COMP 550.001 - Fall 2017
Assignment 2

Part A due: Wednesday, September 13, 2017 (start of class)
Part B due: Friday, September 15, 2017 (4:00 p.m.)

For Part A, you should submit a physical copy of your written homework at the start of class.
For Part B, you should submit a .tar.gz or .zip file with your solutions on Sakai.

Optional Part C due: Friday, September 15, 2017 (start of class)

This assignment includes an optional Part C. Earning half of the points will be worth half of a late
day (only integral late days may be used to turn in homework late, but a partial late day can count
as partial extra credit at the end of the semester), and earning at least 80% of the points will be
worth a full late day. You should submit your code in a .zip or .tar.gz file to Sakai, and the analysis
in a physical copy.

Part A: Due Wednesday, September 13, 2017

[5 points] Problem 1: CLRS Exercise 4.3-3

We saw that the solution of T'(n) = 27'(|n/2]) + n is O(nlgn). Show that the solution of this
recurrence is also Q(nlgn). Conclude that the solution is ©(nlgn).

[5 points] Problem 2: CLRS Exercise 4.4-5

Use a recursion tree to determine a good asymptotic upper bound on the recurrence 7'(n) =
T(n— 1)+ T(n/2) + n. Use the substitution method to verify your answer.

[20 points] Problem 3: Subset of CLRS Problem 4-1

Give asymptotic upper and lower bounds for 7'(n) in each of the following recurrences. Assume
that T'(n) is constant for n < 2. Make your bounds as tight as possible, and justify your answers.

a. T(n) = 2T(n/2) + n.
b. T(n) = TT(n/2) + n?
c. T(n) = 2T(n/4) + /.
d. T(n) = T(n — 2) +n?



[15 points] Problem 4: Subset of CLRS Problem 4-3

Give asymptotic upper and lower bounds for T'(n) in each of the following recurrences. Assume
that T'(n) is constant for sufficiently small n. Make your bounds as tight as possible, and justify
your answers.

a. T(n)=3T(n/3 —2)+n/2.
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T(n/2)+T(n/4) +T(n/8) + n.
c. T(n)=T(n—-1)+1/n.

[15 points] Problem 5: CLRS Exercise 9.3-8

Let X[1..n] and Y[1..n] be two arrays, each containing n numbers already in sorted order. Give an
O(lg n)-time algorithm to find the median of all 2n elements in arrays X and Y.

Part B: Due Friday, September 15, 2017

[15 points] Problem 1

In this problem, you’ll create a memoized version of FIBONACCI, and compare its results with the
straightforward recursive solution for large values of the input.

1(a)
On your machine, what is the lowest value of n such that FIB takes more than 10 seconds to
complete?

1(b)

First, fill in the implementation of MEMOIZEDFIB. You should use memoization to avoid re-calculating
values twice, but still call MEMOIZEDFIB recursively.

For the value of n you gave in 1(a), how long does MEMOIZEDF1B take to complete?

1(c)

Now, write a bottom-up iterative Fibonacci number generator. The idea is this: each non-base-case
computation of FIB(N) requires computing all smaller values. Rather than starting with n and
recursively calling the function, instead iteratively build up a table of the results for ¢ = 1ton. Your
function should run in ©(n) time. Put this implementation in BOTTOMUPFIB.

For the value of n you gave in 1(a), how long does BOTTOMUPFIB take to complete?



[25 points] Problem 2: Variant of CLRS Exercise 15.1-4

In this problem, you will implement different approaches to the rod cutting problem discussed
in lecture. A simple RodCuttingSolution class is provided to you. It has members value and
lengths, which you should use to store the optimal value and the cut-rod lengths to achieve that
value.

2(a)
First, implement the following pseudocode by filling in the function cutRod.
Cur-Rop(v,n)
1: if n == 0:
2 return 0
3: bestVal = —oc0
4: for i =1 to n:
5 bestVal = max(bestVal,v[i] + CuT-ROD(v,n — 7))
6: return bestVal

2(b)
Next, implement the dynamic programming memoized version in cutRodMemoized.

Cur-ROD-MEMOIZED(v,n)

1: let res[0..n] be a new array

2: for 1 =0 to n:

3 resli] = —o0

4: return CuT-ROD-MEMOIZED-AUX(v, n, res)
CuT-ROD-MEMOIZED-AUX(v,n,res)

1. if res[n] > 0:

2:  return res[n| // use memoized result

3: if n==0:

4: q=20

5: else:

6: q= —00

7: for i =1 to n:

8: g = max(q, v[i] + CuT-ROD-MEMOIZED-AUX (v, n — i, T€es))

9: res[n] = q // memoize the value for later

10: return q

2(c)

Finally, modify your implementations of cUTROD and CUTRODMEMOIZED to return both the
optimal value, and the resulting lengths of rod to get that value. A simple RodCuttingSolution
class is provided to you. It has members value and lengths, which you should use to store the
optimal value and the cut-rod lengths to achieve that value.




[Optional] Part C: Due Friday, September 15, 2017

Problem 4-6 An m x n array A of real numbers is a Monge array if for all i, j, k, and [ such
that 1 <1<k <mand1<j<l<n, we have

Ali, 5] + Ak, 1] < A[i, 1] + Alk, 5.

In other words, whenever we pick two rows and two columns of a Monge array and consider the four
elements at the intersections of the rows and the columns, the sum of the upper-left and lower-right
elements is less than or equal to the sum of the lower-left and upper-right elements. For example,
the following array is Monge:

10 17 13 28 23
17 22 16 29 23
24 28 22 34 24
11 13 6 17 7

45 44 32 37 23
36 33 19 21 6

75 66 51 33 34

a.

Prove that an array is Monge if and only if for allt =1,2,....m—1 and j = 1,2,...,n — 1, we have

Al g+ Ali+ 1,7+ 1] < Ali, j + 1]+ Afli + 1, 4].

(Hint: For the “if” part, use induction separately on rows and columns.)

b.

The following array is not Monge. Change one element in order to make it Monge. (Hint: Use part

(a).)

37 23 22 32
21 6 7 10
53 34 30 31
32 13 9 6
43 21 15 8

C.

Let f(i) be the index of the column containing the leftmost minimum element of row i. Prove that
f(1) < f(2) < ... < f(m) for any m x n Monge array.



d.

Here is a description of a divide-and-conquer algorithm that computes the left-most minimum
element in each row of an m x n Monge array A:

Construct a submatrix A’ of A consiting of the even-numbered rows of A. Recursi-
vely determine the leftmost minimum for each row of A’. Then compute the leftmost
minimum in the odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered rows of A (given that the
leftmost minimum of the even-numbered rows is known) in O(m + n) time.
e.

Write the recurrence describing the running time of the algorithm described in part (d). Show that
its solution is O(m + nlogm).



