effect of

collisions on attention. One goal of this research is often to defineperceptual metrics, which would

help simplify an animation or a simulation based on perceptual criteria.

2.3 Interactive Character Control

2.3.1 Interfaces for Controlling Animation

Recently, many interfaces have been introduced to control animation for virtual characters

[1, 18]. Typically, 2D interfaces like mouse [70, 29], a pen [39, 50] or a combination of mouse

and keyboards are considered as most popular and approachable choices for an animation control.

Along this line of approaches, an intuitive mapping of limited device-dependent actions, for example

mouse clicks or dragging, to animation controls has been major research issues [69]. However, for

high DOF characters like human, it is very challenging to create intuitive interfaces to map device

actions in 2D to complicated character motions in 3D. In order to alleviate the issues of mapping

2D actions to 3D motions, different types of interfaces have been considered. A particular strength

of 3D interfaces is that, unlike 2D interfaces, one does not need to rely on complicated mapping

or animation sketching scheme to interpret device outputs in terms of character animation [48, 32].

“main”

2007/6/27

page 12

12

However, it is still challenging to create complicated character motions using these devices, and some

researchers have developed specialized interfaces for particular animation characters [1]. However,

this approach lacks a generality of application to other types of characters.

2.3.2 Haptic Interfaces

Thanks to the recent advancement in hardware and software of haptic technology, haptic render-

ing techniques have been improved from a simple, point-based method [6, 74], generating only trans-

lational forces, to an object-based 6DOF haptic rendering method [35], creating both translational

and rotational (i.e., torque) forces. Unlike other 3D interfaces, haptic interfaces are a promising tool

for creating complicated character motions in that users can get an immediate response (i.e., force

feedback) from what they control. However, most of work in haptically-inspired character control

has been centered on controlling an individual joint in an articulated, animating character [48, 32],

instead of creating the character’s full body motion.

2.4 Featherstone’s Divide and Conquer Algorithm

In our work, the dynamics of object is governed by the view-dependent dynamics algorithm or

the adaptive dynamics algorithm. These can be seen as a generalizations of the divide-and-conquer

algorithm (DCA) proposed by Featherstone [23, 24]. In DCA, an articulated body is recursively

defined in terms of articulated bodies connected with joints. Furthermore, a handle is defined for

an articulated body, specifying an interfacing location within the articulated body to which internal

forces between rigid bodies as well as external forces from the world can be applied [23]. Finally,

the structure of the articulated body is represented as a binary assembly tree (c.f. Figure 2.1). The

assembly tree for an articulated body is defined recursively using the following rules:

1. The root node represents the whole articulated body.

2. Each leaf node represents the rigid body contained in the articulated body.

“main”

2007/6/27

page 13

13

Fig. 2.1: An example of a chain-like articulated body and its assembly tree.Left: Two sub-

articulated bodies A and B are attached by a joint to form a new articulated body C.Right: The cor-

responding assembly tree for the articulated body C. Here, the root node represents the articulated

body C; the internal nodes represent the sub-articulated bodies A and B; the leaf nodes represent all

the rigid bodies in C.

3. An internal node to represent a new articulated body is created by having the roots of two

sub-assembly trees as children nodes that represent two sub-articulated bodies.

Featherstone [23, 24] shows that the dynamics of an articulated body can be described by the

following articulated-body equation:

a = Φf +b, (2.1)

which is similar to the Newton-Euler equation describing the motion of a rigid body. Here,a is

the composite acceleration of the articulated body (a vector which concatenates the bodies accel-

erations),Φ is the composite inverse inertia of the articulated body,f is a composite kinematic

constraint force (which holds the articulated body together), andb is a composite bias acceleration,

due to external forces and torques (inertial effects are zero under the quasi-statics assumption).

Featherstone’s DCA essentially consists in two passes over the complete assembly tree. The

main passis a bottom-up traversal, in which the DCA determines the inverse inertiasΦ and bias

accelerationsb for each node in the assembly tree from those of its children, and the external forces

and torques applied on the articulated body. The top-downback-substitution passcomputes, for

each internal node starting from the root node, the kinematic constraint forcesf (which enforce the

kinematic constraint described by the node) and the accelerationq̈ of the joint represented by the

node. This algorithm is applied repeatedly to simulate the motion of an articulated body.

“main”

2007/6/27

page 14

14

Chapter III

View-Dependent Dynamics of

Articulated Bodies

We begin by introducing our view-dependent dynamics algorithm as a basic framework, which en-

ables an automatic trade-off between visual precision and computational efficiency. We discuss the

problem of simplifying the simulation based on visual criteria, and show that it raises a number of

challenging questions. We then focus on articulated-body dynamics simulation, and propose a semi-

predictive approach which relies on a combination of exact, a priori error metrics computations, and

visibility estimations. We suggest several variants of semi-predictive metrics based on hierarchi-

cal data structures and the use of graphics hardware, and discuss their relative merits in terms of

computational efficiency and precision.

3.1 View-Dependent Simulation

Although several methods have been proposed to take advantage of visibility to simplify sim-

ulations, it appears that very few authors have formally discussedhow to choose an appropriate

simulation level of detail based on visual criteria. In this section, we discuss this problem and iden-

“main”

2007/6/27

page 15

15

Fig. 3.1: View-dependent dynamics simplification of a toy-like dog model in an interactive

application (offline rendering). a: the complete environment. The user controls the model (sixteen

rigid bodies) with a haptic interface.b: the user places the dog behind the environment. Our

algorithm automatically rigidifies the legs of the model, resulting in a total of eight rigid groups.c:

this back view shows the rigid groups corresponding to the position shown inb (one color per rigid

group).

tify a number of relevant issues. We find that the problem of quantifying and, most importantly,

predicting the number of perturbed pixels due to an approximation in a simulation is surprisingly

difficult, for a number of reasons. This may explain why the problem of simplifying a simulation

based on its appearance has been relatively unexplored compared to, for example, the problem of

view-dependent geometric simplification [31].

3.1.1 Defining an Error Measure

View-dependent simplification of dynamics first raises the problem of defining an appropriate

error measure with which the quality of a simplification can be judged.

3.1.1.1 Static case

Consider first thestaticproblem,i.e. simplifying a simulation at a single instant in time. In the static

problem, we would like to simplify the dynamics of the objects in the scene at a given time step

and still obtain, at the next time step, an image “close” to the one we would have obtained if the

full dynamics had been simulated. We thus need an objective measure of the similarity between the

simplified frame and the fully simulated one, at the next time step.

“main”

2007/6/27

page 16

16

Fortunately, this question has already been raised within the graphics and scientific visualization

research communities for geometric simplification (see [43] for an extensive overview). Often, the

error between two images is measured in terms of the number of pixels that differ between the two

images [31]. More generally, the characteristics of the visual system should be accounted for, in

order to take advantage ofe.g.attention [51], mesh saliency [40], etc. Although much progress has

been made, the problem of defining a “perceptual distance” between two images is still largely open.

Note that the simulated objects may go through a complex, non-linear rendering stage, involv-

ing complex lighting and material models as well as various post-processing stages (e.g.motion blur,

editing, etc.). Ideally, a completely integrated system would take the full simulation and rendering

pipeline into account, to avoid spending too much time on motions that would later be hidden by

post-process.

3.1.1.2 Dynamic case

The dynamicproblem,i.e. considering the long-term impact of a simplification, raises additional

questions. Indeed, we should probably consider the impact of a simplification at a given time step

on all subsequent time steps. Ideally, all simplifications should be invisible to the viewer. One way

to measure the error could thus be to compare the final images of the simplified segment and the

original animation segment.

Because general systems are aperiodic, however, and may be extremely sensitive to perturba-

tions, a simplified simulation might rapidly diverge from a non-simplified one. Thus, a better way

to measure the error between two animation segments might thus be as the sum of (or bound on)

successive static errors. This is typically how the quality of an integration method is evaluated,i.e.

by computing a bound on the error occurring at each time step. Such an error measure might be

able to solve the consistency and completeness problems defined by Chenney and Forsyth [14], by

choosing sufficiently low error thresholds.

3.1.2 Simplifying the Dynamics

“main”

2007/6/27

page 17

17

Adaptive methods can be roughly classified according to the way they evaluate (or estimate) and use

error measures.

Ideally, the exact error should be computeda priori, i.e. withouthaving to compute the exact

solution to the problem. This is often extremely difficult, however, and a priori methods often

estimatethe error (e.g.[19]).

Note that another approach would be to design ana posteriorisimplification method, similar

to adaptive time-stepping integration methods. This would prove relatively easy: two images would

be produced, one using full dynamics, and the other with view-dependent dynamics. If the images

differ by less than a user-defined threshold (in terms of the number of pixels, for example), then the

view-dependent simplification would be declared acceptable.

There are, however, at least three problems with such an approach. First, to make the scheme

computationally worthwhile, we would have to assume that temporal coherency is high, so that the

simplification test can be performed only once in a while (for example every one hundred frames).

This might not be valid in numerous dynamics scenarios, especially when discontinuities result-

ing from collisions, external forces or user interactions may occur (moreover, regular “peaks” in

computational costs might be inappropriate in interactive applications such as games and virtual en-

vironments, which favor consistent frame rates). Second, performing a full dynamics step might well

be too slow when too many degrees of freedom are involved. Finally, it might be difficult to decide

what simplification should be attempted. Should the degrees of freedom be removed because they

have little variation? Should they be grouped together because they havesimilar variation? Because

of the exponential number of combinations, some a priori assumptions have to be made to simplify

the system before comparing it to the fully simulated one (e.g. merging and splitting degrees of

freedom based on their acceleration [9]).

In this chapter, we propose asemi-predictiveapproach, which combines a priori computations

of joint accelerations errors with visibility estimations.

“main”

2007/6/27

page 18

18

Fig. 3.2: Assembly tree of an articulated body. Adaptive articulated-body dynamics simulates

only some of the joints in the articulated bodies, which form theactive region.

3.2 Adaptive Articulated-Body Dynamics

The predictive component of our view-dependent method relies on the adaptive dynamics (AD)

method introduced by Redonet al. [54]. For completeness, we briefly describe their approach here.

We refer the reader to their paper for a detailed exposition.

3.2.1 Hybrid Bodies

The AD algorithm can be seen as a generalization of the Divide-and-Conquer Algorithm (DCA)

proposed by Featherstone [23, 24]. In this algorithm, an articulated body is recursively defined

by connecting two articulated bodies. Abinary assembly treedescribes the sequence of assembly

operations, in which the leaf nodes represent rigid bodies, and the root node corresponds to the

complete articulated body (see Figure 3.2). Each non-leaf node thus represents both a sub-articulated

body and the joint used to connect its two child nodes.

In order to speed up articulated-body dynamics simulation, Redonet al. [54] approximately

solve the problem by computing joint accelerations in a limitedsub-treeof the assembly tree (cf

Figure 3.2), called theactive region. The remaining joints areinactive, and their accelerations are

being implicitly set to zero. An articulated body with at least one inactive joint is called ahybrid

body. The motion of a hybrid body is simulated by “rigidifying” the inactive joints. This results in

“main”

2007/6/27

page 19

19

Fig. 3.3: View-dependent motion metric. The view-dependent motion metric is obtained by com-

bining a priori motion metrics with visibility estimations.

hybrid inverse inertias and bias accelerationsΦ andb, that can also be computed from the bottom up.

The complexity of simulating a hybrid body is thenO(na+nf log(n/nf)), wherena is the number of

active joints,n is the total number of joints, andnf is the number of nodes where an external force of

a torque is updated. This results in potentially significant performance speed-ups when the number

of active joints and external forces updates are low.

3.2.2 Active Region Determination

To approximate the motion that would have been obtained if full dynamics were computed,

Redonet al. [54] periodically updates the active region usingmotion metrics. If C is an articulated

body, theacceleration metricA (C) of C is a weighted sum of its joint accelerations:

A (C) = ∑ q̈T
i A i q̈i , (3.1)

where theA i are symmetric, positive definite matrices. Similarly, thevelocity metricV (C) of C is a

weighted sum of its joint velocities:

V (C) = ∑ q̇T
i V i q̇i , (3.2)

where theV i are symmetric, positive definite matrices. Redonet al. [54] shows that the acceleration

metric value of an articulated body is a quadratic function of the kinematic constraint forces:

A (C) = (fC)TΨCfC +(fC)TpC +η
C, (3.3)

“main”

2007/6/27

page 20

20

where theacceleration metric coefficientsΨC, pC and ηC can be computed from the bottom up

(similar to the articulated-body coefficients). To update the active region, the acceleration metric is

used to restrict the back-substitution pass to the most important sub-tree of the assembly tree. Then,

the velocity metric is used to determine the new set of most important joints.

3.3 View-Dependent Metrics

We can now present our approach for view-dependent simplification of articulated-body dy-

namics. Our method can be regarded assemi-predictive, since we are able to predict the exact error

in joint accelerations before actually computing all of them (using the adaptive dynamics frame-

work), but we make some assumptions about how the visual error is affected by errors in joint

accelerations.

3.3.1 Simplifying the Simplification Problem

In order to make the view-dependent simplification practical, we make two fundamental as-

sumptions.

First, we assume that the motion of a joint only has alocal effect on the motions of the rigid bod-

ies (in cartesian coordinates). This is generally the case when there is little correlation in neighboring

joints, and cross-coupling inverse inertias tend to have low ranks and not transmit applied torques

and forces [64]. This allows us to examine each sub-assembly of the articulated body independently

of the others, by assuming that the visual impact of a joint acceleration error in a sub-assembly is

approximately restricted to this sub-assembly.

Second, we assume that the visual error caused by the rigidification of a sub-assembly can

be roughly obtained by decoupling the contribution of the sub-assembly motion (acceleration or

velocity) from the visibility of objects under such motion (e.g. the number of rasterized pixels).

The major benefit of this assumption is that we can easily customize the motion metrics in the

“main”

2007/6/27

page 21

21

adaptive dynamics framework, and exploit well-established measures of visibility used in other types

of applications, in particular in rendering.

These two assumptions allow us to formulate view-dependent motion metrics which can be

computed efficiently, while still providing reasonable estimations of the visual error caused by partial

rigidifications (cf Section 6.2.1).

3.3.2 Semi-Predictive Metrics

Let us callNM (C) the projected area of an articulated bodyC onto the screen, under the viewing

transformationM . Then, the view-dependent acceleration and velocity metrics,AM (C) andVM (C),

are defined as follows (cf Figure 3.3):

AM (C) = dt2NM (C)
√

∑ q̈T
i A i q̈i = dt2NM (C)

√
A (C),

VM (C) = dtNM (C)
√

∑ q̇T
i V i q̇i = dtNM (C)

√
V (C),

A i = V i = Di ,

wheredt is the size of the time step, andDi is a diagonal weight used to homogenize joint types (to

mix ball-socket joints and prismatic joints, for example —Di can be set to the identity matrix if all

degrees of freedom are of the same type).

Intuitively, these metrics estimate the visual error caused by zeroing accelerations or velocities

by assuming the worst possible case: all joints in the sub-assembly have correlated motions, and

contribute to the displacement of the whole visible surface. Once the acceleration and velocity met-

rics have been obtained as in the adaptive dynamics framework, these view-dependent metrics can be

obtained in constant time, provided we know the values ofNM (C). We now present different ways

of obtainingNM (C) and discuss their relative advantages in terms of precision and computational

efficiency.

3.3.3 Calculation ofNM using Bounding-Volume Hierarchies

“main”

2007/6/27

page 22

22

For a given sub-assemblyC, we can quickly approximateNM (C) using bounding volumes

(BVs) such as spheres, oriented bounding boxes [26] or axis-aligned bounding boxes. Before the

simulation begins, we compute a bounding volume for each rigid body in the articulated body, that

we store in the local reference frame attached to the rigid body. We also associate a bounding volume

to each internal node of the assembly tree. These internal bounding volumes are updated at runtime,

so as to enclose the bounding volumes of their children. In order to approximateNM (C), we can

then use either the bounding volume associated toC, or the bounding volumes associated to the rigid

bodies composingC. The resulting approximations ofNM (C), denoted bỹNM (C), is taken as the

minimum of these two projections (see also Figure 3.4):

Ñ 1
M (C) =

∫ ∫
M(∂BV(C))

dxdy (3.4)

Ñ 2
M (C) = ∑

i∈C

∫ ∫
M(∂BV(Ci))

dxdy (3.5)

ÑM (C) = min{Ñ i
M (C)|i = 1,2} (3.6)

Even though we need to sacrifice additional time to update the internal bounding volumes at runtime,

we may obtain a tighter estimation ofNM , depending on the configuration of the articulated body

and the camera position. For example, if an articulated body forms a long but folded chain, thenÑ 1
M

will be smaller thanÑ 2
M . On the other hand, if this articulated body is stretched, theñN 1

M will be

larger.

The choice of the bounding volume also affects the theoretical complexity of the visibility

estimation. If we use spheres or oriented bounding boxes, we can store their parameters in the local

reference frame associated to the internal nodes. As a result, we do not have to update these bounding

volumes in the rigid region, and the complexity of updating the bounding-volume hierarchy is linear

in the number ofactive joints. In order to update the internal bounding volumes in constant time,

however, we need to compute their parameters directly from those of their children, and not from the

bounded geometry. This might result in overly conservative bounding volumes. In such a case, axis-

aligned bounding volumes can be preferable despite the need to update all of them (i.e. including in

the rigid region).

“main”

2007/6/27

page 23

23

Fig. 3.4: Visibility estimation from bounding volumes. The visibility estimatioñNM (C) is taken

as the minimum of two projections.a: Projected bounding volume of the entire articulated body.b:

Sum of the projected bounding volumes of individual rigid bodies.

3.3.4 Calculation ofNM using GPUs-Based Occlusion Queries

Estimating visibility using bounding volumes has the following disadvantages:

• Without a proper clipping procedure or visible surface determination, theÑM (C) value in Eq.

3.6 is always positive.

• Depending on the choice of bounding volumes, the projected area can be quite conservative.

In order to address these issue, we rely on occlusion queries supported by commodity graphics

hardware [46]. Using occlusion queries, one can quickly obtain the number of visible pixel coverage

of an articulated bodyC on the screen. However, this GPUs-based approach takes a linear time with

respect to the number of links inC. More specifically, we get the number of visible pixelsNM (C)

for an articulated bodyC in two passes as follows:

1. Render the entire simulation scene includingC and other objects in the environment.

2. Render each rigid bodyCi (i.e. leaf-level node in the assembly tree) inC and use occlusion

queries to determine the number of its visible pixelsNM (Ci).

3. Recursively add upNM (Ci)’s to get the number of visible pixels for the parent node ofCi ’s

until we getNM (C).

By using a two-pass rendering method, we can get the number of visible pixels forC, occluded by

the objects in the environment as well as by some of its own links inC (self-occlusion).

“main”

2007/6/27

page 24

24

3.3.5 Comparisons Between the Two Methods for CalculatingNM

We have presented two methods to calculateNM earlier. Each method has its own cons and

pros. The bounding-volume hierarchy-based method has a sublinear time complexity with respect

to the number of links in an articulated body to calculateNM ; it is the same as that of the original

adaptive dynamics [54]. However, in this case, it is not straightforward to take into account occlusion

between links. Moreover,NM can be overly conservative depending on the relative configurations

between links. On the other hand, the GPU-based method provides a tight estimation ofNM and can

easily handle different types of visibility including occlusion and screen space clipping. However,

it requires a linear time complexity with respect to the number of links. But, in practice, the linear

time complexity is almost negligible on modern graphics hardware thanks to its rapid rasterization

capability.

“main”

2007/6/27

page 25

25

Chapter IV

Continuous Collision Detection for

Adaptive Simulation of Articulated

Bodies

In this chapter, we introduce a CCD algorithm which can be applied to the adaptive dynamics sim-

ulation. Our algorithm efficiently detects the first time of contact by taking advantage of the sim-

plification in adaptive dynamics simulation, and it guarantees non-penetration between the objects

which is necessary to model proper interactions during the simulation. Our algorithm is based on a

novel hierarchical set of transforms that represent the kinematics of an articulated body recursively,

as described by an assembly tree. The performance of our CCD algorithm significantly improves as

the number of active degrees of freedom in the simulation decreases.

4.1 Preliminaries

Our CCD algorithm is an adaptation of the algorithm proposed by Redon et al. [60], for an

adaptive dynamics (AD) framework [56]. We will briefly describe these approaches to CCD and AD

“main”

2007/6/27

page 26

26

Dynamic BVH Culling Exact Contact Computation

Swept OBB-trees Culling
and

Generation of Equations

Swept OBB-trees Culling
and

Generation of Equations

Resolution of EquationsResolution of Equations

Motion InterpolationMotion Interpolation

BVH ConstructionBVH Construction

BVH CullingBVH Culling

Fig. 4.1:The two-stage pipeline of our continuous collision-detection algorithm (adapted from

[60]). The algorithm computes the time of collision and the contact location from two successive

configurations of an articulated model.

prior to presenting our own contribution.

4.1.1 Continuous Collision Detection

In discrete simulations, CCD models the continuous motion between two successive time steps,

and finds any collisions between the parts of each model, between models, or between the models

and their environment. It reports the times of contact for any such collisions.

Let us consider an articulated modelA composed ofp rigid links A1, ...,Ap, whereT i andPi

denote the position and orientation of the reference frame associated with linki. ThenM i−1
i (t) is the

motion ofPi at timet in the reference frame of the parent linkPi−1, and can be represented by the

following 4×4 homogeneous matrix [60, 61]:

M i−1
i (t) =

(
Pi−1

i (t) T i−1
i (t)

(0,0,0) 1

)
. (4.1)

The motion of linki in the world reference frame can be computed by recursively multiplying

the motions of its parents:

M0
i (t) = M0

1(t) ·M1
2(t) · · ·M i−1

i (t). (4.2)

From this equation, we can represent the CCD problem as testing whether the following set is

non-empty or not:

{t ∈ [0,1] |M0
i (t)Ai ∩O 6= /0, i = 1, ..., p}. (4.3)

“main”

2007/6/27

page 27

27

Furthermore, if the above set turns out to be non-empty, we want to find the minimum value oft

(TOC). To solve this problem, our CCD algorithm performs a two-stage process (Figure 4.1) that

consists of a culling step, using a dynamic bounding-volume hierarchy (BVH), followed by an exact

contact computation:

1. The motion between two successive time steps is computed using Equation (4.2).

2. Based on the continuous motions of each link of the articulated bodies, a hierarchy of axis-

aligned bounding boxes (AABBs) is built for the entire model using interval arithmetic.

3. Based on this dynamic BVH, we cull those links that do not collide with other objects (these

three steps correspond to the first step in Figure 4.1).

4. Finally, the exact contact is computed using a combination of interval arithmetic and subdivi-

sion. In this step, geometry is culled using trees of oriented bounding boxes (OBBs), followed

by exact collision detection which yields the precise TOC (the second step in Figure 4.1).

4.1.2 Adaptive Dynamics

Adaptive dynamics (AD) is a forward dynamics method based on the divide-and-conquer algo-

rithm (DCA) proposed by Featherstone [23, 24].

AD is an adaptation of Featherstone’s DCA algorithm and is able to perform approximated

forward dynamics based on a customizable motion metric. In AD, the assembly tree can be partially

traversed during the two passes mentioned above. The nodes, joints and regions being traversed are

called active nodes, active joints and active regions respectively, while the remaining nodes, joints

and regions are said to be inactive. An articulated body with active and inactive regions is called a

hybrid body.

An active region determination scheme with motion metrics [56] is used to update the set of

active regions. The motion metrics consist of an acceleration metric

A (C) = ∑ q̈T
i A i q̈i (4.4)

“main”

2007/6/27

page 28

28

Fig. 4.2: The kinematic representation used in our continuous collision-detection algorithm.

The figure shows the principal joint transformationTB
A, the principal-to-secondary handle transfor-

mationsTA
1 , TA

2 , TB
1 , TB

2 andTB
3 , and the child-to-parent transformationsTC

A andTC
B.

and a velocity metric

V (C) = ∑ q̇T
i V i q̇i (4.5)

whereC is an articulated body anḋqi , q̈i are a joint velocity and acceleration, respectively.A i and

V i are symmetric, positive definite matrices, which can be seen as weights on the joint accelerations

or velocities. During simulation, the coefficients of the motion metrics are updated bottom-up, and

the metric values are computed before the joint accelerations and velocities.

4.2 Kinematics

Based on the two methods above, our goal is to develop a new algorithm to exploit adaptive

dynamics, which takes advantage of its simplified approach to simulation by adjusting its complexity

as the active region changes.

We will now introduce a novel recursive representation of the kinematics of an acyclic branched

mechanism and show how it can be used in AD. We start from the recursive definition of a branched

articulated body proposed by Featherstone [23, 24], and introduce a set of transformations to describe

the kinematics of the mechanism. Compared to the hierarchical representation we introduced earlier

[62], this new representation is simpler and more efficient. In particular, updating the transforms

“main”

2007/6/27

page 29

29

that apply to a node in the assembly tree now has a linear complexity in the number of handles of

the node, compared to a quadratic complexity in the hierarchical representation, due to the quadratic

number of transformations per node.

4.2.1 Definitions

As in the DCA [23, 24], we define a (possibly branched but acyclic) articulated bodyC as

two articulated bodiesA andB connected by a jointJ, and this sequence of assembly operations is

described in a binary assembly tree. In this recursive description, the leaf nodes of this assembly

tree are rigid bodies, while its internal nodes represent partial articulated bodies and the root node

corresponds to the complete articulated body1). The internal nodes may also be taken to represent

the joints used in the binary assembly operation.

In this representation, each sub-articulated body has a set of handles, i.e. locations where other

sub-articulated bodies may be attached. For the sake of convenience, we will call the handleHA used

to connectA to another articulated body theprincipal handleof A, while thek other free handles

HA
i of A (1 6 i 6 k) are called itssecondary handles. Finally, if an articulated bodyC is formed by

assemblingA andB, we call the joint used to carry out the assembly theprincipal joint of C.

To describe the kinematics of the mechanism, we rigidly attach a reference frame to each handle

H, and define the following sets of rigid transformations:

1. Principal joint transformations : the principal joint of each sub-assemblyC with childrenA

andB has an associated transformationTB
A, that relates (the reference frame of) the principal

handle ofA to (the reference frame of) the principal handle ofB.

2. Principal-to-secondary handle transformations: each sub-assemblyC (possibly a link)

stores transformationsTC
i from its principal handle to its secondary handlesHC

i (1 6 i 6 k).

1) Note how this differs from the usual representation, in which a linkage is recursively defined by connecting a single link
to another linkage.

“main”

2007/6/27

page 30

30

3. Child-to-parent transformations : each internal sub-assemblyA with parentC stores a trans-

formationTC
A from its principal handle to the principal handle of its parent.

4. World transformations : each sub-assemblyC stores a transformationTC from its principal

handle to the global reference frame.

These transformations are illustrated in Figure 4.2.

4.2.2 Recursive Transformation Updates

In our kinematic representation, the principal transformation of any joint is updated in constant

time to match a new joint configuration. It can be shown that the next two types of transformation can

be recursively updated, from the leaves of the assembly tree to its root, when the joint configurations

evolve.

Assume a linkageC is formed by joining a linkageA with l + 1 handlesHA, HA
1 , . . . , HA

l to

a linkageB with m+ 1 handlesHB, HB
1 , . . . , HB

m. The linkageC hasl + m handles: the principal

handle ofC is either a secondary handle ofA or a secondary handle ofB, while itsl +m−1 secondary

handlesHC
i are the remaining secondary handles inA andB.

Now assume, without loss of generality, that the principal handleHC of C is the secondary

handleHA
u of A. If a secondary handle ofC, HC

i , is a secondary handle ofA, sayHA
j , thenTC

i =

TA
j (T

A
u)−1. If, however,HC

i is also a secondary handle ofB, sayHB
j , thenTC

i = TB
j T

B
A(TA

u)−1. The

principal handle transformations can be computed easily: becauseTC
A is actually equal toTA

u , and

TC
B = TA

u(TB
A)−1. Finally, if the world transformationTC of C is up-to-date, thenTA = TCTC

A, and

TB = TCTC
A(TB

A)−1. The case where the principal handle ofC is a secondary handle ofB is treated

similarly.

4.2.3 Bounding Transformations

The recursive computations presented above allow us to determine the positions and orienta-

tions of moving bodies over time. Once the principal joint transformations have been updated for a

“main”

2007/6/27

page 31

31

given timet (for instance, by evaluating sine and cosine functions for rotational joints), all the other

transformations at timet are computed by multiplying 4×4 homogeneous matrices.

Our CCD algorithm uses these transformations and conservative bounds on them over progres-

sively refined time intervals (cf. Section 4.3). In order to compute these bounds efficiently, we use

interval arithmetic [45, 60]. First we bound the elementary functions in the principal joint transfor-

mations, and then perform interval counterparts of the matrix multiplications needed to compute the

other types of transformations.

4.3 Continuous Collision Detection

Adaptive articulated-body dynamics [56] works by determining and simulating only a relevant

subset of joints in the articulated body, which form asub-treeof the assembly tree (the nodes above

the dotted line in the assembly trees in Figure 4.3). Thus, at a given time step, only the positions

of these nodes can change (or angles, for revolute joints). We will now show how the kinematic

representation introduced in Section 4.2 takes advantage of this fact to speed up the computation of

the positions and bounds associated with the rigid bodies, and allows us to design a CCD algorithm

which benefits from the adaptivity of the simulation. This algorithm shares some similarities with

our previous work [60], but the key difference is in the computation of the positions and bounds

on the rigid bodies and the exploitation of the adaptivity. Moreover, we will demonstrate self-CCD

within the same articulated body as well as CCD between multiple articulated bodies in Section

6.2.2.

Our continuous collision detection algorithm is composed of two main steps: a body-level

culling step that uses axis-aligned bounding boxes (AABBs), and an exact contact computation step

with a hierarchy of oriented bounding boxes (OBBs) for each rigid body.

4.3.1 AABB Culling

“main”

2007/6/27

page 32

32

Fig. 4.3: Adaptive computation of rigid-body transformations using an assembly tree.Only

the nodes above the dotted curve are being simulated at the current time step, which allows us to

limit the transformation updates to a limited number of nodes: (a) updating the principal joint, the

principal-to-secondary and child-to-parent transformations of the simulated nodes (green nodes);

and (b) updating the world transformations for the potentially colliding rigid bodies (yellow nodes).

We begin by computing bounds on the positions of all moving bodies over the current time

interval, by recursively bounding the first three types of transformations of all active joints, from the

bottom up (the green nodes in Figure 4.3(a)). Once these bounds have been updated, we bound the

world transformations of all rigid bodies, by accumulating world transformations over all nodes. We

then use these bounds to compute a single AABB for each rigid body, by multiplying the interval

world transformations to the vertices of the root OBB which bounds the rigid body. This produces

eight AABBs, each of which bounds the trajectory of the OBB vertex over the whole time interval.

We then compute the AABB that bounds these eight AABBs. By a simple convexity argument, this

AABB also bounds the rigid body over the current time interval. Note that the cost of this step

is linear in the number of rigid bodies, but the constant is small because the bounds on the world

transformations are only computed once for each rigid body. The AABBs are then used to determine

the pairs of potentially colliding rigid bodies (collisions may occur within the same articulated body,

or with rigid bodies in the static environment).

4.3.2 Computing Contact Information

Once the potentially colliding rigid bodies have been determined, we can compute the time of

first contact and identify the contacting features using interval arithmetic. The key computation in

“main”

2007/6/27

page 33

33

this step is to determine the positions and orientations of the rigid bodies that might collide, as well

as to construct conservative bounds on these positions and orientations, over smaller and smaller

time intervals. These are used to bound the trajectories of the OBBs (for efficient culling) and of

the geometric features (vertices, edges and triangles, for precise contact time computation), of the

potentially colliding rigid bodies. This is similar to Step 3 in Redon et al. [60], but we can now

perform these computations adaptively, using the simulated joints.

Assume we want to determine the positions and orientations of the potentially colliding rigid

bodies at a given time, or over a given time interval. As in the AABB culling step, we start by

updating the first three types of transformation for all active joints, from the bottom up (the green

nodes in Figure 4.3(a)). However, we now compute the world transformations of the potentially

colliding rigid bodies only (the red nodes in Figure 4.3(b)). Thus, we only accumulate the world

transformations as we traverse the assembly tree from the top to these rigid bodies (the yellow and

red nodes in Figure 4.3(b)).

Assuming the assembly tree of an articulated body withn joints is balanced, an upper bound2)

on the complexity of computing the world transformations ofk rigid bodies whenm joints are active

is O(m+ k log(n)). We show in the next section how this reduced complexity allows us to obtain

significant performance improvements over a non-adaptive continuous collision detection approach.

2) In practice, the complexity is smaller since the world transformations of the internal nodes are shared by multiple rigid
bodies.

“main”

2007/6/27

page 34

34

Chapter V

Haptic Puppetry for Interactive

Games

In this chapter, as a capable technique for controlling articulated characters, we propose the tra-

ditional marionette control [17] as natural interfaces to control the characters, and explain how to

implement a virtual marionette based on physically-based modelling and haptic paradigm. Using

our virtual marionette system, we can rapidly but easily create sophisticated motions for a high-

DOF articulated character. Moreover, our system relies on haptic interfaces to model the behavior

of real-world marionette controls and provides to the puppeteer responsive forces as a result of the

created motions. This results in the puppeteer having a better sense of control over the marionette

that she or he manipulates.

5.1 Virtual Marionette

A real-world marionette is mainly composed of three parts: a control, strings, and a marionette

itself [17]. The control is a tool with which one can actually manipulate the marionette. It is normally

constructed by combining several bars, where strings are attached to each bar. The strings link the

“main”

2007/6/27

page 35

35

(a) Marionette (b) String (c) Control

Fig. 5.1: Modeling. A string is modelled as a chain of particles undergoing different forces like

spring force fs, inner friction ff , gravity fg, air friction fa, ground friction fx, fz, ground absorption

fabs and ground repulsion frep.

control to the marionette body, and deliver the manipulated result of the control to the body while

they also deliver the forces generated by the marionette movement back to the control - actually to

the human hand holding the control. Strings pull each part of the body, making a variety of body

motions.

Since the goal of our system is to mimic controlling a real marionette, we model the essential

components of a real marionette in a physically-correct manner. Thus, the interactions among these

components are simulated entirely based on physically-based animation techniques. There are many

types of marionettes, but we only consider a human-like marionette in our work.

5.1.1 Marionette Modeling

The marionette is made up of twelve rigid bodies (one sphere-like body and eleven box-like

bodies) and eleven joints that connect the bodies together. Each body represents, respectively, the

head, torso, two upper arms, two lower arms, two upper legs, two lower legs and two feet of a

marionette.

The eleven joints are, respectively, the neck, shoulder, elbows, hips, knees, and ankles and they

play an important role in generating a proper body motion. These joints are dotted as pink circles in

“main”

2007/6/27

page 36

36

Anchor Axis1

Axis2

Anchor

Axis

Anchor

Fig. 5.2:Different Joint Types. ball and socket joint, universal Joint, hinge joint (from left to right)

Fig. 5.1.

We use three types of joints to connect the bodies as shown in Fig. 5.2 (terms borrowed

from [68]): ball-and-socket, hinge and universal joints. The ball-and-socket joint simply makes

two bodies always move together. The hinge joint makes two bodies only rotate around a certain

axis. The universal joint acts like two hinge joints are combined at an anchor position. The universal

joint provides relatively limited movement compared to other joint types, but it is more flexible than

the hinge joint. However, restricting motion is not always a desirable way.

The constraint dynamics equation for each joint is expressed as follows [68]:

J1v1 +Ω1ω1 +J2v2 +Ω2ω2 = c+Cλ

λ ≥ l

λ ≤ h (5.1)

Ji andΩi are the Jacobian matrices. Different joint types have different constraints (i.e., Ja-

cobian matrices). The linear and angular velocity vectors for the first body participated in the joint

arev1 andω1. Similarly v2 andω2 correspond to the second body.c is a joint-dependent constraint

vector.λ is a constraint force that is applied to the bodies to ensure that Eq. 5.1.1 is satisfied.λ has

a lower (l) and upper (h) bound.C is a diagonal matrix, called the constraint force mixing (CFM)

matrix. It allows the constraint forceλ to be part of the constraint equation.C can be manipulated

to get certain interesting effects [68].

The yellow circles in Fig. 5.1 are the locations in which the strings are attached to the marionette

bodies: center of the head, torso, lower arms, and lower legs. Only six parts of the body can be moved

“main”

2007/6/27

page 37

37

by strings, but from our experience these are enough to generate the whole body motion. The body

can also return responsive forces back to the strings as a result of body-string interaction.

The forces of a string to pull each part of the body is calculated as follows:

fbody=−k(xbody−xstring)−kd(ẋbody− ẋstring) (5.2)

,wherexstring is the position of the last mass particle in the string,xbody is the position of the part of

body that the string is attached to,k is a stiffness constant, andkd is a damping constant. The force

that is returned to the string is simplyf =− fbody.

5.1.2 String Modeling

The strings provides a mean to deliver user’s intention to the marionette. The user manipulates

strings by using the control, and the strings pull each part of the marionette body so that the body

finally creates some pose.

We model the string as a deformable body. There exist many methods to model a string-type

deformable body, but we value the speed rather than the accuracy of simulation. In this regard,

we select the spring-mass method, mainly because it is fast and, at the same time, it can provide a

reasonable accuracy of the system. This method models a string as a set of mass particles inter-linked

by a spring. The shape and behavior of a string are approximated by the particles’ motion. However,

we do not consider twisted motion of a string since real-world marionette strings are rarely twisted.

In our system, six strings hold the body: head string, hip string, two hand strings, two leg

strings. The position of the first particle in each string is updated at every simulation time step and

follows the position of the control. The motions of the rest of particles are governed by particle

dynamics based on the following forces:

1. Spring force between two adjacent particles:fs =−ks(xi −d) whereks is a stiffness constant

of a spring,xi is the distance between two particles, and d is the string length that we want to

maintain.

2. Inner friction force:f f =−kf × (ẋi − ẋi+1) wherekf is a friction constant

“main”

2007/6/27

page 38

38

3. Gravitational force: fg = mg wherem is the mass of a particle andg is the gravitational

acceleration.

4. Air friction: fa =−kair ẋi wherekair is an air friction constant

5. Ground friction (when particles fall on to the ground): The ground friction force is applied

only to thex andz direction; fx = −vx
i kground and fz = −vz

i kground wherevx
i ,v

z
i is the velocity

of a particlei alongx andz directions andkground is a ground friction constant.

6. Ground repulsion (when particles continue to remain on the ground): Apply ground absorption

force fabs= vy
i kabsand repulsion forcefrep= vy

i (hground−py
i) wherekabs is a ground absorption

constant,py
i is they position of a particlei andhground is the ground height

After accumulating all the aforementioned forces (F), we numerically solve the Newtonian sec-

ond order ordinary differential equation (ODE) for a particle system (i.e.,ẍ = F
m) using the implicit

Euler’s method [72].

We perform collision detection and collision response between strings and the ground. If the

position of a particle falls below the ground, we apply the ground repulsion and absorption force to

the particles (steps 5 and 6). However, we do not consider collision detection and response between

a string and a string and between strings and bodies. The reasons are as follows:

• Our system requires to be highly interactive so that we can not afford such costly collision

detection and response time.

• The goal of our system is a character motion control, not string simulation.

• In real-world marionette control, there is no technique using twisted strings requiring collision

detection between them.

5.1.3 Modeling of the Control

The control itself is not a target object to be physically simulated in our system. It is just a tool

or an interface that takes the user’s inputs (position and orientation) and delivers them to the system.

“main”

2007/6/27

page 39

39

(a) System Setup (b) Control

Fig. 5.3: System Setup and Control Mapping.(a) shows the system setup and (b) shows of map-

ping the control to the haptic stylus.

In other words, it just drives other physical objects (e.g., strings and marionette body) in our system

to move accordingly. Each part in the marionette body is manipulated by a string, and the string is

operated by the control. Users can generate various marionette motions by moving the control and

give it different positions and orientations. The control is directly manipulated by the user through

haptic interface. In our system, we have two controls, a main control and a hand bar. The main

control is for controlling the main body including the head, torso, legs; the hand bar is for the hands.

The geometric structure of the control in our system is very similar to the real marionette controls.

The real-world control can be classified into two types, vertical and horizontal controls. Ours

resembles the latter. The strings are attached to a marionette as shown in Fig. 5.1 (the white circles).

5.2 Haptic Interfaces

A notable aspect in our puppetry system is that we use haptic interfaces to manipulate the virtual

marionette. In fact, the haptic interfaces are directly mapped to control bars as shown in Fig. 5.3. As

a result, we can provide a more intuitive, easier way to manipulate the marionette, instead of using

complicated key combinations.

“main”

2007/6/27

page 40

40

Haptic Simulation

RenderingSimulation

Update its position and orientation
(Move the control)

Force feedback

String motion

String Simulation Articulated Body Simulation

Marionette motion

Responsive
String Motion

Marionette

Environment

Fig. 5.4: System Diagram.The red block is an asynchronous process whereas the blue blocks are

synchronized with each another.

5.2.1 Interface Design

We use two stylus-type, commodity haptic devices, Omni developed by Sensable, to model the

main control and hand bar in our system, as shown in Fig. 5.3.

Each device has six degree-of-freedom (DOF) inputs (position and orientation of haptic stylus)

and three DOF outputs (translational forces). Its position and orientation are updated at haptic update

rates (i.e., 1KHz). The tips of the haptic stylus in the two haptic interfaces are mapped to the center

of mass of the main control and the hand bar, respectively as shown in Fig. 5.3. Furthermore, since

each haptic device has its own device coordinate system, we need to get its proper position in world

coordinate system.

5.2.2 Haptic Force Computation

In order to take into account tension forces from strings, we distinguish the state of a string

into tight andloose. We simply calculate the Euclidean distance between the first and last particles

comprising the string, and if it is greater than a certain threshold, we call the state of a string tight;

otherwise call it loose.

When a stringi is tight, its haptic feedbackFi is delivered to the haptic device based on the

following equation:

Fi =−k(xproxy−xstring)−mg−kd(ẋproxy− ẋstring) (5.3)

“main”

2007/6/27

page 41

41

wherek is a stiffness constant,m is the total mass of a marionette,kd is a device-dependent damping

factor, g is a gravitational acceleration,xstring is the position of the last particle in the string, and

xproxy is the position of haptic device. If the string is loose, no force is calculated. The force is

accumulated from each string (F = ∑Fi) and it is finally delivered to the haptic device.

In practice, however, when a string is almost tight, a slight perturbation in the underlying dy-

namic simulation can unstably change the state of a string from tight to loose and vice versa. This

can introduce unstable force jump in haptic force computations. Worse yet, the unstable jump in

force computation can also cause haptic stylus to vibrate, which makes strings and marionette also

move unstably following the device. This sequence of instabilities in force computation can make

the entire simulation very unstable.

As a remedy to this problem, we do not allow a string to switch its state very often when

the distance between the first and last particles comprising the string does not change much.More

specifically, when the string state once enters a tight state, the string can not easily get out of a loose

state. In our case, we enforce a threshold for distance difference to allow for state changes.

“main”

2007/6/27

page 42

42

Chapter VI

Results and Discussion

In previous chapters, we have introduced three relevant approaches for a view-dependent simulation

system with haptic interface. In this chapter, we present several benchmarks and applications of our

methods and demonstrate their effectiveness.

6.1 Implementation Platform

We have implemented our methods using C++ and OpenGL graphics library under windows

XP. The view-dependent dynamics is written in C++ based on Redon et al.’s work [56]. For haptic

puppetry methods, additionally, we have used the Open Dynamics Engine (ODE) [68] as a basic

physics engine for articulated body dynamics, Sensable’s Omni haptic devices and Openhaptics

library [67] as haptic APIs.

We have demonstrated our view-dependent dynamics algorithm in benchmarking scenarios on

a 2.26GHz Intel Pentium M processor laptop with 2GB RAM. The CCD and haptic puppetry algo-

rithms are performed on a 2.19GHz AMD Opteron PC with 2GB RAM.

“main”

2007/6/27

page 43

43

6.2 Benchmarks and Applications

6.2.1 View-Dependent Dynamics of Articulated Bodies

We present several benchmarks and demonstrate how our view-dependent articulated-body dy-

namics method allows an animator (or a physics engine) to finely tune the visual quality and obtain

potentially significant speed-ups during interactive or off-line simulations.

Swinging pendulum : a pendulum model consisting of three hundred rigid bodies swings be-

cause of gravity. View-dependent dynamics is applied to the swinging motion of a pendulum in two

series of tests: one by varying the threshold value for motion metrics (Figure 6.4) and one by vary-

ing the viewer’s distance to the pendulum (Figure 6.5). As can be seen from the graphs, our method

allows the user to finely tune the performance of the view-dependent dynamics by changing the error

threshold or, for a given threshold, to benefit from the automatic simplification and corresponding

speed-up when the distance to the viewer varies.

Haptic-enabled dog puppet:a toy-like dog model consisting of sixteen rigid bodies is inter-

actively manipulated using a haptic interface (Figure 3.1.a). We use Sensable’s Omni haptic device

and map its end-effector to a virtual control stick attached to the toy dog by virtual strings. As the

user interactively controls the toy dog, some links of the dog can be hidden by objects in the envi-

ronment (Figure 3.1.b). Our view-dependent algorithm automatically rigidifies these links (Figure

3.1.c).

Hanging toy dogs: 100 toy-like dog models are attached to springs whose other ends are

fixed in space. Initially, the dogs are twisted from the equilibrium state in order to create an initial

rotational velocity. Then, the dogs are released and create dynamics simulation (Figure 6.3). During

the simulation, a random torque is intermittently applied to the dogs.

Falling character: a character consisting of twenty-nine rigid bodies falls on a floor due to

gravity. As the viewer moves away from the character, the view-dependent dynamics automatically

rigidifies some joints (Figure 6.2) but preserves the overall look of the motion (Figure 6.1).

“main”

2007/6/27

page 44

44

Fig. 6.1: View-dependent dynamics simplification of a falling character.Our algorithm auto-

matically simplifies the dynamics of the falling character while preserving the overall visual aspect

of the impact (e.g. legs motion, see also Fig. 6.2 for a close-up on the final frames.).

Fig. 6.2: View-dependent dynamics simplification. Top: Our algorithm automatically simplifies

the dynamics of a falling character as its distance to the viewer increases.Bottom: Corresponding

rigidification at this time step (one color per rigid group). See also Fig. 6.1 for the corresponding

motion strips.

“main”

2007/6/27

page 45

45

Fig. 6.3:View-dependent Simulation of 100 Swinging Toy Dogs.100 toy-like dogs consisting of

1600 rigid bodies are attached to virtual springs (not shown in the image) in space and simulate

dynamics in a view-dependent manner. In this scene, as many dogs are occluded by other dogs,

clipped against the viewport, or seen far from the viewer, the number of simulated, active joints is

reduced from 1500 to 493 on average without incurring visual deterioration in the simulation. Each

simulation frame takes 14 msec on average.

Fig. 6.4:Performance of our algorithm depending on visual error thresholds.As the visual error

threshold e increases, the number of active nodes is automatically decreased by the view-dependent

algorithm (left), and the computational cost is reduced (right).

Fig. 6.5: Performance of our algorithm depending on the viewer’s distance.Our algorithm

automatically decreases the number of active joints when the distance d between the viewer and the

pendulum increases (left), reducing the computational cost of the simulation (right).

“main”

2007/6/27

page 46

46

6.2.2 Continuous Collision Detection for Adaptive Simulation of Articulated

Bodies

We have implemented our CCD algorithm within an adaptive dynamics framework [56]. We

will now assess the performance of our algorithm in different benchmarking scenarios1), called

wooden men, swinging pendulum and falling wooden man, by varying the number of active joints in

the simulation (Figure 6.6). The complexities of the benchmarking models are summarized in Table

6.1.

Wooden men: a pair of mannequins are pulled together by the spring that connects them.

Initially, the mannequins are placed at random configurations.

Pendulum: a pendulum consisting of many small balls swings under gravity. In this bench-

mark, we check for self-collision between each pair of balls.

Falling wooden man: a mannequin is falling from the sky under gravity and collides with

obstacles such as pots and plates on the ground.

In these benchmarks, the models’ dynamics are governed by adaptive dynamics with different

numbers of active joints, and the time for collision detection are measured and averaged over several

(e.g. 50) runs. Figure 6.7 shows the resulting timings for each scenario.

Benchmarks Models Tris Links

Wooden Men
Wooden man 11K 29

Wooden man 11K 29

Pendulum Pendulum 119K 30

Falling Wooden Man
Wooden man 11K 29

Environmental Obstacles 153K -

Table 6.1:Model complexities of benchmarking models.The third and fourth column show the

triangle counts and number links of the benchmarking models, respectively.

1) The accompanying videos can be seen athttp://graphics.ewha.ac.kr/CCD4AD

“main”

2007/6/27

page 47

47

Fig. 6.6: Benchmarking examples. In these figures, the number of active joints is 15 and rigid

bodies with identical colors belong to the same group of inactive links. Also, for each row of the

figures, the third column is a zoomed-up version of the second column to show collision area.Top

row: two wooden mannequin models consisting of 29 rigid bodies, 11K triangles for each model

are pulled together by a spring-like string and collided with each other.Middle row: a pendulum

consisting of 30 rigid bodies and 119K triangles swings because of gravity and collides with itself.

Bottom row: a wooden mannequin falls under gravity and collides with static tableware. The static

environment consists of 153K triangles in total.

“main”

2007/6/27

page 48

48

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25

Number of Active Joints

Time (seconds)

Total AABB Culling Exact Contact Computation

(a) Wooden Men

0

0.1

0.2

0.3

0.4

0.5

0.6

4 9 14 19 24 29

Number of Active Joints

Time (seconds)

Total AABB Culling Exact Contact Computation

(b) Pendulum

0

0.05

0.1

0.15

0 5 10 15 20 25

Number of Active Joints

Time (seconds)

Total AABB Culling Exact Contact Computation

(c) Falling Wooden Man

0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15 20 25

Number of Active Joints

Time (seconds)

Wooden Men Pendulum Falling Wooden Man

(d) Comparison

Fig. 6.7: CCD timings for three benchmarks and a comparison between them.Each graph

shows a timing profile of CCD performance with AABB culling and exact contact computation steps

for three benchmarking scenarios, and their comparison. The CCD time complexity gradually in-

creases as a function of the number of active joints.

6.2.3 Haptic Puppetry

We have implemented the haptic puppetry system, and our experimentations show that our

system can create reasonably complicated motions for articulated characters in an easy and quick

manner at highly interactive rates2).

To perform articulated body dynamics for a marionette at interactive rates, we bound each

2) The accompanying videos can be seen athttp://graphics.ewha.ac.kr/HPuppetry

“main”

2007/6/27

page 49

49

body part of a marionette with a simple bounding volume such as a box, a cylinder, and a sphere,

and perform dynamics based on them. However, when we render the marionette, we display the

actual geometry contained in the bounding volume. The Open Dynamics Engine (ODE) [68] has

been adopted as a basic physics engine for articulated body dynamics and slightly modified to be

better suited for our purpose. We use ODE’s ball-and-socket, hinge and universal joints to model

Marionette’s joints.

In our system, we maintain four independent processes that need to be synchronized: string

simulation, marionette body dynamics, haptic rendering, and graphical rendering as shown in Fig.

5.4. Different processes are synchronized in the following manner:

1. The haptic simulation loops around asynchronously at haptic update rates.

2. The string simulation reads the position of the tip in the haptic device, and deforms corre-

sponding strings.

3. The result of deformable string simulation acts as external forces to the articulated body dy-

namics engine of the marionette.

4. The created motion of the marionette is graphically rendered.

5. The marionette motion applies forces to the last particles of strings, and the entire strings are

deformed responsively.

6. The simulation results (i.e., forces) of strings and marionette motions are sent back to the

haptic device.

Each process is updated at different rates; 1KHz for string simulation and haptic rendering,

30Hz for marionette body dynamics and graphical rendering. Typically we maintain 50 particles to

simulate string dynamics and one can adaptively simulate the string dynamics using the technique

like [55].

6.3 Discussions

“main”

2007/6/27

page 50

50

Fig. 6.8:Animation sequences in our virtual marionette system.The virtual marionette is stand-

ing up from a chair, and kicking and chasing a ball.

“main”

2007/6/27

page 51

51

Now, we discuss the implementation results of our view-dependent simulation of articulated

bodies with force feedback.. Each of them shows that the capability of our methods.

Firstly, the view-dependent dynamics simulation shows how our view-dependent articulated-

body dynamics method allows an animator (or a physics engine) to finely tune the visual quality and

obtain potentially significant speed-ups during interactive or off-line simulations. Notice that our

view-dependent dynamics performs exactly like adaptive dynamics [54] except that the adaptivity is

automatically determined by the visibility of the simulated bodies.

The view-dependent dynamics algorithm presented in this dissertation has essentially two lim-

itations:

• Our view-dependent metric is only semi-predictive. We do not currently have a (not overly)

conservative way to bound the visual error caused by a simplification. We only estimate this

error a priori, by making an assumption on the effect of a joint acceleration on the global

articulated-body motion.

• Because of the way we combine acceleration metrics with visibility estimations, the error

threshold set by the user is not as intuitive as it should be. However, the graceful, “continuous”

degradation of the dynamics produced by our algorithm when the threshold or distance vary

makes it relatively easy to choose this parameter.

Secondly, as expected, the results of CCD benchmarks show that the time required for collision

detection is roughly linearly related to the number of active joints in the articulated body. Notice

that, when all the joints in an articulated body are active (e.g. 29 for the wooden man), our CCD

algorithm is essentially the same as that of Redon et al. [60]. However, as the number of active joints

is reduced, the relative performance of our CCD algorithm improves, as we have seen in Figure 6.7.

Finally, with our haptic puppetry system, an animator or a puppeteer can easily sketch motions for

an articulated character as shown in Fig. 6.8. Our system is highly interactive (running at more than

1 KHz) and can create physically-plausible responses of a marionette to the environments. In Fig.

6.8, a virtual marionette is manipulated to stand up from a chair, kick a ball and chase it.

“main”

2007/6/27

page 52

52

Chapter VII

Conclusion

In this dissertation, we have addressed the issues for view-dependent simulation of articulated bodies

with haptic feedback. We have implemented and demonstrated our work in challenging benchmark-

ing scenarios.

In chapter 3, we have introduced a method for view-dependent simulation of articulated-body

dynamics. We have first discussed the general problem of simplifying a simulation based on visual

criteria, a question which seems to have received relatively little attention in the past. We have

showed how this problem raises a number of new challenges, even though it is strongly related to

the well-known geometric simplification problem. Focusing on articulated-body dynamics, we have

proposedsemi-predictive motion metrics, which combine predictive error metrics based on joint

accelerations with visibility estimations. The metrics, based on bounding volume hierarchies or

graphics hardware visibility queries, allow us to automatically simplify a simulation based on visual

criteria.

In chapter 4, We have introduced a CCD algorithm for the adaptive dynamics simulation of

articulated bodies. This algorithm uses a novel hierarchical representation of the kinematics of an

articulated body, which can be selectively updated during an adaptive simulation. By simplifying

the dynamics that have to be considered, we can reduce the complexity of the computation of the

“main”

2007/6/27

page 53

53

first time of contact, and of the contact information.

In chapter 5, We have presented an interactive system that simulates a marionette in a physically

correct way. Moreover, our system provides an intuitive interface based on haptic devices to a

puppeteer. The puppeteer can control a marionette using two haptic interfaces and perform a variety

of interesting motions including interactions with environments that would be very difficult to be

performed with a real-world puppet.

The view-dependent dynamics simulation shows that our approach allows a user to finely trade

between visual quality and performance. The dynamics are gracefully simplified as the distance to

the viewer, or the error threshold, is increased. From the experimental results of our CCD algorithm,

we demonstrate that this strategy leads to a worthwhile performance improvement if the dynamics

can be significantly simplified. And finally, we have implemented real-time haptic puppetry system

using dual haptic devices as input devices, and show how the new interface is applied to physically-

based articulated body simulation and quickly generate complex motions.

With these approaches, we give new and effective solutions for articulated body simulation and

its interactive control. The resulting system is an interactive character control system with haptic

feedback which provides a fast and realistic simulation resulted from view-dependent simplification.

As future work, we would like to address the limitations of view-dependent simulation men-

tioned in chapter 3., which include considering perceptual factors (e.g. [65]). In particular, we

would like to perform user studies and examine how these studies could lead to more general view-

dependent simulation methods. And for the CCD algorithm, we plan to investigate several applica-

tions of this work, in particular to haptics and motion planning.

For haptic puppetry, we would like to apply our technique to other types of puppets (e.g., non-

string type puppet). One limitation of our system is that it can not handle inter-string collisions and

body-string collisions. However, this may be required for other types of more sophisticated puppets.

We will like to incorporate such collision cases into our future puppeteering system. Finally, we

want to apply our technique to higher DOF haptic interfaces to gain a more intuitive control over a

marionette.

“main”

2007/6/27

page 54

54

References

[1] A. Bar-Lev, A.M.B., Elber, G.: Virtual marionettes: A system and paradigm for real-time 3D

animation. Tech. rep., Technion, I.I.T., Israel (2004)

[2] Abdel-Malek, K., Blackmore, D., Joy, K.: Swept volumes: foundations, perspectives, and

applications. International Journal of Shape Modeling (2002)

[3] Agarwal, P.K., Basch, J., Guibas, L.J., Hershberger, J., Zhang, L.: Deformable free space tiling

for kinetic collision detection. In: Workshop on Algorithmic Foundations of Robotics, pp.

83–96 (2001)

[4] Bae, D., Haug, E.: A recursive formulation for constrained mechanical systems dynamics: Part

1. open-loop systems. Mechanical Structures and Machines, Vol. 15(3), pp. 359-382 (1987)

[5] Baraff, D.: Fast contact force computation for nonpenetrating rigid bodies. In: A. Glassner

(ed.) Proc. SIGGRAPH ’94, pp. 23–34 (1994). ISBN 0-89791-667-0

[6] Basdogan, C., Srinivasan, M.: Virtual Environments HandBook, chap. Haptic rendering in

virtual environments (2001)

[7] Beaudoin, J., Keyser, J.: Simulation levels of detail for plant motion. In Proceedings of the

2004 ACM SIGGRAPH/Eurographics symposium on Computer animation (2004)

[8] van den Bergen, G.: Ray casting against general convex objects with application to continuous

collision detection. Journal of Graphics Tools (2004)

[9] Bertails, F., Kim, T.Y., Cani, M.P., Neumann, U.: Adaptive wisp tree - a multiresolution

control structure for simulating dynamic clustering in hair motion. In Proceedings of ACM-

SIGGRAPH/Eurographics Symposium on Computer Animation (2003)

“main”

2007/6/27

page 55

55

[10] Boulic, R., Fua, P., Herda, L., Silaghi, M., Monzani, J., Nedel, L., Thalmann, D.: An anatomic

human body for motion capture. In: EMMSEC (1998)

[11] Brandl, H., Johanni, R., Otter, M.: A very efficient algorithm for the simulation of robots and

similar multibody systems without inversion of the mass matrix. IFAC/IFIP/IMACS Sympo-

sium, pp. 95-100 (1986)

[12] Canny, J.F.: Collision detection for moving polyhedra. IEEE Trans. Pattern Analysis and

Machine Intelligence8, 200–209 (1986)

[13] Carlson, D.A., Hodgins, J.K.: Simulation levels of detail for real-time animation. In Proceed-

ings of Graphics Interface (1997)

[14] Chenney, S., Forsyth, D.: View-dependent culling of dynamic systems in virtual environments.

In: Proc. ACM Symposium on Interactive 3D Graphics (1997)

[15] Chenney, S., Ichnowski, J., Forsyth, D.A.: Dynamics modeling and culling. IEEE Computer

Graphics and Applications (1999)

[16] Choi, Y.K., Wang, W., Liu, Y., Kim, M.S.: Continuous collision detection for elliptic disks.

IEEE Trans. on Robotics (2006)

[17] Currell, D.: Making and Manipulating Marionettes. The Crowood Press (2004)

[18] Davis, J., Agrawal, M., Chuang, E., Popovi, Z., Salesin, D.: A sketching interface for articu-

lated figure animation. In: SCA ’03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics

symposium on Computer animation (2003)

[19] Debunne, G., Desbrun, M., Cani, M.P., Barr, A.H.: Dynamic real-time deformations using

space and time adaptive sampling. In Proceedings of the 28th annual conference on Computer

graphics and interactive techniques (2001)

[20] Erleben, K., Sporring, J., Henriksen, K., Dohlmann, H.: Physics Based Animation. Charles

River Media (2005)

“main”

2007/6/27

page 56

56

[21] Faure, F.: Fast iterative refinement of articulated solid dynamics. IEEE Trans. on Visualization

and Computer Graphics5(3), 268–276 (1999)

[22] Featherstone, R.: Robot Dynamics Algorithms. Kluwer, Boston, MA (1987)

[23] Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel o(log(n)) cal-

culation of rigid body dynamics. part 1: Basic algorithm. International Journal of Robotics

Research18(9), 867–875 (1999)

[24] Featherstone, R.: A divide-and-conquer articulated body algorithm for parallel o(log(n)) cal-

culation of rigid body dynamics. part 2: Trees, loops, and accuracy. International Journal of

Robotics Research18(9), 876–892 (1999)

[25] Featherstone, R., Orin, D.E.: Robot dynamics: equations and algorithms. IEEE International

Conference on Robotics and Automation, pp. 826-834 (2000)

[26] Gottschalk, S., Lin, M.C., Manocha, D.: Obbtree: a hierarchical structure for rapid interference

detection. In ACM Transactions on Graphics (SIGGRAPH 1996) (1996)

[27] Grinspun, E., Krysl, P., Schroeder, P.: Charms: a simple framework for adaptive simulation.

ACM Transactions on Graphics, 21(3) (2002)

[28] Harrison, J., Rensink, R.A., Panne, M.V.D.: Obscuring length changes during animated mo-

tion. ACM Transactions on Graphics 23(3) (2004)

[29] Healey, M.: Ragdoll Kungfu.http://www.ragdollkungfu.com/

[30] Hollerbach, J.: A recursive lagrangian formulation of manipulator dynamics and a comparative

study of dynamics formulation complexity. IEEE Trans. on Systems, Man, and Cybernetics,

Vol. SMC-10, No. 11 (1980)

[31] Hoppe, H.: View-dependent refinement of progressive meshes. ACM Transactions on Graphics

(SIGGRAPH 1997 Proceedings) (1997)

“main”

2007/6/27

page 57

57

[32] Jorissen, P., Wijinants, M., Lamotte, W.: Dynamic interactions in physically realistic collabo-

rative virtual environments. IEEE Transactions on Visualization and Computer Graphics11(6),

649–660 (2005)

[33] Kim, B., Rossignac, J.: Collision prediction for polyhedra under screw motions. In: ACM

Conference on Solid Modeling and Applications (2003)

[34] Kim, D., Guibas, L., Shin, S.: Fast collision detection among multiple moving spheres. IEEE

Trans. on Visualization and Computer Graphics4(3), 230–242 (1998)

[35] Kim, Y.J., Otaduy, M.A., Lin, M.C., Manocha, D.: Six-degree-of-freedom haptic display using

incremental and localized computations. Presence12(3) (2003)

[36] Kirkpatrick, D., Snoeyink, J., Speckmann, B.: Kinetic collision detection for simple polygons.

In: Proc. of ACM Symposium on Computational Geometry, pp. 322–330 (2000)

[37] Kovar, L., Gleicher, M., Pighin, F.: Motion graphs. In: ACM SIGGRAPH (2002)

[38] Lasseter, J.: Principles of traditional animation applied to 3D computer animation. In: Proc. of

ACM SIGGRAPH (1987)

[39] Laszlo, J., Panne, M., Fiume, E.: Interactive control for physically-based animation. In: Pro-

ceedings of SIGGRAPH 2000, pp. 201–209 (2000)

[40] Lee, C.H., Varshney, A., Jacobs, D.W.: Mesh saliency. In ACM Transactions on Graphics

(SIGGRAPH 2005), 24(3) (2005)

[41] Li, L., Volkov, V.: Cloth animation with adaptively refined meshes. In Proceedings of the

Twenty-eighth Australasian conference on Computer Science (2005)

[42] Losasso, F., Gibou, F., Fedkiw, R.: Simulating water and smoke with an octree data structure.

ACM Transactions on Graphics (SIGGRAPH 2004 Proceedings) (2004)

[43] Luebke, D., Reddy, M., Cohen, J., Varshney, A., Watson, B., Huebner, R.: Level of detail for

3d graphics. Morgan Kaufmann Publishers (2003)

“main”

2007/6/27

page 58

58

[44] McMillan, S., Orin, D.E.: Efficient computation of articulated-body inertias using successive

axial screws. IEEE Trans. on Robotics and Automation, 11, pp. 606-611 (1995)

[45] Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs, New Jersey (1966)

[46] NVIDA: SDK White Paper - Occlusion Query, Checking for Hidden Pixels. NVIDIA (2004)

[47] O’Brien, D., Fisher, S., Lin, M.C.: Automatic simplification of particle system dynamics. In

Proceedings of Computer Animation (2001)

[48] Oore, S., Terzopoulos, D., Hinton, G.: A Desktop Input Device and Interface for Interactive

3D Character Animation. In: Proc. Graphics Interface, pp. 133–140 (2002)

[49] Ortega, M., Redon, S., Coquillart, S.: A six degree-of-freedom god-object method for haptic

display of rigid bodies. In: IEEE International Conference on Virtual Reality (2006)

[50] Oshita, M.: Pen-to-mime: A pen-based interface for interactive control of a human figure. In:

Sketch-Based Interfaces and Modelling, pp. 43–52 (2004)

[51] O’Sullivan, C.: Collisions and attention. ACM Transactions on Applied Perception (2005)

[52] O’Sullivan, C., Dingliana, J.: Collisions and perception. ACM Transactions on Graphics, 20(3)

(2003)

[53] Perbet, F., Cani, M.P.: Animating prairies in real-time. In Proceedings of the 2001 symposium

on Interactive 3D graphics (2001)

[54] Redon, S., Gallopo, N., Lin, M.C.: Adaptive dynamics of articulated bodies. In ACM Trans-

actions on Graphics (SIGGRAPH 2005), 24(3) (2005)

[55] Redon, S., Galoppo, N., Lin, M.C.: Adaptive dynamics of articulated bodies. In: Proceedings

of SIGGRAPH 2005 (2005)

[56] Redon, S., Galoppo, N., Lin, M.C.: Adaptive dynamics of articulated bodies. ACM Trans. on

Graphics (SIGGRAPH 2005)24(3) (2005)

[57] Redon, S., Kheddar, A., Coquillart, S.: An algebraic solution to the problem of collision detec-

tion for rigid polyhedral objects. Proc. IEEE Conf. on Robotics and Automation (2000)

“main”

2007/6/27

page 59

59

[58] Redon, S., Kheddar, A., Coquillart, S.: Fast continuous collision detection between rigid bod-

ies. Proc. Eurographics (Computer Graphics Forum) (2002)

[59] Redon, S., Kheddar, K., Coquillart, S.: Gauss’ least constraints principle and rigid body simu-

lation. Proc. International Conference on Robotics and Automation (2002)

[60] Redon, S., Kim, Y.J., Lin, M.C., Manocha, D.: Fast continuous collision detection for articu-

lated models. In: Proc. ACM Symposium on Solid Modeling and Applications (2004)

[61] Redon, S., Kim, Y.J., Lin, M.C., Manocha, D.: Interactive and continuous collision detection

for avatars in virtual environments. In: Proc. IEEE Virtual Reality (2004)

[62] Redon, S., Lin, M.C.: An efficient, error-bounded approximation algorithm for simulating

quasi-statics of complex linkages. In: Proc. ACM Symposium on Solid and Physical Modeling

(2005)

[63] Redon, S., Lin, M.C.: Practical local planning in the contact space. In Proc. IEEE International

Conf. on Robotics and Automation (2005)

[64] Redon, S., Lin, M.C.: An efficient, error-bounded approximation algorithm for simulating

quasi-statics of complex linkages. In Computer-Aided Design, 38, pp. 300-314, Elsevier (2006)

[65] Reitsma, P.S.A., Pollard, N.S.: Perceptual metrics for character animation: Sensitivity to errors

in ballistic motion. ACM Transactions on Graphics (SIGGRAPH 2003 Proceedings)22(3),

537–542 (2003)

[66] Schwarzer, F., Saha, M., Latombe, J.C.: Exact collision checking of robot paths. In: Workshop

on Algorithmic Foundations of Robotics (WAFR) (2002)

[67] SensAble: 3D Touch SDK OpenHaptics× toolkit version 1.02 API reference.

Http://www.sensable.com

[68] Smith, R.: Open Dynamics Engine user guide (2004)

[69] Thorne, M., Burke, D., Panne, M.: Motion doodles: An interface for sketching character mo-

tion. In: Proc. of ACM SIGGRAPH (2004)

“main”

2007/6/27

page 60

60

[70] Vodislav, D.: A visual programming model for user interface animation. In: Visual Languages,

pp. 348–355 (1997). URL citeseer.ist.psu.edu/105836.html

[71] Ward, K., Lin, M., Joohi, L., Fisher, S., Macri, D.: Modeling hair using level-of-detail repre-

sentations. In Proceedings of Computer Animation and Social Agents (2003)

[72] Witkin, A., Baraff, D.: Physically based modeling: Principles and practice. In: SIGGRAPH

Course Note (1997)

[73] Zhang, X., Lee, M., Kim, Y.J.: Interactive continuous collision detection for non-convex poly-

hedra. The Visual Computer (Proc. Pacific Graphics)22, 9–11 (2006)

[74] Zilles, C., Salisbury, J.: A constraint based god-object method for haptic display. In: IEE/RSJ

International Conference on Intelligent Robots and Systems, Human Robot Interaction, and

Cooperative Robots (1995)

“main”

2007/6/27

page 61

61

Ðaµ%K�5�³À

þj��H �'a]X��̂ r�ÓýtYUs�����Ér ���©�8̈��â
�©�_� H�aË:'�\�¦ ò́Ö�¦&h�Ü¼�Ð �̧4Sqa�A ���H ~½ÓZO�Ü¼�Ð

ú́§s�s�6 x÷&�¦e����.Õª×�æ\�"f�̧Óüto�l�ìøÍ_��'a]X��̂ r�ÓýtYUs�����ÉrH�aË:'�_�¹¡§f��e��õ����©�

8̈��â
?/\�"f{9�#Q����H�©� ñ���6 x�̀¦Óüto�ZO�gË:\�l�ìøÍK���z�́&h�s��¦�����Û¼XO�>��Ð#�ï�r��.

Óüto�l�ìøÍ�'a]X��̂ r�ÓýtYUs����õ��'aº���)a���½̈ ÅÒ]j×�æ, ú́§�ÉrÃº_�H�aË:'�\�¦��ØÔ>�r�ÓýtYU

s�������H�¦��õ�~1	כ ò́õ�&h�Ü¼�ÐH�aË:'�\�¦�	�àÔ\�¦½+ÉÃºe����H���'��̀s�Û¼_�n�������Ér×�æ¹כô�Ç

ë�H]j�Ð���d��÷&#QM®o��.�:r�7Hë�H\�"f��Hs�ë�H]j\�@/ô�ÇDh�Ðî�r]X���H~½ÓZO�Ü¼�Ð��6£§õ�°ú �Ér[j

��t�l�ZO��̀¦]jîß�ô�Ç��.

'Í	P:�Ð,�'a¹1Ï��_�r�y��&h�t�y��&ñ
�̧\� ����r�ÓýtYUs����_�4�¤ú̧��̧\�¦��1lx&h�Ü¼�Ð �̧&ñ
�

��Hr�&h�l�ìøÍ�'a]X��̂ r�ÓýtYUs�����̀¦]jîß�ô�Ç��.s�~½ÓZO��Érr�y��&h�l�ï�r�̀¦���½ÓÜ¼�Ðô�ÇÄ»��\V

8£¤·ú��¦o�7£§�̀¦:�x�#� ò́Ö�¦&h����r�ÓýtYUs�����̀¦]j/BNô�Ç��.

ÑütP:�Ð &h�6£x&h� r�ÓýtYUs����\�"f_� ���5Åq&h� Ø�æ[�t����� ·ú��¦o�7£§�̀¦ �è>hô�Ç��.s� ·ú��¦o�7£§

�Ér�'a]X��̂_�¹¡§f��e���̀¦����?/��HDh�Ðî�r��«Ñ½̈�̧\�¦���½ÓÜ¼�Ð,r�&h�l�ìøÍ1lx%i��<Ær�ÓýtYUs����

�©�\�"fØ�æ[�ts�{9�#Qèß�r�&h��̀¦ ò́Ö�¦&h�Ü¼�Ð ½̈ô�Ç��.

��t�}��Ü¼�ÐZ�}�Ér��Ä»�̧_�H�aË:'�\�¦ �̧����#�4�¤ú̧�ô�Ç¹¡§f��e���̀¦Òqt$í
½+ÉÃºe����HDh�Ðî�r

��6 x�����'��̀s�Û¼�Ð×�¦���+þA �̧���ZO�õ�óÁ�hË:���'��̀s�Û¼\�¦���½+Ë�%i���.s�~½ÓZO��Ér~1��¦f���'a

&h���� �̧���ZO��̀¦]j/BN� 9,�íÛ¼x�×¼Ñþ��̀¦:�xK����©� 8̈��â
�©�_��'a]X��̂\�¦���'�Ïþ�w�ÚÔ�>� �̧���

½+ÉÃºe���̧2�¤ô�Ç��.

]jîß��)a·ú��¦o�7£§�̀¦���½ÓÜ¼�Ð���ª�ô�Ç�$�u���(ç
�̀¦ ½̈�&³��¦ î̈
���%i���.Õª���õ�\�¦:�xK�

�:r�7Hë�H\�"f]jîß��)al�ZO�[þts� ú́§�ÉrÃº_��'a]X��̂_�Óüto�l�ìøÍr�ÓýtYUs����,Õªo��¦���'�Ïþ�w�ÚÔ

ô�Ç�	�àÔ\�¦\�@/ô�Ç��ØÔ�¦ ò́Ö�¦&h����K����Õþ��̀¦]j/BNô�Ç����H�.����SX����½+ÉÃºe¦̀�	כ

“main”

2007/6/27

page 62

62

ḈÔ���+;³�

$�_�U�́�̀¦\Vq��r��¦s�=åJ#QÅÒr���H���_��a�y����×¼wn�m���.

ÂÒ7á¤�<Ê ú́§�Ér$�\�¦��ØÔ5gÅÒr��¦ ú́§�Érl��r\�¦ÅÒ��� �̂�%ò
ï�r�§Ãº_��a�y����×¼wn�m���.]j��a%~��

���H{9��̀¦¹1Ô�̀¦Ãºe��>�K�ÅÒr��¦,Õª{9��̀¦½+ÉÃºe����H0px§4��̀¦v�Ö�¦Ãºe���̧2�¤K�ÅÒ��������y	כ

×¼wn�m���.

��åÔ���×�æ\��̧]j�7Hë�H�̀¦����ÐK�ÅÒr��¦����9ü< �̧����̀¦K�ÅÒ��� �̂�"î
�§Ãº_��õ�6 x8̈�5px�§Ãº_��,

�<ÆÂÒü<@/�<Æ"é¶y©�_��Ð��ØÔgË>�̀¦ÅÒ���s��o#�@/(��ÉÓ'��<Æõ�_�s��©� ñ�§Ãº_��, �̧1lx[O��§Ãº_��,

�̂�"î
�B �§Ãº_��,G�l�ï�r �§Ãº_��,~ÃÌ5pxÃº �§Ãº_��,þj#î
ÅÒ �§Ãº_��,s�p�&ñ
 �§Ãº_��,~ÃÌ�&³$3� �§Ãº

��,s����Ãº�§Ãº��,ìøÍò́�â
�§Ãº_��,Õªo��¦$�\�>��è×�æô�Ç��ØÔgË>�̀¦ÅÒ���s��o#�@/_� �̧��H�§

Ãº_��[þta�y����×¼wn�m���.

áÔ|½ÓÛ¼\�"f_�/BN1lx���½̈l�çß�1lxîß�[jd���>�t��̧K�ÅÒr��¦ÕªÊê\��̧���½̈���HX< ú́§�Ér �̧¹¡§

�̀¦ÅÒ��� INRIA_� Stephane Redon~ÃÌ��_��a�y����×¼wn�m���.~ÃÌ��_��a� ú́§�Ér���C��°?�¦,~ÃÌ¦̀�	כ

_��a�"f�2;]X�y�Õ����ÅÒ��� ü�ì�r\�áÔ|½ÓÛ¼\�"fa%~�ÉrÆÒ%3��̀¦z��U�́Ãºe��%3�_þvm���.

jËµ[þtM:����a%~�Ér ú́�@puK�ÅÒ$4�~�� �̂�@/�&³~ÃÌ��_��õ�þjÄ»ÅÒ~ÃÌ��_��,Õªo��¦×�æ²DG#Q\�¦��ØÔ5gÅÒ

r��¦�½Ó�©� �̧#3��̀¦�Ð#�ÅÒ$4�~�� Zhang Xinyu~ÃÌ��_��a�y����\�¦×¼wn�m���.

�̧��Hì�r[þt_���ØÔgË>Ü¼�Ð]j���8¹¡¤$í
�©�½+ÉÃºe��%3�~���.���ú _þvm°	כ

"f�Ð����9����"f\P�d��y�{9�Ùþ¡~�����½̈z�́�2;½̈[þt -K�&ñ
,����â
,����B.\P�\�"ft�&�ú<ÅÒr��¦����9

K�ÅÒr��¦�½Ó�©�}f�e����H���K�ÅÒ$4�~��p¦̀�	כâ
���m�.

{9��̧�1lxîß�s�%3�t�ëß�°ú s�/BNÂÒ����"fF�p�e����HÆÒ%3��̧ ú́§s�ëß�[þt%3�~���Ér����m�,�Ér&ñ
���m�. �̧

ØÔ��H ��s	כ e���̀¦ M:���� ú́§�Ér �̧¹¡§�̀¦ ÅÒ$4�~�� �èî�r���m�,�2;���m�°ú s� Õ����ÅÒ��� ��A����m�,&ñ
���

���m�,K�§î
���m�.

#Qn�e����Ht�Òqty�����¦Õªo�î�r�2;½̈[þt -�¦�̧Û¼,6 x��,N?t�K�, �̂��̂�ÅÒ,%i��è.Õªo��¦d�����m�.

6�¤>��í1px�<Æ�§,&h�����í1px�<Æ�§,4�x����í1px�<Æ�§,�����í1px�<Æ�§,Ä»%ò
�í1px�<Æ�§,Ø�æÁº#���×�æ�<Æ�§,

“main”

2007/6/27

page 63

63

�½Ó"é¶#���×�æ�<Æ�§,���"î
#���×�æ�<Æ�§,K��o#����¦1px�<Æ�§,p�aË>#����¦1px�<Æ�§\�"fëß�z�¤~���-Áº��

�è×�æô�Ç �̧��H�2;½̈[þt...

YO�o�e��t�ëß��½Ó�©�jËµ�̀¦ÅÒ��H�2;½̈[þt - Lenin, Nina, Nao..

áÔ|½ÓÛ¼\�"f�½Ó�©�°ú s���m����"f ú́§�Ér�þt�̀¦�<Êa�ô�Ç]	כ Ramyaü< Anca,°ú s�a�¦���>�{9�Ùþ¡~�� I3D

hË>Ðlr!Q[þt - Andreas, Michael, Romain, SandyÕªo��¦ Sabine~ÃÌ��_��.6£§���õ�p�Õütõ�ëß�[þtl�\�¦

a%~�����H Laurence.́ú§�Ér �̧¹¡§�̀¦ÅÒ$4�~��Ä»������m�ü<²DG��� �̧��.Õªµ1Ú\� INRIAü<áÔ|½ÓÛ¼\�"f

ëß�èß� �̧��H�2;½̈[þt...

�̧¿º[þt���\�e��#QÅÒ#Q"fy����½+Ëm���.

��t�}��Ü¼�Ð�½Ó�©�$�\�¦b���¦��|½ÓK�ÅÒr��¦l��̧K�ÅÒr���HÂÒ�̧_��,�ÃÌ��¦1puf��ô�Ç1lxÒqt.

Õªo��¦$�\�¦0AK�l��̧K�ÅÒr���H �̧��Hì�r[þta����d��Ü¼�Ðy����×¼wn�m���.

