
COMP 550.001 - Fall 2017

Assignment 2

Part A due: Wednesday, September 13, 2017 (start of class)
Part B due: Friday, September 15, 2017 (4:00 p.m.)

For Part A, you should submit a physical copy of your written homework at the start of class.
For Part B, you should submit a .tar.gz or .zip file with your solutions on Sakai.

Optional Part C due: Friday, September 15, 2017 (start of class)

This assignment includes an optional Part C. Earning half of the points will be worth half of a late
day (only integral late days may be used to turn in homework late, but a partial late day can count
as partial extra credit at the end of the semester), and earning at least 80% of the points will be
worth a full late day. You should submit your code in a .zip or .tar.gz file to Sakai, and the analysis
in a physical copy.

Part A: Due Wednesday, September 13, 2017

[5 points] Problem 1: CLRS Exercise 4.3-3

We saw that the solution of T (n) = 2T (bn/2c) + n is O(n lg n). Show that the solution of this
recurrence is also Ω(n lg n). Conclude that the solution is Θ(n lg n).

[5 points] Problem 2: CLRS Exercise 4.4-5

Use a recursion tree to determine a good asymptotic upper bound on the recurrence T (n) =
T (n− 1) + T (n/2) + n. Use the substitution method to verify your answer.

[20 points] Problem 3: Subset of CLRS Problem 4-1

Give asymptotic upper and lower bounds for T (n) in each of the following recurrences. Assume
that T (n) is constant for n ≤ 2. Make your bounds as tight as possible, and justify your answers.

a. T (n) = 2T (n/2) + n4.

b. T (n) = 7T (n/2) + n2.

c. T (n) = 2T (n/4) +
√
n.

d. T (n) = T (n− 2) + n2.

1



[15 points] Problem 4: Subset of CLRS Problem 4-3

Give asymptotic upper and lower bounds for T (n) in each of the following recurrences. Assume
that T (n) is constant for sufficiently small n. Make your bounds as tight as possible, and justify
your answers.

a. T (n) = 3T (n/3− 2) + n/2.

b. T (n) = T (n/2) + T (n/4) + T (n/8) + n.

c. T (n) = T (n− 1) + 1/n.

[15 points] Problem 5: CLRS Exercise 9.3-8

Let X[1..n] and Y [1..n] be two arrays, each containing n numbers already in sorted order. Give an
O(lg n)-time algorithm to find the median of all 2n elements in arrays X and Y .

Part B: Due Friday, September 15, 2017

[15 points] Problem 1

In this problem, you’ll create a memoized version of Fibonacci, and compare its results with the
straightforward recursive solution for large values of the input.

1(a)

On your machine, what is the lowest value of n such that fib takes more than 10 seconds to
complete?

1(b)

First, fill in the implementation of memoizedFib. You should use memoization to avoid re-calculating
values twice, but still call memoizedFib recursively.

For the value of n you gave in 1(a), how long does memoizedFib take to complete?

1(c)

Now, write a bottom-up iterative Fibonacci number generator. The idea is this: each non-base-case
computation of fib(n) requires computing all smaller values. Rather than starting with n and
recursively calling the function, instead iteratively build up a table of the results for i = 1ton. Your
function should run in Θ(n) time. Put this implementation in bottomUpFib.

For the value of n you gave in 1(a), how long does bottomUpFib take to complete?

2



[25 points] Problem 2: Variant of CLRS Exercise 15.1-4

In this problem, you will implement different approaches to the rod cutting problem discussed
in lecture. A simple RodCuttingSolution class is provided to you. It has members value and
lengths, which you should use to store the optimal value and the cut-rod lengths to achieve that
value.

2(a)

First, implement the following pseudocode by filling in the function cutRod.

Cut-Rod(v,n)
1: if n == 0:
2: return 0
3: bestV al = −∞
4: for i = 1 to n:
5: bestV al = max(bestV al, v[i] + Cut-Rod(v, n− i))
6: return bestVal

2(b)

Next, implement the dynamic programming memoized version in cutRodMemoized.

Cut-Rod-Memoized(v,n)
1: let res[0..n] be a new array
2: for i = 0 to n:
3: res[i] = −∞
4: return Cut-Rod-Memoized-Aux(v, n, res)

Cut-Rod-Memoized-Aux(v,n,res)
1: if res[n] ≥ 0:
2: return res[n] // use memoized result
3: if n == 0:
4: q = 0
5: else:
6: q = −∞
7: for i = 1 to n:
8: q = max(q, v[i] + Cut-Rod-Memoized-Aux(v, n− i, res))
9: res[n] = q // memoize the value for later

10: return q

2(c)

Finally, modify your implementations of cutRod and cutRodMemoized to return both the
optimal value, and the resulting lengths of rod to get that value. A simple RodCuttingSolution

class is provided to you. It has members value and lengths, which you should use to store the
optimal value and the cut-rod lengths to achieve that value.

3



[Optional] Part C: Due Friday, September 15, 2017

Problem 4-6 An m×n array A of real numbers is a Monge array if for all i, j, k, and l such
that 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n, we have

A[i, j] + A[k, l] ≤ A[i, l] + A[k, j].

In other words, whenever we pick two rows and two columns of a Monge array and consider the four
elements at the intersections of the rows and the columns, the sum of the upper-left and lower-right
elements is less than or equal to the sum of the lower-left and upper-right elements. For example,
the following array is Monge:

10 17 13 28 23

17 22 16 29 23

24 28 22 34 24

11 13 6 17 7

45 44 32 37 23

36 33 19 21 6

75 66 51 53 34

a.

Prove that an array is Monge if and only if for all i = 1, 2, ...,m− 1 and j = 1, 2, ..., n− 1, we have

A[i, j] + A[i + 1, j + 1] ≤ A[i, j + 1] + A[i + 1, j].

(Hint: For the “if” part, use induction separately on rows and columns.)

b.

The following array is not Monge. Change one element in order to make it Monge. (Hint: Use part
(a).)

37 23 22 32

21 6 7 10

53 34 30 31

32 13 9 6

43 21 15 8

c.

Let f(i) be the index of the column containing the leftmost minimum element of row i. Prove that
f(1) ≤ f(2) ≤ ... ≤ f(m) for any m× n Monge array.

4



d.

Here is a description of a divide-and-conquer algorithm that computes the left-most minimum
element in each row of an m× n Monge array A:

Construct a submatrix A′ of A consiting of the even-numbered rows of A. Recursi-
vely determine the leftmost minimum for each row of A′. Then compute the leftmost
minimum in the odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered rows of A (given that the
leftmost minimum of the even-numbered rows is known) in O(m + n) time.

e.

Write the recurrence describing the running time of the algorithm described in part (d). Show that
its solution is O(m + n logm).

5


