
Programming Assignment 4

1

Compiler Project
PA5 – Final Submission

Due: 2024-04-30 11:59pm

The final submission of the project adds no new functionality, but provides an

opportunity to correct PA1-PA4 errors in your compiler and make improvements as you

wish. It also provides an opportunity to add extensions to your compiler for extra credit.

The extra credit is not needed – all grades can be obtained with just the basic project

unless you are on a team.

You need to submit a guide for your compiler, preferably as a PDF. Turn in all project

files on the “PA5—Final Compiler Submission” assignment on Gradescope.

-=-=-=-=-=-=-=-=-=-=-

REQUIRED ITEMS: GUIDE, ASTChanges.txt, SOURCE CODE

Recall how x64 documentation was difficult to read. Try not to repeat those mistakes in

your guide. You do not have to restate the obvious. Assume your reader is generally

familiar with compilers, doesn’t need to know what is an AST, and doesn’t need to know

the specifics of bytecode generation. Don’t restate what you already did in

ASTChanges.txt.

YOUR GUIDE IS NOT A JUSTIFICATION FOR DESIGN DECISIONS

Instead, it is a guide. In as few sentences as possible, concisely describe how you

handled the parts of the compiler.

1) Syntactic Analysis- Did you use recursive descent or a PDA? Did you make

everything a token, or minimize the number of tokens? Anything else?

2) AST Generation- “We assume general familiarity with ASTs. See ASTChanges.txt

for data beyond syntax that is stored in ASTs.”

3) Contextual Analysis- Did you do one traversal or two? Where is SI done?

4) Code Generation- Did you do optimization? How is your memory laid out?

5) Finally: Any greedy decisions to watch out for? For example, if you made

everything 64-bit even though JLS requires int to be 32-bit, then how did you

make sure add/multiply/subtract did not cause issues? If there are indeed parts

of your compiler where you simply did not handle errors, that is actually fine, but

mention those errors so that someone else can take over your Compiler.

There is no minimum page count, paragraph count, word count, etc. Your guide could

even entirely be drawn in MSPaint. The most important part is that it conveys how your

compiler is organized. Please do not submit more than a page.

If you have a GitHub, a good idea is to do documentation in the README.md file.

Programming Assignment 4

2

OPTIONAL ITEMS: EXTRA CREDIT

 Assume PA1 – PA5 grades are normalized to 100 points. With the Compiler worth

60% of your grade, each extra credit point is worth 0.6% of your course grade.

Each extra credit item has requirements. Some require you to supply tests that can

check the proper functionality of any additional implementation. These tests do not

have to be exhaustive, but please provide at least two input files (one fail, one pass).

Some extra credit items do not have to be implemented in all parts of the compiler. For

example, the push-down automata is only a PA1 constraint and does not require

redoing the rest of the compiler (PA2-PA4). If an extra credit item requires multiple PA

checkpoints to be reached, you are allowed to partially complete it for partial credit, but

only where it makes sense to award partial credit (no trivial additions).

There are many extra credit items that are not listed here. You can come up with your

own extra credit options, but please provide how many points you think that item

should be worth. (It may be worthwhile to ask the course staff for such).

Pts Tests PAs Description

1 Y All Allow initialization expressions for static fields.

1 Y All
Parameterized class constructions. Only one constructor per class
unless method overloading.

2 Y All For loops. Specify the new Grammar in your PA5.

2 Y PA4

Do both: Short circuit && and || expressions, where

“FALSE && …” will not evaluate subsequent expressions and

“TRUE || …” will not evaluate subsequent expressions.

4 Y All

Implement String. Note, “String.length” must resolve to a proper

variable, and “double quoted string data” needs to be parsed. You do
not need to implement BinExpr on Strings.

1 Y PA3-4 Fix System.out.println to allow for a String parameter.

1 Y PA3-4 Implement “.length” for arrays in PA3 and PA4.

2-4 N PA1 Implement PA1 with a PDA (and optionally PA2)

1-5 N PA4 Try to minimize the register usage of PA4.

2 Y PA2-3
Implement method overloading (signature is by parameter list, not
return type).

1-2 Y PA4
Implement method overloading in PA4 as well, and an additional point
for overloading constructors.

3-15 Y All

Enable instanceof and super, and allow classes to extend other

classes. Make sure type-checking is extended appropriately and ensure
all methods are virtual methods.

1 N PA3 Do a single traversal for Identification and Type-Checking

* N PA4
Apply some optimization algorithms. Ensure you specify how many
points you think it should be worth
(amount awarded is not guaranteed).

Programming Assignment 4

3

More Extra Credit Ideas

Pts Tests PAs Description

1-3 Y PA4

Come up with a secret handshake (a specific consecutive set of
Statements) that does no meaningful computation, but if detected by
your compiler, your compiler will then do something special. For
example, swap all multiply and addition operations. Or, when storing
data in an (Ix)AssignStmt, encode data with an XOR, and decode when
reading data (that way original values are only seen in registers, but
the memory always looks corrupted). Or simply output something on
the screen that isn’t a part of the normal code.

1 N PA3
In contextual analysis, you required a return statement at the end of
every non-void method. Extend this functionality to ensure all code
PATHS end with a return statement instead for non-void methods.

1 N PA4
Extend ModRMSIB (if you haven’t already) to ensure proper use of the
values for mod=00 and 01. This means only writing zero/one byte
when you otherwise pick mod=10 and greedily always output 4 bytes.

5-20 N All

Enable the use of shared libraries. This will require you to either redo
the ELFMaker entirely or cleverly add on imports via PLT. Additional
points come from properly implementing bss. For that, you will need to
read into the GOT/PLT sections to find where is “bss” during runtime.

* Y
PA1-3
PA4

Try implementing features in other programming languages. How
about a foreach loop using the .length parameter? Something more
difficult could be adding operator overloading from C++. Specify how
many points you think such an extension is worth, and whether you
implemented it in PA4 as well.

1 Y PA1-3 Add support for float.

1-3 Y PA4 Add support for float in PA4.

1 Y All Add support for char. Make sure you can parse single quotes.

1 N PA4

Every executable that is generated by your compiler has a special
signature hidden somewhere. Just a blob of binary data that is never
accessed or written to by the input source code. This will act as a
fingerprint where you can trace who used your compiler for binaries.

1-3 N PA4
Be evil and use CPUID to detect the manufacturer string of whatever is
running your executable. If it isn’t a wanted CPU, do evil things like
unoptimized code or random pointless loops injected into the code.

4-5 Y PA4
Try targeting MIPS (If you are taking COMP-541, target only the subset
to see if you can get it to run on the emulator).

3-8 Y PA4
Change your ELFMaker to something else, see if you can get your
program to run Windows, an M1+ processor, etc.

2-4 N PA4
Add the ability to automatically garbage collect objects that are no
longer referenced (sys_munmap).

1-3 Y All
Create some intricate code (e.g., Sieve of Eratosthenes, Shortest-path,
etc.) that runs in miniJava.

Make sure to submit this on GradeScope.

