
[Optional] HW 5 Part C: Due Wednesday, November 15, 2017

Greedy Task Scheduling, continued

For this problem, we have a setup similar to Problem 3, except you are now scheduling periodic
tasks, which are defined below. We now only care about tasks completing by their deadlines, so
it is no longer important that they finish quickly, just that they finish on time. You will write two
different greedy scheduling algorithms, one of which gives an optimal solution, and one of which
does not.

Like before, we have a set τ = {τ1, τ2, ..., τn} of n tasks. Each task τi requires ci units of
computation time to complete once it has started. There is still only one computer on which to run
tasks, and the computer can run only one at a time. We also assume that we allow preemption, so
that the running task can be suspended and restarted at a later time. (Note that some scheduling
algorithms, by their nature, don’t need to account for preemptions, which can make them simpler
to implement.)

Unlike in Problem 3, tasks are now repeated periodically. A task τi releases a series of jobs each
pi time units. Each of these jobs needs to complete by the time the next one is released. We specify
this by saying that a job Ji,j of task τi has a release time ri,j = j ∗ pi and deadline of ri,j + pi.

We say that a task set is schedulable by some algorithm A if all jobs can be assigned to run on
the computer and meet their deadlines. For example, if there are two tasks τ1 and τ2 with periods
p1 = 2 and p2 = 6 and execution times c1 = 1 and c2 = 3, then jobs of these tasks could be
scheduled as follows:

J1,1 J2,1 J1,2 J2,1 J1,3 

0 1 2 3 4 5 6time

However, the following schedule causes J1,2 to miss its deadline:

J1,1 J2,1 J1,2 J1,3 

0 1 2 3 4 5 6time

a. The first scheduling algorithm that you’ll implement is called First-In First-Out (FIFO). A FIFO
scheduler behaves exactly as it sounds: jobs are executed in order of their releases, chosen greedily.
You should fill in the implementation of scheduleTaskSet in FifoScheduler.

Do you need to handle preemptions? Why or why not? If so, make sure to implement this.

b. Run your FIFO scheduler on the three provided task sets. Include the resulting outputted sche-
dules, drawn in the style of the the schedules above, in your writeup. Which of the task sets make
their deadlines when scheduled using FIFO? (Make sure to check for all jobs released in the interval,
not just any that complete in the interval.)

1



c. The second scheduling algorithm is called Earliest Deadline First (EDF). Under EDF, jobs
are chosen to run in order of their deadlines; the algorithm always makes the greedy choice of
the job with the earliest deadline out of all available jobs. For this, fill in the implementation of
scheduleTaskSet in EdfScheduler.

Do you need to handle preemptions? Why or why not? If so, make sure to implement this.

d. Run your EDF scheduler on the three provided task sets. Include the resulting outputted sche-
dules, drawn in the style of the the schedules above, in your writeup. Which of the task sets make
their deadlines when scheduled using EDF? (Make sure to check for all jobs released in the interval,
not just any that complete in the interval.)

e. One of the task sets is not schedulable on a single machine under any scheduling algorithm.
Describe, in your own words, why this task set is not schedulable.

2


