
COMP 550.001 - Fall 2017

Assignment 7

Part A due: Monday, December 4, 2017 (start of class)
Part B due: Wednesday, December 6, 2017 (4:00 p.m.)

For Part A, you should submit a physical copy of your written homework at the start of class.
For Part B, you should submit a .tar.gz or .zip file with your solutions on Sakai.

Part A: Due Monday, December 4, 2017

Be sure to include a collaboration statement with your assignment, even if you worked alone.

[10 points] Problem 1: CLRS Exercise 29.3-5

Solve the following linear program using the Simplex algorithm:

maximize 18x1 + 12.5x2

subject to

x1 + x2 ≤ 20

x1 ≤ 12

x2 ≤ 16

x1, x2 ≥ 0 .

Make sure to show the state of the linear program after each iteration, list xe and x` for each
iteration, and state the z value that results from each basic solution.

[12 points] Problem 2: CLRS Exercise 24.4-1

Draw the constraint graph, and find a feasible solution or determine that no feasible solution exists
for the following system of difference constraints:

x1 − x2 ≤ 1 ,

x1 − x4 ≤ − 4 ,

x2 − x3 ≤ 2 ,

x2 − x5 ≤ 7 ,

x2 − x6 ≤ 5 ,

x3 − x6 ≤ 10 ,

x4 − x2 ≤ 2 ,

x5 − x1 ≤ − 1 ,

x5 − x4 ≤ 3 ,

x6 − x3 ≤ − 8 .
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[22 points] Problem 3: extension of CLRS Exercise 29.2-2

a) Write out explicitly the linear program corresponding to finding the shortest path from node s
to node y in Figure 24.2(a).

b) Put the resulting linear program into slack form. For clarity, it might help to use dk to represent
the variable for a node k’s shortest distance, and xj to represent slack variable j.

c) Solve the resulting linear program. (Hint: your result should match that of the shortest path
from s to y from Figure 24.2.)

[8 points] Problem 4: CLRS Exercise 34.2-1

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if there exists a bijection f : V → V ′

such that (u, v) ∈ E if and only if (f(u), f(v)) ∈ E′. In other words, we can relabel the vertices of
G to be vertices of G′, maintaining the corresponding edges in G and G′. You can find an example
of two isomorphic graphs in Figure B.3(a) of appendix B.

Consider the language

GRAPH-ISOMORPHISM = {〈G1, G2〉 : G1 and G2 are isomorphic graphs}.

Prove that GRAPH-ISOMORPHISM ∈ NP by describing a polynomial-time algorithm to verify
the language.

[8 points] Problem 5: Subset-Sum

In the subset-sum problem , we are given a finite set S of positive integers and an integer target
t > 0. We ask whether there exists a subset S′ ⊆ S whose elements sum to t. For example, if
S = {1, 2, 7, 14, 49, 50} and t = 58, then the subset S′ = {2, 7, 49} is a solution.

We can define the problem as a language:

SUBSET-SUM = {〈S, t〉 : there exists a subset S′ ⊆ S such that t =
∑
s∈S′

s}.

If integers are coded in binary, this problem is NP-complete. Show that SUBSET-SUM ∈ NP by
describing a polynomial-time algorithm to verify the language.
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Part B: Due Wednesday, December 6, 2017

[40 points] K-Means Clustering

As shown in lecture, K-Means Clustering is an algorithm to group data points into clusters. The
input to the algorithm is a set of n data points, {x1, · · · , xn}, and an integer k, representing the
number of clusters to form. Each data point is a feature vector of m features. For example, a data
point with m = 2 might represent the sleep and stress levels of a person or the height and weight
of a dog, and a data point with m = 3 might correspond to the red, green, and blue values of a
pixel in an image.

For this problem, you will implement the K-Means Clustering algorithm presented in lecture,
and use the algorithm to cluster a data set of dogs. Recall from lecture that the K-Means Clustering
algorithm consists of three steps:

K-Means-Clustering(X, k):
0: normalize the data to have each feature in the range [0, 1]
1: C = k initial random clusters from X
2: do
3: assign each data point xi ∈ X to the nearest cluster cj ∈ C
4: update centroids
5: while (assignments changed)
6: return map : centroid cj → {xi : xi in cluster with centroid cj}

In the dataset, each of the n = 15 data points represents the height and weight of a dog. For
example, the Yorkshire Terrier (a “tiny” dog), could be represented as (7, 6), indicating that it
weighs 7 pounds and is 6 inches tall. The dog dataset is represented in the table below, and you’ll
find it in Main.java. As discussed in class, classifiers are typically built using training data, and
verified using testing data. For this assignment, you’ll focus on the training.

Dog Breed Weight (pounds) Height (inches) Label

Chihuahua 4 5 Tiny

Yorkshire Terrier 7 6 Tiny

Miniature Poodle 14 12 Small

Beagle 20 13 Small

Pembroke Welsh Corgi 24 11 Small

Border Collie 30 20 Medium

Siberian Husky 36 22 Medium

Poodle 55 22 Large

Golden Cocker Retriever 60 20 Large

Labrador Retriever 65 30 Large

Bernese Mountain Dog 110 27 Huge

Great Pyrenese 115 28 Huge

Saint Bernard 120 35 Huge

Great Dane 120 40 Huge
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This data set is visualized in the 2-dimensional plot below:

a) Normalizing the Dataset

For the first part of this assignment, you will normalize the dataset. Fill in the implementation of
normalizeDataset in KMeans.java. You can calculate the expected results from the table above,
but to give you an idea, you should expect that the “Chihuahua” data point normalizes to (0, 0),
the “Great Dane” data point normalizes to (1, 1), and “Border Collie” normalizes to (0.224, 0.429).

Your implementation should also set the class members mins and maxes for future use. These
store the minimum and maximum value for each feature (e.g. weight and height), respectively.

b) Clustering the Data Points

Provided for you is the implementation to choose the initial centroids. For this part, fill in the
implementation of clusterDataPoints. This method takes in the set of data points, as well as the
current (empty) and prior iteration’s clusters. You should always return true if isFirstAssignment
is set to true. In addition, this method should return true if any of the points ends up in a different
cluster than it was the prior iteration.

c) Updating the Centroids

You’re on the last stretch! The last piece of the algorithm is to update the centroids at the end
of the iteration. In the method updateCentroids, you should update the centroid of each cluster
to be the mean of the data points in the cluster. You will likely find the getNormalized method
of the FeatureVector class useful. This method gives the normalized feature value for the given
dimension (0 to m− 1). In addition, you should update the label of the centroid to be the mode of
the labels in the cluster. Don’t update any of the fields directly; use the updatecentroid method
of FeatureVector for this.

d) Classification

You should now have a working implementation of a K-Means classifier. Play around with the
clusters for different values of k. Find one that seems to give reasonable results. Using your chosen
value of k, run your classifier 5 times. For each run, record the number of iterations to convergence,
and the final label assigned to the “Cocker Spaniel” data point. Make sure to include these values
in your readme file.
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