
COMP 550.001 - Fall 2017

Assignment 1

Part 1a due: Wednesday, August 30, 2017 (start of class)
Part 1b due: Friday, September 1, 2017 (4:00 p.m.)

For part 1a, you should submit a physical copy of your written homework at the start of class.
For part 1b, you should submit a .tar.gz or .zip file with your solutions on Sakai.

Part A

[15 points] Problem 1

Consider the following pseudocode. Suppose that n is an even integer and that A[1..n] is an array
whose elements are either α or β, where α > β.

1: sum = 0
2: for i = n downto 1 by 2:
3: for j = i to n:
4: if A[i] ≥ A[j]:
5: sum = sum+ 1

1(a)

As a function of n, what is the maximum possible resulting value of the variable sum? What is the
pattern of entries that leads to this worst case? Express your answer as a summation, and then
express the solution to this summation as an exact (not asymptotic) formula involving n. Then
express it as an asymptotic formula involving n.

1(b)

As a function of n, what is the minimum possible resulting value of the variable sum? What is
the pattern of entries that leads to this best case? Express your answer as a summation, and then
express the solution to this summation as an exact (not asymptotic) formula involving n. Then
express it as an asymptotic formula involving n.

[25 points] Problem 2: CLRS Problem 2-2

Bubblesort is a popular, but inefficient, sorting algorithm. It works by repeatedly swapping adjacent
elements that are out of order.

Bubblesort(A)
1: for i = 1 to A.length − 1:
2: for j = A.length downto i+ 1:
3: if A[j] < A[j − 1]:
4: exchange A[j] with A[j − 1]

1



2(a)

Let A′ denote the output of Bubblesort(A). To prove that Bubblesort is correct, we need to
prove that it terminates and that

A′[1] ≤ A′[2] ≤ ... ≤ A′[n] (1)

where n = A.length. In order to show that Bubblesort actually sorts, what else do we need to
prove?

The next two parts will prove inequality (1).

2(b)

State precisely a loop invariant for the for loop in lines 2-4, and prove that this loop invariant holds.
Your proof should use the structure of the loop invariant proof presented in lecture for Insertion
Sort and in Chapter 2.

2(c)

Using the termination condition of the loop invariant proved in part (b), state a loop invariant
for the for loop in lines 1-4 that will allow you to prove inequality (1). Your proof should use the
structure of the loop invariant proof presented in lecture for Insertion Sort and in Chapter 2.

2(d)

What is the worst-case running time of Bubblesort? How does it compare to the running time of
Insertion Sort?

[20 points] Problem 3: Subset of CLRS Problem 3-3(a)

Rank the following functions by order of growth; that is, find an arrangement g1, g2, ..., g16 of the
functions satisfying g1 = Ω(g2), g2 = Ω(g3), ..., g15 = Ω(g16). Partition your list into equivalence
classes such that functions f(n) and g(n) are in the same class if and only if f(n) = Θ(g(n)).

If you want partial credit, be sure to include your reasoning for each relation between and within
equivalence classes.

22
n

n lg n n2 n!

lg n n3 lg2 n 2n

ln lnn lg∗ n n lnn

2lgn 1 22
n+1

4lgn

2



Part B

[20 points] Problem 1

For this problem, you are given the implementations of four algorithms discussed in the book. Your
goal is to compare their runtimes on a variety of different inputs.

Although you can work with another student for the part B problems, you should generate the
results for this problem on your own computer. Make sure to add a readme.txt file stating either
that you worked alone, or the name of your partner.

1(a)

Give the machine specs for the machine on which you’re running the comparison in this problem.
For example: 64-bit Windows 7 Ultimate Service Pack 1, Intel i5-6600K CPU @ 3.50 GHz, 32 GB
RAM, Java JRE 1.8.

1(b)

Modify sortFunctionChoice and datasetChoice in sort/Main.java in order to run each algo-
rithm with each input. The algorithm implementations and timing code have been provided for you.
You should record the times in a table like the one below. Make sure to record the units correctly!

Insertion Sort Merge Sort Selection Sort Bubble Sort

Small sorted

Small almost-sorted

Small backwards

Small random

Large sorted

Large almost-sorted

Large backwards

Large random

1(c)

Using your knowledge of the sorting algorithms from the book and/or lecture, explain in your own
words any trends you see, including for each data set why a given sorting algorithm performed the
fastest.

[20 points] Problem 2: variant of CLRS Exercise 4.1-3

This problem compares the brute-force and recursive approaches to solving the maximum-subarray
problem.

2(a)

Implement both the brute-force and recursive algorithms for the maximum-subarray problem.
You should fill in the implementations for the functions findMaximumSubarrayBruteForce and

3



findMaximumSubarrayRecursive in maximumSubarray/Solver.java. For reference, the brute-
force pseudocode is given below. The recursive approach is given in Section 4.1 of CLRS.

Find-Maximum-Subarray-Brute-Force(A)
1: bestRange = (1, 1)
2: bestV al = A[1]
3: for i = 1 to n:
4: currentV al = 0
5: for j = i to n:
6: currentV al = currentV al +A[j]
7: if currentV al ≥ bestV al:
8: bestV al = currentV al
9: bestRange = (i, j)

10: return (bestRange.low, bestRange.high, bestV al)

2(b)

Run your code on random inputs of different sizes by modifying numElements and functionChoice

in Main.java. How does each algorithm scale as the input size grows? You should consider inputs
up to 100,000 elements, and present your results in a table like the one below.

Input size 10 100 1000 10,000 100,000

Brute-Force

Recursive

4


