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Abstract
The push towards fielding autonomous-driving capabilities in
vehicles is happening at breakneck speed. Semi-autonomous
features are becoming increasingly common, and fully au-
tonomous vehicles are optimistically forecast to be widely
available in just a few years. Today, graphics processing
units (GPUs) are seen as a key technology in this push to-
wards greater autonomy. However, realizing full autonomy in
mass-production vehicles will necessitate the use of stringent
certification processes. Currently available GPUs pose chal-
lenges in this regard, as they tend to be closed-source “black
boxes” that have features that are not publicly disclosed.
For certification to be tenable, such features must be docu-
mented. This paper reports on such a documentation effort.
This effort was directed at the NVIDIA TX2, which is one of
the most prominent GPU-enabled platforms marketed today
for autonomous systems. In this paper, important aspects of
the TX2’s GPU scheduler are revealed as discerned through
experimental testing and validation.

1 Introduction
Graphics processing units (GPUs) are currently seen as a key
enabler for accelerating computations fundamental to real-
izing autonomous-driving capabilities. The massive paral-
lelism afforded by GPUs makes them especially well-suited
for accelerating computations such as motion planning, or for
handling multiple input streams from sensors such as cam-
eras, laser range finders (LIDAR), and radar. For this reason,
several companies (Tesla, Audi, Volvo, etc. [20]) have an-
nounced their intentions of using GPU-equipped computing
platforms in realizing autonomous features.

As mass-market vehicles evolve towards providing full
autonomy, it will become ever more critical that GPU-using
workloads are amenable to strict certification. However, cer-
tification requires a comprehensive model of the GPU sched-
uler. Unfortunately, currently available GPUs create numer-
ous challenges in this regard, because many aspects underly-
ing their design either are not documented or are described
at such a high level that crucial technical details are not
revealed. Without such details, it is impossible to certify a
safety-critical design.

Real-time constraints and GPU scheduling. In this pa-
per, we consider one key aspect of certification—the valida-
tion of real-time constraints—in the context of embedded
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multicore+GPU platforms suitable for autonomous-driving
use cases. These platforms usually follow a system-on-chip
(SoC) design, where a GPU and one or more CPUs are hosted
on the same chip. GPUs in SoC designs tend to be less capa-
ble than those in desktop systems. As a result, it is crucial
to fully utilize the GPU processing capacity that is available.
However, avoiding wasted GPU processing cycles can be
difficult without detailed knowledge of how a GPU actually
schedules its work. Unfortunately, acquiring this knowledge
can be quite difficult, given the opaque and enigmatic nature
of publicly available information regarding GPUs.

Focus of this paper. In this paper, we present an in-depth
study of GPU scheduling on an exemplar of current GPUs
targeted towards autonomous systems. This study was con-
ducted using only black-box experimentation and publicly
available documentation. The exemplar chosen for this study
is the recently released NVIDIA TX2. The TX2 is part of
the Jetson family of embedded computers, which is explic-
itly marketed for “autonomous everything” [17]. Moreover,
it shares a common GPU architecture with the higher-end
Drive PX2, which is currently available only to automotive
companies and suppliers. The TX2 has two important at-
tributes for embedded use cases: it provides significant com-
puting capacity, and meets reasonable limits on monetary
cost as well as size, weight, and power (SWaP).

As seen in Fig. 1, the TX2 is a single-board computer con-
taining multiple CPUs and an integrated GPU. As explained
in more detail later, integrated GPUs share DRAM memory
with the host CPU platform, in contrast to discrete GPUs,
which have private DRAM memory. Integrated GPUs are the
de facto choice in embedded applications where SWaP is a
concern. The TX2’s cost, approximately 600 USD per board,
is likely affordable even if multiple copies are needed.

Contributions. This paper is part of an effort to develop
a model for describing GPU workloads and how they are
scheduled. Our eventual goal is to develop a model for which
real-time schedulability-analysis results can be derived, as
has been done for various CPU workload and scheduling
models that have been studied for years. We specifically tar-
get the TX2’s GPU scheduler. The TX2 is a very complicated
device, so discerning exactly how it functions is not easy.

Prior work has documented that NVIDIA GPU scheduling
differs based on whether work is submitted to a GPU from a
CPU executing (i) operating-system (OS) threads that share
an address space or (ii) OS processes that have different
address spaces [28]. However, to the best of our knowledge,
the exact manner in which GPU scheduling is done in either
case has never been publicly disclosed.



For Case (i), we present a set of rules, based on exper-
imental evidence involving benchmarking programs, that
fully define how the TX2’s GPU schedules work submit-
ted to it, assuming that certain optional GPU features (see
below) are not employed that introduce additional complexi-
ties. These rules take into account the ordering within and
among streams of requests for GPU operations, the means
by which various internal queues of requests are handled, the
ability of the GPU to co-schedule operations so they execute
concurrently, the selection mechanism used to determine
the order in which requests are handled, and the resource
limits that constrain the GPU’s ability to handle new re-
quests. Our rules indicate that the TX2’s GPU employs a
variant of hierarchical FIFO scheduling that is amenable to
real-time schedulability analysis, although scheduling is not
fully work-conserving, as GPU computations are subject to
various blocking delays.

The optional GPU features that we initially ignore in-
clude two features that cause certain request streams to be
treated specially, which further complicates GPU scheduling.
These features include the usage of a special stream called
the NULL stream and the usage of stream priorities. The
available documentation regarding both of these features of-
ten lacks details necessary for predicting specific runtime
behavior. Through further experiments, we show how each
of these features affects our derived scheduling rules.

GPU programs are most commonly developed assum-
ing that different GPU computations are requested by OS
processes with different address spaces, so Case (ii) above
applies. We investigated GPU scheduling in this case as well
and, unfortunately, found it to be less deterministic than in
Case (i). In particular, concurrent GPU computations in this
case are multiprogrammed on the GPU using time slicing
in a way that can add significant overhead and execution-
time variation. This result calls into question the common
practice today of following a process-oriented approach in
developing GPU applications, as reflected in open-source
frameworks such as Torch1 and Caffe.2 We also investigated
the usage of stream priorities under Case (ii) and found that
they have no effect in this case.

The work presented herein is a first step in a broader
project, the goal of which is to enable the analysis and certi-
fication of safety-critical real-time workloads that depend on
both CPU and GPU resources. In this broader context, our
experimental methods can actually be viewed as a second
contribution, as they have been devised in a way that should
enable relatively straightforward extension to other NVIDIA
GPU architectures that may be of interest in the future.

Organization. In the rest of this paper, we provide rele-
vant background on GPU fundamentals (Sec. 2), present
the basic TX2 GPU scheduling rules we have derived for
Case (i) above, along with experimental evidence to support

1http://torch.ch
2http://caffe.berkeleyvision.org
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Figure 1: Jetson TX2 Architecture

them (Sec. 3), discuss additional complexities impacting
these rules when certain important GPU features are enabled
(Sec. 4), and conclude (Sec. 5). For ease of exposition, some
experiments and details are deferred to appendices.

2 Background
In this section, we provide needed background on GPUs and
the NVIDIA Jetson TX2. We also discuss prior related work.

2.1 The NVIDIA Jetson TX2
As shown in Fig. 1, the TX2 employs an SoC design that
incorporates a quad-core 2.0-GHz 64-bit ARMv8 A57 pro-
cessor, a dual-core 2.0-GHz superscalar ARMv8 Denver pro-
cessor, and an integrated Pascal GPU. There are two 2-MB
L2 caches, one shared by the four A57 cores and one shared
by the two Denver cores. The GPU has two streaming mul-
tiprocessors (SMs), each providing 128 1.3-GHz cores that
share a 512-KB L2 cache. The six CPU cores and integrated
GPU share 8 GB of 1.866-GHz DRAM memory.

An integrated GPU, like that on the TX2, tightly shares
DRAM memory with CPU cores, typically draws between 5
and 15 watts, and requires minimal cooling and additional
space. As noted earlier, the alternative to an integrated GPU
is a discrete GPU. Discrete GPUs are packaged on adapter
cards that plug into a host computer bus, have their own
local DRAM memory that is completely independent from
that used by CPU cores, typically draw between 150 and
250 watts, need active cooling, and occupy substantial space.
For these reasons, integrated GPUs are found in most GPU-
enabled computing platforms for embedded systems.

2.2 CUDA Programming Fundamentals
The following is a high-level description of CUDA, the API
for GPU programming provided by NVIDIA.

A GPU is a co-processor that performs operations re-
quested by CPU code. CUDA programs use a set of C or
C++ library routines to request GPU operations implemented
by a combination of hardware and device-driver software.
The typical structure of a CUDA program is as follows: (i) al-



Listing 1 Vector Addition Pseudocode.
1: kernel VECADD(A ptr to int, B: ptr to int, C: ptr to int)

. Calculate index based on built-in thread and block information
2: i := blockDim.x * blockIdx.x + threadIdx.x
3: C[i] := A[i] + B[i]
4: end kernel

5: procedure MAIN
. (i) Allocate GPU memory for arrays A, B, and C

6: cudaMalloc(d A)
7: . . .

. (ii) Copy data from CPU to GPU memory for arrays A and B
8: cudaMemcpy(d A, h A)
9: . . .

. (iii) Launch the kernel
10: vecAdd<<<numBlocks, threadsPerBlock>>>(d A, d B, d C)

. (iv) Copy results from GPU to CPU array C
11: cudaMemcpy(h C, d C)

. (v) Free GPU memory for arrays A, B, and C
12: cudaFree(d A)
13: . . .
14: end procedure

locate GPU-local (device) memory for data; (ii) use the GPU
to copy data from host memory to GPU device memory; (iii)
launch a program, called a kernel,3 to run on the GPU cores
to compute some function on the data; (iv) use the GPU to
copy output data from device memory back to host mem-
ory; (v) free the device memory. An example vector-addition
CPU procedure and associated kernel are given in Listing 1.

In the usual programming model for writing CUDA code,
input data is partitioned among hardware threads on the GPU.
Parallelism is achieved by specifying the number of threads
that form a thread block and the total number of such blocks
to be allocated. For example, in a vector-addition kernel that
adds two 4,096-element arrays, where each thread operates
on a single element as in Listing 1, the programmer could
specify eight blocks of 512 threads. These values are given
in the kernel-launch command, shown in Line 10 of List-
ing 1. Thread-related system variables, such as the number
of threads per block and the total number of blocks, are used
by the kernel code to identify the specific data element(s)
handled by each thread. In the vector-addition example, each
thread calculates the index i of the element it operates on in
Line 2 using these CUDA-provided built-in variables.

To avoid any confusion, we henceforth use the term thread
to mean a hardware thread on the GPU. We use the term
process when referring to OS processes executing on CPUs
that have separate address spaces and task to refer to OS
threads executing on CPUs that share an address space. (The
term “thread” is ordinarily used in referring to the latter.)

As seen in Listing 1, dispersing code to execute across
one or more blocks, each with many threads, enables the
significant parallelism afforded by GPUs to be exploited. On
the TX2, there are 256 GPU cores, 128 per SM. Each SM
is capable of running four units of 32 threads each (called a
warp) at any given instant. The SM’s four warp schedulers

3Unfortunate terminology, not to be confused with an OS kernel.
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Figure 2: Diagram illustrating the relation between CUDA pro-
grams, kernels, and thread blocks.

(contained in hardware) take advantage of stalls, such as
waiting to access memory, to immediately begin running a
different warp on the set of 32 cores assigned to it. In this
way, the SM’s warp schedulers can hide memory latency.

For a simpler abstraction, programmers can think of a
GPU as consisting of one or more copy engines (CEs) (the
TX2 has only one) that copy data between host memory
and device memory, and an execution engine (EE) that has
one or more SMs (the TX2 has two) consisting of many
cores that execute GPU kernels. An EE can execute multiple
kernels simultaneously, but a CE can perform only one copy
operation at a time. EEs and CEs can operate concurrently.

2.3 Ordering and Execution of GPU Operations
Fig. 2 depicts the execution of the entities discussed so far.
In this figure, there are two CUDA programs executed by
processes running on different CPUs. As discussed above,
a CUDA program consists of CPU code that invokes GPU
code contained in CUDA kernels, each of which is executed
by running a programmer-specified number of thread blocks
on the GPU. Multiple thread blocks from the same kernel can
execute concurrently if sufficient GPU resources exist, al-
though this is not depicted in Fig. 2. The figure distinguishes
between block time, which is the time taken to execute a
single thread block, kernel time, which is the time taken
to execute a single kernel (from when its first block com-
mences execution until its last block completes), and total
time, which is the time taken to execute an entire CUDA pro-
gram (including CPU portions). We refer to copy operations
and kernels collectively as GPU operations. For simplicity,
copy operations are not depicted in Fig. 2.

In CUDA, GPU operations can be ordered by associat-
ing them with a stream. Operations in a given stream are
executed in FIFO order, but the order of execution across dif-
ferent streams is determined by the GPU scheduling policy.
Kernels from different streams may execute concurrently or
even out of launch-time order. Kernel executions and copy
operations from different streams can also operate concur-
rently depending on the GPU hardware. By default, GPU
operations from all CPU programs are inserted into the sin-
gle default stream. Unless specified otherwise, this is the



NULL stream [19]. Programmers can create and use addi-
tional streams to allow for concurrent operations.

Kernel launches are asynchronous with respect to the
CPU program: when the CUDA kernel-launch call returns,
the CPU can perform additional computation including issu-
ing more GPU operations. By default, copy operations are
synchronous with respect to a CPU program: they do not
return until the copy is complete. Asynchronous copy oper-
ations are also available so the CPU program can continue
to perform computations, kernel launches, or copies. Copy
operations, whether synchronous or asynchronous, will not
start until all prior kernel launches from the same stream
have finished. All asynchronous GPU operations require the
CPU program to explicitly wait for all previously issued
GPU operations to complete if CPU computations need to be
synchronized with the GPU. This functionality is provided
by CUDA APIs for synchronization or event management.

To our knowledge, complete details of kernel attributes
and policies used by NVIDIA to schedule GPU operations
are not available. The official CUDA documentation only
states that operations within a stream are processed in FIFO
order, and that kernels from different streams may run concur-
rently.4 An NVIDIA developer presentation from 2011 [24]
gives slightly more information: operations from multiple
streams are placed into a single internal queue based on their
issue order. However, as this talk covered an older GPU archi-
tecture, some of the details have changed; in newer NVIDIA
GPUs, there are multiple internal queues [16].

In summary, we provide these definitions of a few terms
used throughout the remainder of the paper:
• CUDA kernel: A section of code that runs on the GPU. A

kernel is made of multiple thread blocks and is scheduled
at the block level, i.e., blocks are schedulable entities.
Blocks may be executed in arbitrary order on the GPU.

• Thread block (block): A collection of GPU threads that
may execute concurrently and run the same instructions
but operate on different portions of data. The number of
threads in a block and the number of blocks associated
with a CUDA kernel are specified at launch time.

• Streaming Multiprocessor (SM): The individual cores in a
CUDA-capable GPU are partitioned onto SMs. Threads
within a single block will never simultaneously execute
on different SMs.

• CUDA Stream (stream): A FIFO queue of GPU operations
(copy operations and kernels). A single CPU process or
task can attempt to issue concurrent GPU operations by
distributing them among multiple streams.

2.4 Related Work
Because of the black-box nature of GPUs, in much prior
work on real-time GPU management, a GPU-using program
is required to lock an entire GPU, or individual EEs or CEs,

4For example, this is how streams are described in Sec. 9.1.2 of the Best
Practices Guide for CUDA version 8.0.61 [18].

while performing GPU operations [8, 10, 11, 25, 26, 27,
30]. The viewpoint taken here is that concurrently executing
kernels might adversely interfere with each other and thus
should be disallowed. However, disallowing concurrency
may lead to wasted GPU processing cycles, which may be
untenable when using less-capable integrated GPUs.

Motivated by this observation, our group investigated
the effects of concurrent kernel execution on the NVIDIA
TK1 [21] and TX1 [22, 23], two less-capable predecessors of
the TX2. In two of these efforts [21, 23], we only considered
GPU usage by CPU processes with different address spaces
and did not attempt to discern how GPU scheduling is done.
In the other prior effort [22], which is actually a precursor
to this paper, we did consider GPU scheduling. However,
this effort was directed at the less-capable TX1 and did
not consider many of the complications (e.g., interactions
between user-specified streams and the NULL stream, kernel
delays when available GPU resources are not sufficient, the
effects of copy operations, etc.) that must be considered to
completely characterize how GPU scheduling is done. All of
these complications are considered herein.

Work has also been directed at splitting GPU tasks into
smaller sub-tasks to approximate preemptive execution or
improve utilization [2, 10, 12, 32]. A framework in this cat-
egory called Kernelet [31] is particularly relevant to us as
concurrent kernel execution is considered in order to im-
prove utilization. However, the developers of Kernelet do not
provide an in-depth investigation of actual GPU scheduling
behaviors. Other work has been directed at timing analysis
for GPU workloads [3, 4, 5, 6, 7], techniques for remedying
performance bottlenecks [9], and techniques for managing
or evaluating GPU hardware resources, including the cache
[14, 15, 29] and direct I/O communication [1].

3 Basic GPU Scheduling Rules
In this section, we present GPU scheduling rules for the TX2
assuming the GPU is accessed only by CPU tasks that share
an address space, using only user-specified streams. (We
consider the NULL stream later. Unless stated otherwise,
“stream” should henceforth be taken to mean a user-specified
stream.) We inferred the scheduling rules given here by con-
ducting extensive experiments using CUDA 8.0.62. We begin
by discussing one of these experiments in Sec. 3.1. We use
this experiment as a continuing example to explain various
nuances of the rules, which are covered in full in Sec. 3.2.
Before continuing, we note that all code, scripts, and visual-
ization tools developed for this paper are available online.5

3.1 Motivating Experiment
The experiment considered here involved running instances
of a synthetic benchmark that launches several kernels. Our
synthetic workload allows flexibility in configuring block
resource requirements, kernel durations, and copy operations.

5https://github.com/yalue/cuda_scheduling_
examiner_mirror



Figure 3: Basic GPU scheduling experiment.

We have also experimented with a variety of real-world GPU
workloads involving image-processing functions common
in autonomous-driving use cases, and to our knowledge, the
scheduling rules presented in this paper are valid for such
workloads as well.

In the experiment considered here, we configured each
block of each benchmark kernel to spin for one second. As
detailed in Table 1, three kernels, K1, K2, and K3, were
launched by a single task to a single stream, and three addi-
tional kernels, K4, K5, and K6, were launched by a second
task to two separate streams. The kernels are numbered by
launch time. Copy operations occurred after K2 and K5,
before and after K3, and after K6, in their respective streams.

Fig. 3 depicts the GPU timeline produced by this exper-
iment. Each rectangle represents a block: the jth block of
kernel Kk is labeled “Kk:j.” The left and right boundaries of
each rectangle correspond to that block’s start and end times,
as measured on the GPU using the globaltimer register.
The height of each rectangle is the number of threads used by
the block. The y-position of each rectangle indicates the SM
upon which it executed. Arrows below the x-axis indicate
kernel launch times. Dashed lines correspond to time points
used in the continuing example covered in Sec. 3.2.

3.2 Scheduling Rules

With respect to kernels, blocks are the schedulable entities:
the basic job of the GPU scheduler is to determine which
thread blocks can be scheduled at any given time. These
scheduling decisions are impacted by the availability of lim-
ited GPU resources that blocks utilize such as GPU shared
memory, registers, and threads. Required resources are deter-
mined for the entire kernel when it is launched. All blocks
in a given kernel have the same resource requirements.

We say that a block is assigned to an SM when that block
has been scheduled for execution on the SM. A kernel is
dispatched when at least one of its blocks is assigned, and
is fully dispatched once all of its blocks have been assigned.
Similarly, we say that a copy operation is assigned to a CE
once it has been selected to be performed by the CE.

Example. Fig. 4 provides additional details regarding the
kernel launches in Fig. 3. In Fig. 4, we use additional nota-
tion to depict copies: Cki denotes an input copy operation of
kernel Kk, and Cko denotes an output copy operation of ker-
nel Kk. Each inset in Fig. 4 corresponds to the time point in
Fig. 3 with the same designation (e.g., inset (a) corresponds
to the time point labeled “(a)”). We will repeatedly revisit
Fig. 4 to illustrate individual scheduling rules as they are
stated, and then consider the entire example in full once all
rules have been stated.

General scheduling rules. To our knowledge, the actual
data structures used by the TX2 to schedule copy operations
and kernels are undocumented. From our experiments, we
hypothesize that several queues are used: one FIFO EE queue
per address space, one FIFO CE queue that is used to order
copy operations for assignment to the GPU’s CE, and one
FIFO queue per CUDA stream (including the NULL stream,
which we consider later). We refer to the latter as stream
queues. We begin by listing general rules that specify how
copy operations and kernels are moved between queues:

G1 A copy operation or kernel is enqueued on the
stream queue for its stream when the associated
CUDA API function (memory transfer or kernel
launch) is invoked.

G2 A kernel is enqueued on the EE queue when it
reaches the head of its stream queue.

G3 A kernel at the head of the EE queue is dequeued
from that queue once it becomes fully dispatched.

G4 A kernel is dequeued from its stream queue once
all of its blocks complete execution.

Example (cont’d). In Fig. 4, there are two CUDA pro-
grams executing as CPU tasks τ0 and τ1 on CPUs 0 and 1,
respectively, that share an address space. τ0 uses a single
stream, S1, and τ1 uses two streams, S2 and S3. The various
queues, two SMs, and single CE are depicted in each inset
of Fig. 4. The start times in Table 1 give the time the kernel,
or its input copy operation if one exists, was issued. Output
copy operations, when present, immediately followed kernel
completions.

In inset (a), τ0 has issued kernels K1, K2, and K3 and copy
operations C2o, C3i, and C3o to stream S1. τ1 has issued
kernels K4 and K5 to streams S2 and S3, respectively, and
copy operation C5o to stream S3. The operations in streams
S1 and S3 were enqueued in the order the CUDA commands
were executed (Rule G1). Kernels K1, K4, and K5 are at
the heads of their respective stream queues, and have been
placed in the EE queue (Rule G2). K1 is dispatched to the
GPU, so it is shaded in its stream queue. Each SM has two
blocks of K1 assigned to it. In inset (b), the remaining blocks
of K1 and K4 have been assigned to the GPU, so both K1
and K4 have been removed from the EE queue (Rule G3),
but remain in their respective stream queues (Rule G4).
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Figure 4: Detailed state information at various time points in Fig. 3.

Launch Start # Thread Shared Memory
Kernel Info Time (s) # Blocks per Block per Block Copy In Copy Out

K1 CPU 0, Stream S1 0.0 6 768 0 - -
K2 CPU 0, Stream S1 0.0 2 512 0 - 256MB
K3 CPU 0, Stream S1 0.0 2 1,024 0 256MB 256MB
K4 CPU 1, Stream S2 0.2 4 256 32KB - -
K5 CPU 1, Stream S3 0.4 2 256 32KB - 256MB
K6 CPU 1, Stream S2 2.8 2 512 0 - 256MB

Table 1: Details of kernels used in the experiment in Fig. 3. (Note that “start times” are defined relative to the end of benchmark initialization.)

Non-preemptive execution. Ignoring complications consid-
ered later in Sec. 4, the kernel at the head of the EE queue
will non-preemptively block later-queued kernels:

X1 Only blocks of the kernel at the head of the EE
queue are eligible to be assigned.

Example (cont’d). In Fig. 4(a), two blocks of K1 have
been assigned to each SM. As explained in detail below,
on each SM, there are enough resources available that two
blocks from K4 could execute concurrently with the two
blocks from K1. However, K4 is not at the head of the EE
queue, so its blocks are not eligible to be assigned (Rule X1).

Rules governing thread resources. On the TX2, the total
thread count of all blocks assigned to an SM is limited to

2,048 per SM,6 and the total number of threads each block
can use is limited to 1,024. These resource limits can delay
the kernel at the head of the EE queue:

R1 A block of the kernel at the head of the EE queue
is eligible to be assigned only if its resource con-
straints are met.

R2 A block of the kernel at the head of the EE queue
is eligible to be assigned only if there are sufficient
thread resources available on some SM.

6Recall from Sec. 2.1 that on the TX2, each SM has 128 hardware cores
available. The (up to) 2,048 threads assigned to blocks currently executing
on that SM are multiprogrammed on those cores.



Example (cont’d). In Fig. 4(a), K1 is at the head of the
EE queue, so its blocks are eligible to be assigned (Rule R1).
However, only four blocks of K1 have been assigned. This
is because, as seen in Table 1, each block of K1 requires
768 threads, and on the TX2, each SM is limited to allocate
at most 2,048 threads at once. Thus, only four blocks of
K1’s six can be scheduled together, so the remaining two
must wait (Rule R2). In inset (b), these remaining two blocks
have been scheduled. K4, next in the EE queue, requires four
blocks of only 256 threads each, so all of its blocks fit on the
GPU simultaneously with the remaining two blocks of K1,
and all four blocks of K4 are assigned.

Rules governing shared-memory resources. Another con-
strained resource is the amount of GPU memory shared by
threads in a block. On the TX2, shared memory usage is lim-
ited to 64KB per SM and 48KB per block. Similar to threads,
a block being considered for assignment will not be assigned
until all of the shared memory it requires is available.

R3 A block of the kernel at the head of the EE queue
is eligible to be assigned only if there are sufficient
shared-memory resources available on some SM.

Example (cont’d). Each block of K4 or K5 requires 32KB
of shared memory, so at most two of these blocks can be
assigned concurrently on an SM. In Fig. 4(b), two blocks of
K4 are assigned to each SM. Even though there are available
threads for K5 to be assigned and it is the head of the EE
queue at that time, no block of K5 is assigned until the blocks
of K4 complete (Rule R3), as shown in inset (c).

Register resources. Another resource constraint is the size
of the register file. On the TX2, each thread can use up to
255 registers, and a block can use up to 32,768 registers
(regardless of its thread count). Additionally, there is a limit
of 65,536 registers in total on each SM. Unfortunately, using
synthetic kernels makes it difficult to demonstrate limits on
registers because the NVIDIA compiler optimizes register
usage. However, based upon available documentation [19],
we expect limits on register usage to have exactly the same
impact as the limits on thread and shared-memory resources
demonstrated above. Note also that the number of registers
can be limited at compile-time using the maxregcount
compiler option. Decreasing the number of registers used by
a kernel makes its blocks easier to schedule at the expense
of potentially greater execution time.

Copy operations. As noted earlier, the TX2 has one CE to
process both host-to-device and device-to-host copies. Such
copies are governed by rules similar to those above:

C1 A copy operation is enqueued on the CE queue
when it reaches the head of its stream queue.

C2 A copy operation at the head of the CE queue is
eligible to be assigned to the CE.

C3 A copy operation at the head of the CE queue is
dequeued from the CE queue once the copy is
assigned to the CE on the GPU.

C4 A copy operation is dequeued from its stream
queue once the CE has completed the copy.

Example (cont’d). As shown in Fig. 4(d), once K2 and
K5 complete execution and are dequeued from S1 and S3,
the copies C2o and C5o become the heads of S1 and S3, re-
spectively. C5o and C2o are thus enqueued on the CE queue
(Rule C1). C5o is immediately assigned to the CE (Rule C2),
so it is dequeued from the CE queue (Rule C3). The CE can
perform only one copy operation at a time, so C2o remains
at the head of the CE queue until C5o completes.

Full example. Inset (a) of Fig. 4 corresponds to time t =
1.1s in Fig. 3. The first five kernels have been launched, and
the kernels at the heads of each stream, K1, K4, and K5, have
also been added to the EE queue, in issue order. K1 remains
in the EE queue as it is not yet fully dispatched, so no blocks
of K4 are eligible to be assigned.

Inset (b) corresponds to time t = 2.1s. The first four
blocks of K1 have finished executing. Both K1 and K4 are
now fully dispatched, so they have been removed from the
EE queue, but remain at the heads of their stream queues. No
blocks of K5 are able to be dispatched because their required
shared-memory resources are not available.

Inset (c) corresponds to time t = 3.0s. Upon completion
of K1 and K4, both of K5’s blocks are assigned, and K2
is added to the EE queue and immediately becomes fully
dispatched. C2o remains blocked by K2 in its stream queue
due to FIFO stream ordering. C5o is similarly blocked.

Inset (d) corresponds to time t = 3.32s. K2 and K5 both
complete execution, enabling C2o and C5o to be enqueued
on the CE queue. C5o is enqueued first, so it is assigned to
the CE and removed from the CE queue. Due to FIFO stream
ordering, both C3i and K3 are delayed behind C2o. Upon
being issued, K6 immediately moved unhindered through
the queues, as K2 and K5 were fully dispatched; the copies
execute concurrently with the blocks of K6.

Inset (e) corresponds to time t = 4.0s. K3 and K6 are
both fully dispatched. C3o an C6o are blocked in their stream
queues until K3 and K6 complete, respectively. As a result,
the CE and EE queues are empty.

Summary. The basic scheduling rules above define a variant
of hierarchical FIFO scheduling where work may sometimes
be subject to blocking delays. Given that FIFO CPU schedul-
ing has analyzable response-time bounds on multiproces-
sors [13], there is some hope that the scheduler defined by
these rules might be amenable to real-time schedulability
analysis, but this is a topic for future work.

4 Additional Complexities
Unfortunately, the basic rules in Sec. 3 are not the end of
the story. In this section, we consider additional features
available to CUDA programmers that can impact scheduling.
These include usage of the default (NULL) stream, stream
priorities, and streams in independent process address spaces.



Figure 5: NULL stream scheduling experiment.

We also comment on other less commonly used features that
can influence scheduling that we do not examine in detail.

4.1 The NULL Stream
Available documentation makes clear that two kernels cannot
run concurrently if, between their issuances, any operations
are submitted to the NULL stream [19]. However, this docu-
mentation does not explain how kernel execution order is af-
fected. In an attempt to elucidate this behavior, we conducted
experiments in which interactions between (user-specified)
streams and the NULL stream were observed. We found that
these interactions are governed by the following rules, which
reduce to rule G2 if the NULL stream is not used:

N1 A kernel Kk at the head of the NULL stream queue
is enqueued on the EE queue when, for each other
stream queue, either that queue is empty or the
kernel at its head was launched after Kk.

N2 A kernel Kk at the head of a non-NULL stream
queue cannot be enqueued on the EE queue unless
the NULL stream queue is either empty or the
kernel at its head was launched after Kk.

The result of an experiment demonstrating these rules is
given in Fig. 5. The kernels launched in this experiment are
fully specified in Table 2 in Appendix B. K2 and K5 were
submitted to the NULL stream. K2 did not move to the EE
queue until K1 completed (Rule N1); likewise, K5 did not
move to the EE queue until both K3 and K4 had completed.
No other kernel could move to the EE queue while K2 was
at the head of the NULL stream queue, as all but K1 were
launched after K2 (Rule N2). Because of the NULL-stream
kernels, K6 was unnecessarily blocked and could not execute
concurrently with K1, K3, or K4, so much capacity was lost.
This result demonstrates that usage of the NULL stream is
problematic if real-time predictability and efficient platform
utilization are desired.

4.2 Stream Priorities
We now consider how the usage of prioritized streams
impacts the rules defined in Sec. 3.2. CUDA pro-
grammers can prioritize some streams over others and

Figure 6: Experiment showing starvation of a priority-low stream.

can determine the allowable priority settings by the
API call cudaDeviceGetStreamPriorityRange.
On the TX2, this call returns only two priority values: −1
(priority-high) and 0 (priority-low). As we show below, a
stream with no priority specified (priority-none) is treated as
priority-low.

Experiments. In the rest of this subsection, we present the
results of several experiments we conducted to evaluate the
effects of using stream priorities. These experiments use the
same synthetic benchmarking techniques applied in Sec. 3.2.
Relevant kernel properties are given in per-experiment tables
in Appendix B. After discussing these experiments, we pos-
tulate new scheduling rules that specify how stream priorities
affect scheduling.

Scheduling of priority-low streams vs. priority-high
streams. Given that blocks are schedulable entities, the
handling of prioritized streams as described in the available
CUDA documentation [19] is exactly as one might expect.
In particular, stream priorities are considered each time a
block finishes execution and a new block can be assigned,
with blocks from priority-high streams always being favored
for assignment if their resource requirements are met. Note
that this assignment behavior can potentially lead to the
starvation of priority-low streams.

We conducted an experiment to illustrate this behavior
using the kernels defined in Table 3. Fig. 6 shows the GPU
timeline that resulted from this experiment. As seen, K1
was launched first in a priority-low stream and four of its
eight blocks had already been assigned when K2 and K3
were later launched in two priority-high streams. When the
four initially assigned blocks of K1 completed execution,
freeing all SM threads, K2 (launched second) effectively
preempted K1, preventing K1’s remaining four blocks from
being assigned. K3 was later dispatched when K2 completed,
continuing the “starvation” of K1 until K3 completed.

Scheduling of priority-none streams vs. prioritized
streams. The available CUDA documentation lacks clarity
with respect to how scheduling is done when both priority-
none and prioritized streams are used. We experimentally



Figure 7: Experiment demonstrating two actual priority levels.

investigated this issue and found that priority-none streams
have the same priority as priority-low streams on the TX2.

Evidence of this can be seen in an experiment we con-
ducted using the kernels defined in Table 4. Fig. 7 shows the
resulting GPU timeline. In this experiment, K2 was launched
in a priority-none stream, K1 and K4 were launched in
priority-low streams, and K3 was launched in a priority-high
stream. K1 was launched first and four of its eight blocks
were immediately assigned to the GPU. Once these four
blocks completed execution, K3 effectively preempted K1
because K3 was at the head of a priority-high stream. After
K3 executed to completion, K1 resumed execution because
K2 and K4 had equal priority and could not preempt it. When
K1 completed, K2 and K4 were dispatched in launch-time
order. If priority-none were higher than priority-low, then
K2 would have preempted K1; if priority-none were lower
than priority-low, then K4 would have run before K2, despite
being released later.

The scheduling of prioritized streams when resource
blocking can occur. We wondered whether it was possible
for kernels in priority-high streams experiencing resource
blocking to be indefinitely delayed by kernels in priority-low
streams that “cut ahead” and consume available resources.
Our experimental results suggest this is not possible.

Evidence of this claim can be seen in an experiment we
conducted using the kernels defined in Table 5, which yielded
the resulting GPU timeline in Fig. 8. K1–K7 were launched
in quick succession to seven distinct priority-low streams.
Once all had been dispatched, 512 threads were available
on one SM. Then K8, with one block of 1,024 threads, was
launched to a priority-high stream, followed by K9, with
one block of 512 threads, launched to another priority-low
stream. At this time, none of the initial seven kernels had
completed execution, so the priority-high K8 could not be
dispatched due to a lack of available threads. When K1 ulti-
mately completed, 512 threads were then available on each
SM, but K8 still could not be dispatched because a block
can run on only one SM. Note that even though K9 required
only 512 threads, it could not be dispatched because K8
was of higher priority. Finally, when K2 completed, K8 was

Figure 8: Experiment with both priorities and resource blocking.

dispatched because 1,024 threads became available on one
SM, and K9 was dispatched because 512 other threads were
available and the priority-high K8 no longer blocked it.

Additional scheduling rules. Based on these experiments,
we hypothesize that the TX2’s GPU scheduler includes one
additional EE queue, for priority-high kernels. The original
EE queue described in Sec. 3.2 is for priority-low (and thus
priority-none). These queues are subject to these rules:

A1 A kernel can only be enqueued on the EE queue
matching the priority of its stream.

A2 A block of a kernel at the head of any EE queue
is eligible to be assigned only if all higher-priority
EE queues (priority-high over priority-low) are
empty.

4.3 Multiple Processes and Other Complications
We also conducted experiments in which CUDA programs
were invoked by CPU processes (instead of tasks) that have
distinct addresses spaces. These experiments are discussed
in Appendix A. As seen there, the usage of separate address
spaces results in higher overheads and less predictable exe-
cution times for GPU operations.

We conclude Sec. 4 by noting several less commonly
used features that may potentially impact scheduling. These
include: (i) the nvcc compilation option, which enables per-
task NULL streams; (ii) the CUDA API that enables kernels
from user-specified streams to execute concurrently with the
NULL stream; (iii) a mechanism introduced with the Pas-
cal GPU architecture that allows an executing kernel to be
preempted at the instruction level; and (iv) a feature called
dynamic parallelism that allows kernels to dynamically sub-
mit extra work by calling other kernel functions inside the
GPU. We conjecture that these features are detrimental to
use if real-time predictability is a requirement.

5 Conclusion
We presented an in-depth study of GPU scheduling behavior
on the NVIDIA TX2, a recently released multicore+GPU
platform that is an exemplar of platforms marketed today



for supporting autonomous systems. We found that the GPU
scheduler of the TX2 has predictable FIFO-oriented prop-
erties that are amenable to real-time schedulability analysis
if all work is submitted by CPU tasks that share an address
space. On the other hand, GPU scheduling on the TX2 be-
comes more unpredictable and complex when GPU compu-
tations are launched by CPU processes that have distinct ad-
dress spaces. Unfortunately, this process-oriented approach
is common in GPU program development.

We acknowledge that it is not possible to confirm with
certainty the scheduling behavior of any GPU through only
black-box experimentation. However, we counter this draw-
back by noting that plans are already underway to use
these devices to realize safety-critical autonomous capabil-
ities [20]. If NVIDIA is unwilling to release details about
internal GPU scheduling policies, then the only option avail-
able to us is to attempt to discern such policies through ex-
perimentation. Moreover, when mass-market vehicles even-
tually evolve to become fully autonomous, certification will
become a crucial concern. It is simply not possible to certify
with any degree of certainty a safety-critical system built
using components that have unknown behaviors.

This paper is part of a long-term effort to devise a formal
model for GPU schedulers. The completion of this effort will
require work on several fronts. First, we intend to produce
GPU response-time analysis for the GPU scheduler specified
by the rules in Secs. 3 and 4. Second, this GPU scheduler
sometimes inserts blocking delays that result in non-work-
conserving behavior. These blocking delays are often the
result of synchronization points in CUDA programs, either
explicitly created by the programmer or implicitly as the
side effects of non-synchronization-related CUDA API calls.
We will discuss in full the reasons for this blocking and its
implications on kernel eligibility in a future paper. Addition-
ally, we intend to investigate whether such delays can be
eliminated or lessened by introducing middleware that may
potentially reorder submitted GPU operations.

The experimental methodology employed in this paper
is of a general nature and can be applied to other NVIDIA
GPUs. We therefore intend to study and document other
NVIDIA GPUs as well. Of particular interest is the Drive
PX2, which is probably the most computationally capable
muticore+GPU platform marketed for autonomous systems
today (though it is currently available only to automotive
companies and suppliers). We also plan to consider these
rules in additional contexts, such as combining multiple
processes, some containing more than one task or using
more than one stream. Finally, we hope that this paper sparks
similar work by other investigators that either reinforces our
findings or shows the existence of corner cases we have
missed.
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Appendix A: Process-Based GPU Access
In this appendix, we describe a few complications that arise
when processes (instead of tasks) invoke GPU operations.

Multiprogramming on the TX2. In previous work involv-
ing the NVIDIA TX1, a less-capable predecessor of the TX2
with a similar basic layout, we found that kernels issued
by multiple GPU-using processes were scheduled on the
GPU using multiprogramming [23]. On the TX1, this meant
that the GPU scheduler would switch between processes
at the granularity of thread blocks, with kernels from dif-
ferent processes never actually executing at the same time.
While studying the TX2, we observed that kernels issued by
different processes are still multiprogrammed, but multipro-
gramming is implemented using GPU preemption features
introduced in NVIDIA’s Pascal GPU architecture.

This observation is supported by Fig. 9, which gives the
results of two experiments we ran in which two instances of a
compute-heavy Mandelbrot-Set kernel were run together. In
the first experiment, the two kernel instances were issued by
two separate processes, while in the second, they were issued
by two separate tasks. In these experiments, we recorded for
each kernel the start and end times of each thread block
on the GPU and then used these times to deduce the total
number of threads that appeared to have been assigned to the
kernel through its execution. These thread counts are plotted
on the vertical axes of the four timelines in Fig. 9. The top
two timelines are from the first experiment, where processes
were considered, and the bottom two timelines are from the
second experiment, where tasks were considered.

The bottom two timelines indicate that, in the experiment
involving tasks, scheduling was in accordance with the rules
discussed in Sec. 3: all blocks from one kernel were fully
dispatched before the second kernel began execution. In con-
trast, the top two timelines indicate that, in the experiment
involving processes, the GPU scheduler’s behavior is very
different: 4,096 threads from each kernel appear to be fairly
consistently running together at the same time. On the sur-
face, this should appear to be impossible because the TX2
is only capable of running 4,096 threads across both of its
SMs at any point in time (recall Footnote 6).

Figure 9: Timelines contrasting kernels issued from processes (dif-
ferent address spaces) vs. tasks (shared address space).

Figure 10: CDFs contrasting blocks times from processes vs. tasks.

This behavior, however, is easily explained if we assume
that CUDA thread blocks can be preempted. Recall that we
used block-time measurements, which are recorded on the
GPU itself, to calculate the number of running threads. Our
GPU kernel code cannot detect being preempted itself, so the
start and end times for each block can actually encompass
intervals in which the block was preempted.

We therefore conclude that benchmarks from separate
processes were being multiprogrammed on the TX2 using
preemptions, as this explains the apparent over-provisioning
of GPU resources. Additionally, we provide Fig. 10 to further
support the conclusion that concurrent kernels from different
address spaces preempt one another.

In Fig. 10, the curves labeled “Process 1” and “Process 2”
show the cumulative distribution function (CDF) of block
times (see Fig. 2) for Mandelbrot-Set kernels issued concur-
rently from separate processes. Likewise, the “Task 1” and
“Task 2” curves show the same data for kernels issued from
separate tasks. Consistent with Fig. 9, the worst-case block
times for the “Process” curves is over twice that of the “Task”
curves. This is in direct contrast to our prior work using
the previous-generation TX1, where we found that block



times remained nearly identical regardless of the number of
concurrent processes [23].

Stream priorities in multiple processes. We also exper-
imentally examined the effects of using stream priorities
when processes submit GPU operations instead of tasks.
We found that assigning priorities to the streams of differ-
ent processes had no effect on how the operations in these
streams were scheduled. Thus, the usage of stream priorities
has impact only in the context of task-based computing, not
process-based computing.

Appendix B: Full Kernel Descriptions for Ex-
periments in Sec. 4

In this section, we present the configuration data for the
experiments in Sec. 4. None of these experiments use shared

memory or large copy-in or copy-out operations, so these
columns are left out of the tables.

Launch Start # Thread
Kernel Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 0.0 1.0 6 768
K2 NULL Stream 0.2 1.0 1 1,024
K3 Stream S2 0.2 1.0 4 256
K4 Stream S2 0.4 1.0 4 256
K5 NULL Stream 0.6 1.0 1 1,024
K6 Stream S3 0.8 1.0 2 256

Table 2: Details of kernels used in the NULL-stream scheduling experiment in Fig. 5.

Start # Thread
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 (low priority) 0.0 0.5 8 1,024
K2 Stream S2 (high priority) 0.2 0.5 16 1,024
K3 Stream S3 (high priority) 0.5 0.5 16 1,024

Table 3: Details of kernels used in the priority-stream scheduling experiment in Fig. 6.

Start # Thread
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 (low priority) 0.0 0.5 8 1,024
K2 Stream S2 (unspecified priority) 0.2 0.5 8 1,024
K3 Stream S3 (high priority) 0.3 0.5 8 1,024
K4 Stream S4 (low priority) 1.2 0.5 8 1,024

Table 4: Details of kernels used in the priority-stream scheduling experiment in Fig. 7.

Start # Thread
Kernel Launch Info Time (s) Duration (s) # Blocks per Block

K1 Stream S1 (low priority) 0.0 1.0 1 512
K2 Stream S2 (low priority) 0.1 1.0 1 512
K3 Stream S3 (low priority) 0.2 1.0 1 512
K4 Stream S4 (low priority) 0.3 1.0 1 512
K5 Stream S5 (low priority) 0.4 1.0 1 512
K6 Stream S6 (low priority) 0.5 1.0 1 512
K7 Stream S7 (low priority) 0.6 1.0 1 512
K8 Stream S8 (high priority) 0.65 0.5 1 1,024
K9 Stream S9 (low priority) 0.7 1.0 1 512

Table 5: Details of kernels used in the priority-stream scheduling experiment in Fig. 8.


