
COMP 550.001 - Fall 2017

Assignment 6

This assignment includes an optional Part C. Earning half of the points will be worth half of a late
day (only integral late days may be used to turn in homework late, but a partial late day can count
as partial extra credit at the end of the semester), and earning at least 80% of the points will be
worth a full late day. You should submit your code in a .zip or .tar.gz file to Sakai, and the analysis
in a physical copy.

[Optional] Part C: Due Wednesday, November 29, 2017

Graph Search of Puzzle States

In the 15-puzzle, there are 15 lettered tiles and a blank square arranged in a 4×4 grid. Any lettered
tile adjacent to the blank square can be slid into the blank. For example, a sequence of two moves
is shown below:

In the leftmost configuration above, the A and B tiles are out of order. Using only legal moves, it
is not possible to swap the A and B, while leaving all the other tiles in their original positions and
the blank in the top left corner.

In this problem, you will take steps to prove that this is the case, and implement a graph search
to find the shortest sequence of moves to the solved state if it is reachable.

Theorem. No sequence of moves transforms the board below on the left into the board below on the
right.

a) We define the “order” of the tiles in a board to be the sequence of tiles on the board reading
from the top row to the bottom row and from left to right within a row. For example, in the left
board depicted in the above theorem, the order of the tiles is B, A, C, D, E, etc.

Can a row move change the order of the tiles? Prove your answer.

b) How many pairs of tiles will have their relative order changed by a column move? More for-
mally, for how many pairs of letters L1 and L2 will L1 appear earlier in the order of the tiles than
L2 before the column move and later in the order after the column move? Prove your answer correct.

1



c) We define an inversion to be a pair of letters L1 and L2 for which L1 precedes L2 in the
alphabet, but L1 appears after L2 in the order of the tiles. For example, consider the following
configuration:

There are exactly four inversions in the above configuration: D and C, G and F, G and E, and F
and E.

What effect does a row move have on the parity of the number of inversions? Prove your answer.

d) What effect does a column move have on the parity of the number of inversions? Prove your
answer.

The previous problem part implies that we must make an odd number of column moves in order to
exchange just one pair of tiles (A and B, say). But this is problematic, because each column move
also knocks the blank square up or down one row. So after an odd number of column moves, the
blank can not possibly be back in the first row, where it belongs! Now we can bundle up all these
observations and state an invariant, a property of the puzzle that never changes, no matter how
you slide the tiles around.

Lemma. In every configuration reachable from the position shown below, the parity of the number
of inversions is the same as the parity of the row containing the blank square.

You do not have to prove this lemma. Note that you could use this lemma to prove the theorem
we originally set out to prove.

e) You will now use the properties proven above to write a function that determines whether a
puzzle is solvable. Fill in the implementations of getInversionCount and isSolvable in the class
NumberPuzzle.

f) Given what you now know about this puzzle, you can implement a BFS search to find the
sequence of moves to get to a solved state. However, the state space of all possible puzzle states is
very large. As a result, you must build the graph as you perform the search.

Each state of the puzzle represents a node in the BFS search. This is represented by the BfsNode
class, which takes a NumberPuzzle as the state in its constructor. This class overrides equals and

2



hashCode; you can use a HashSet to track whether you have seen a given node before, rather than
coloring it white/gray/black.

Fill in the function getBestMoves in Main.java. Your implementation should return a sequence
of puzzle states from the starting state to the solved state.

g) As you might have noticed, your implementation is very slow. How long does it take to solve
the 18-move puzzle state given in main?

h) You can speed up the BFS search substantially by searching in two directions at once. For
every iteration of BFS, you can extend one node in the forward direction (starting at the initial
puzzle state), and one node in the backward direction (starting at the solved puzzle state).

Implement this bi-directional search in getBestMovesBidirectional. As before, it should re-
turn a sequence of puzzle states from the starting state to the solved state.

i) How long does it take to solve the 18-move puzzle state using the bi-directional search?

j) Finally, fill in the table below of times in milliseconds for each of the puzzle states from 2 moves
to 18 moves.

Moves getBestMoves (ms) getBestMovesBidirectional (ms)

2

4

6

8

10

12

14

16

18

Part C proofs are derived from MIT’s 6.042 course, Fall 2010. The overall problem is inspired by
the pocket cube problem from MIT’s 6.006, Fall 2011.

• Tom Leighton and Marten van Dijk, 6.042J/18.062J Mathematics for Computer Science, Fall
2010. (MIT OpenCourseWare: Massachusetts Institute of Technology), https://ocw.mit.edu/
courses/electrical-engineering-and-computer-science/6-042j-mathematics-for-computer-science-
fall-2010/index.htm (Accessed November 15, 2017). License: Creative commons BY-NC-SA

• Erik Demaine and Srinivas Devadas, 6.006 Introduction to Algorithms, Fall 2011. (MIT Open-
CourseWare: Massachusetts Institute of Technology): https://ocw.mit.edu/courses/electrical-
engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/index.htm (Ac-
cessed November 15, 2017). License: Creative commons BY-NC-SA

3


