
Animating Flow Fields: Rendering of Oriented Line Integral
Convolution

R. Wegenkittl, E. Groller, W. Purgathofer
Institute of Computer Graphics
Vienna University of Technology

Vienna, Austria, 1040

Abstract
Line Integral Convolution (LIC) is a common ap-

proach for the visualization of 2 0 vector fields. It is
well suited for visualizing the direction of a flow field,
but it gives no information about the orientation of
the underlying vectors. We introduce Oriented Line
Integral Convolution (OLIC), where direction as well
as orientation are encoded within the resulting image.
This is achieved b y using a sparse input texture and
a ramp like (anisotropic) convolution kernel. This
method can be used for animations, whe,reby the com-
putation of so called pixel traces fastens the calculation
process. In the result section various OLICs illustrat-
ing simple and real-world vector fields are shown.

1 Introduction
The visualization of vector fields, e.g., flow visu-

alizat,ion or visualization of dynamical systems, is an
important part of scientific visualization. Displaying
small vectors at discrete points within the vector field
(so-called arrow plots) only gives a rough overview of
the underlying dynamics. Some of the techniques, e.g.,
streamlines and streaklines suffer from the disadvan-
tage of showing only flow direction at locally restricted
regions of the flow field [7].

An interesting approach towards a global visual-
ization of flows has been done by Jarke J . van Wijk
with his spot noise technique [lo]. He used a vector
field to control and modulate the generat,ion of ban-
dlimited noise. A random texture is convolved with
locally varying convolution kernels whose directions
are tailored to the tangential directions of the flow.
The quality of the results of this method depends to a
large extend on the type of the texture used. Further-
more the calculation of spot noise is a time consuming
task. The spot noise idea has been extended to follow
curved streamlines [5].

In 1993 Brian Cabral and Leith Leedom presented
a method called line integral convolution (LIC) [l]. It
is a modification of van Wijk’s method, as convolution

1087-4844197 $10.00 0 1997 IEEE

takes place along a (curved) streamline segment which
is determined by integrating the vector field.

The method calculates for every point Po(z +
0.5/y+0.5) in the center of a pixel of the output image
a streamline represented by a polyline. This polyline
covers 1 pixels in positive and 1 pixels in negative inte-
gration time. Weighted by the length of the line seg-
ment within a single pixel the pixel intensities of an
input image are summed. Typically an input image
consists of dense white noise. The summing along the
polyline is additionally weighted by a so called convo-
lution kernel. For single images a constant convolution
kernel gives a good impression of the flow directions.
For the production of animations the convolution ker-
nel is shifted for each frame. This gives the impression
of flowing ripples, which also encodes the orientation
of the flow.

Lisa E;. Forssell extended the LIC technique to
curvilinear grids [3] . Due to the distortions introduced
by curvilinear grids, animating the convolution kernel
with equal kernel lengths over the entire grid produces
a distorted and misleading flow visualization. Lisa
Forssell overcame that problem by adapting the length
of the convolution kernel during the calculation of the
LIC. Speed encoding is achieved by changing accord-
ing to the velocity of the vector field the amount of
phase-shift of the convolution kernel.

Calculating a LIC is a very time consuming task.
Detlev Stalling and Hans-Christian Hege reduced cal-
culation times by introducing the Fast LIC technique
[SI. They exploit coherence in the LIC calculation
which occurs to a large extent along streamlines. The
computation order is not pixel-per-pixel but entire
streamlines are processed at a time. This gives an
order of magnitude speed-up with the drawback of al-
lowing only simple convolution kernels. Additionally
their method allows to continuously zoom into a spe-
cific area of the vector field without problems. Thus
the input texture and the resulting image do not have

15

to be of the same resolution.
Turk and Banks dealt with the problem of dis-

tributing small streaniline segments over a vector
field [9]. Starting with a random placement of small
streamlines they optimize the coverage of the vec-
tor field with streamlines by moving and connecting
streamline segments.

All variations of the LIC method presented until
now do not encode the orientation of a flow within a
still image. The presented Oriented Line Integral Con-
volution (OLIC) described in the following sections
overcomes this disadvantage by using anisotropic con-
volution kernels on a sparse texture. In contrast to the
dense noise texture used for LIC this sparse texture
consists of distinct white spots on a black background
as input texture. OLIC also allows velocity encoding
in still images and animations. The computation of
animated OLICs can be accelerated by precalculating
so called pixel traces. In the result section we show
some examples of simple and realistic vector fields vi-
sualized with the new method.

2 Oriented Line Integral Convolution

One of the main differences between Line Integral
Convolution and Oriented Line Integral Convolution is
that OLIC uses sparse textures rather than dense noise
textures usually taken for LIC. This naturally implies
distinct lines in the resulting image. As a physical
justification for this approach one can think of Line
Integral Convolution as distributing some drops of ink
over a sheet of paper and smear them according to
the underlying dynamics of a vector field. These ink
droplets produce a sparse texture instead of the dense
white noise textures typically used for LIC. Figures
1 , 2 and 3 show a texture image as it is typically used
by LIC and two texture images used by our algorithm
as well as the resulting LICs for a simple vector field
(saddle point). In both cases the constant function is
used as convolution filter kernel.

LIC with dense textures provides directional infor-
mation for every point in the image. Due to the re-
sulting high frequencies the direction of the flow is,
however, not as easy perceptable as in the more struc-
tured LIC produced by a sparse texture. So we used
a pattern of equidistant white dye droplets as input
texture for a standard LIC procedure as shown in fig-
ure 2 . The much coarser output gives an impression
of the flow that is easier to understand, but due to
the regular pattern of the texture some undesireable
artifacts are introduced.

By perturbing (jittering) the positions of the
equidistant droplets in the input texture these arti-

(OLIC)

Figure 1: Dense texture image with resulting LIC of a
simple vector field (saddle point)

facts disappear (figure 3) and the resulting image re-
sembles pretty much the LIC in figure 1 albeit with
distinct lines. Advantages of this approach are:

the dynamics of the vector field can be seen more
easily (more structure)

0 scaling (e.g. downsizing) the resulting LIC (for
example for printouts) does not produce artifacts

0 the resulting LIC can be used as a texture for
curved surfaces, where the density of the traces of
the droplets gives additional depth and curvature
cues

0 the distinct lines of the resulting images allow ve-
locity encoding by the length of the pixel traces

the resulting LIC shows distinct traces of
droplets. For OLICS we will use these to encode

16

Figure 2: Regular sparse texture image with resulting LIC
of a simple vector field (saddle point)

Figure 3: Jittered sparse texture image with resulting LIC
of a simple vector field (saddle point)

the orientation of the flow in addition to its direc-
tion. The difference of direction and orientation
can be seen in figure 4, where two streamlines
with equal direction but opposite orientation are
shown.

Especially the last argument is quite advantageous.
Until now encoding the orientation of a flow with LIC
has only been possible by animation. In reality a re-
searcher would like to know the direction of the flow
as well as its orientation even in still images.

Since single traces of pixels are distinguishable in
our approach, their intensity can be used easily to en-
code orientation. Every ink droplet of the sparse in-
put texture thus has a trace comparable to the tail
of a comet showing the temporal evolution of the un-
derlying flow. High intensity areas of a pixel trace
(set of all pixels covered by an ink droplet moving a

I

Figure 4: Two streamlines with equal direction but oppo-
site orientation

short distance according to the underlying vector field)
correspond to the current position of an ink droplet.
Faded areas of the pixel trace, however, correspond
to pixels which have already been crossed by the ink
droplet during previous t ime steps. The principle is
illustrated in figures 5 and 6 , where two simple rota-
tional flow fields are given, which differ only in the

17

orientation of the flow. LIC shows no difference for
the two vector fields. Images produced with the OLIC
technique on the other hand give insight into both the
direction and orientation of the flow

Figure 6: OLIC for two flows with same direction but
opposite orientation (same flows as in figure 5

Figure 5: LIC of two flows with same direction but oppo-
site orientation are indistinguishable

The decreasing intensity for each pixel trace can
be achieved by using an assymetric convolution kernel
(figure 7). A simple ramp shaped function as shown
in figure 7 was used for the images of figure 6.

These pixel traces can be seen as paths which are
nonuniformly motion blurred due to the speed of the
vector field. Thus encoding the speed at a specific
pixel by adjusting the length of its trace is a promis-
ing approach. The length of the filter kernel has to
be adapted correspondingly so that the ramp shaped
function exactly covers the length of the trace.

Due to the fact that each pixel is traced in tem-
poral forward and reverse direction, the length o f the

ink droplet m,
I I \

I I conv. kernel I I

Figure 7: Ramp-like kernel-function and convolution for
OLIC

trace corresponds to the speed in the (temporal) mid-
dle of each trace. This method of encoding flow ve-
locity gives only a feeling for relative speed differences
within the flow field and not an absolut speed infor-

18

mation. But this seems to be no major drawback.
Figure 8 shows another simple vector field with speed
encoded in the length of the pixel traces, where the
length of the pixel traces vary from 0 to 30 pixels.

Figure 8: Flow velocity encoded in the length of a pixel
trace

3 Animation using Fast OLICs
Oriented Line Integral Convolution encodes direc-

tion, orientation and speed of a vector field in a single
image. Nevertheless all this information can be inter-
preted more easily with animation. The animation of
Oriented Line Integral Convolutions can be achieved
by simply phase shifting the convolution kernel for
each frame accordingly. It has to be taken into ac-
count, that velocity encoding leads to kernels with
different lengths, thus producing an animation that
can not be looped. This problem can be overcome by
adapting the phase shift to the length of the filter ker-
nel in a way, that each kernel is cycled within the same
number of frames. Due to this adaption the visible ef-
fect is, that slow parts of the vector field induce short
pixel traces with short phase shifts. This results in
slow moving spots along the pixel trace. A fast region
of the flow induces long pixel traces with big consec-
utive phase shifts. This translates into a fast moving
spot on the long pixel trace.

The result of the above described method is an an-
imation that seems to pulse every cycle it is looped.
This effect is due to the fact, that in the first frame
every pixel trace has its brightest spot a t the begin-
ning of the trace and lower intensity towards the end
of the trace. To overcome this unwanted synchronized
effect an individual offset for the phase shift of each
droplet in the input texture has to be taken into ac-

count. Since the output image is calculated pixel by
pixel the algorithm has to know which droplet (with
corresponding specific initial kernel phase shift) in t,he
input texture produces the pixel trace which covers
the current pixel under consideration.

This information must be provided by a precalcn-
lation step, where for each pixel the coordinates of
the responsible droplet are stored. Now every droplet
may have its own phase shift offset and the looped
animation looks smooth.

The precalculation of pixel traces can also be used
to speed up the calculation of an animation. Due to
the distances between distinct droplets of the input
texture some pixels of the output image are not cov-
ered by pixel traces, thus no calculation has to be done
for these pixels. The determination of the information
whether a pixel is covered or not is also done by the
above mentioned precalculation step. Depending on
the density of the input image and therefore on the
density of the pixel traces the speed up factor is ap-
proximately two to three (since a thirty to fifty percent
coverage of the output image with pixel traces gives
good results).

Figure 9 shows the pixel traces and the correspond-
ing OLIC of a simple vector field. For every white spot
in the image of pixel-traces some information is stored.
This information basically contains the identification
of the corresponding ink droplet and its initial kernel
phase shift. So far only one droplet can be stored for
each trace. The errors induced by overlapping traces
seem to be negligible. Nevertheless a modified version
of the OLIC algorithm is planned which handles this
situation correctly.

4 Implementation and Future Work
We implemented an experimental software system

within an OpenGL environment [B]. The windows
managment is made by GLUT, so the software runs
on various platforms [4]. For future work an inter-
net page is planned, where a Java applet allows the
computation of different types of Line Integral Convo-
lutions [a] . The idea is, that researchers provide their
vector fields to the applet, which then calculates still
images and animations of standard LICs and OLICs.
This should give researchers the possibility to visual-
ize their vector data easily without having to use any
complex visualization tool.

One drawback of Oriented Line Integral Convolu-
tion is that overlapping pixel traces are not handled
correctly. The problem can be solved by two differ-
ent approaches. First, the precalculation step could
store every droplet that has influence a t a specific
pixel of the output image (until now, only one droplet

19

Figure 9: Pixel traces and corresponding OLIC of
field

'low

is stored). Thc othcr approach is to implcmcnt an
adapted type of the Fast Line Int,cgral Convolution
method as proposed by Stalling and Hege [8]. This
will additionally speed up the calculation of Oriented
Line Integral Convolution.

5 Results
The images in figure 10, 11 and 12 have been gen-

erated with the described OLIC method. Figures 10,
11 use no speed encoding, whereas figure 12 uses the
length of the traces to display speed. Figure 10 shows
an econometric model describing the interactions of
the hight of the budget deficit and the publicity of
politicians. Notice that the width of the pixel traces
gives additional information whether the flow is diver-
gent or convergent.

Figure 11 shows an artificial model similar to a

Figure 10: OLIC of an econometric model

predator-prey model as described by Volterra and
Lotka.

Figure 11: OLIC of a dynamical system similar to a
predator-prey model

In figure 12 we used the length of the pixel traces to
encode speed. Maximum speed is shown with traces
of 60 pixels whereas slow traces have a length of about
12 pixels. It is a good idea to limit the lower bound
of the pixel trace length to ensure that no directional
information is lost (see also figure 8).

For additional results and to view some animation
sequences we refer to our WWW-page:
http:f/www.cg.tuwien.ac.at/research/vis-dyn-systfolicf.

20

http:f/www.cg.tuwien.ac.at/research/vis-dyn-systfolicf

Figure 12: OLIC of a simple pendulum model with speed
encoding

Acknowledgments
This work is partially supported by the Platform for

Animation and Virtual Reality (PAVR), a EU Train-
ing and Mobility of Researchers (TMR) program.

References
[l] B. Cabral, C. Leedom, ”Imaging Vector Fields

Using Line Integral Convolution”, Computer
Graphics Proceedings ’93, AGM SIGGRAPH, pp.
263-270, 1993.

[a] D. Flanagan, Java in a Nutshell, O’Reilly & As-
sociates, Inc., 1996.

[3] L. K. Forssell, ”Visualizing Flow over Curvilinear
Grid Surfaces Using Line Integral Convolution” ,
Proceedings of IEEE Visualization ’94, pp. 240-
247, 1994.

[4] M. J. Kilgard, The OpenGL Utility Toolkit
(GLUT) Programming Interface, Software Doc-
umentation, Silicon Graphics, Inc., 1996.

[5] W. C. de Leeuw, J. van Wijk, ”Enhanced Spot
Noise for Vector Field Visualization”, Proc. Vz-
sualization ’95, IEEE CS Press, 1995.

[6] J . Neider, T. Davis, M. Woo, OpenGL Program-
ming Guide, Addison-Wesley, 1995.

[7] F. H. Post, J. J. Wijk, ”Visual Representation
of Vector Fields: Recent Developments and Re-
search Directions” , Scientific Visualization - Ad-
vances and Challenges, Academic Press Ltd., pp.
367-390, 1994.

[8] D. Stalling, H.-C. Hege, ”Fast and Resolu-
tion Independent Line Integral Convolution ” ,
Computer Graphics Proceedings ’95, ACM SIG-
GRAPH, pp. 249-256, 1995.

[9] G. Turk, D. Banks, ”Image-Guided Streamline
Placement” , Proc. SIGGRAPH ’96, pp. 453-458,
1996.

[lo] J . J . van Wijk, ”Spot Noise Texture Synthesis
for Data Visualization”, Computer Graphics, Vol.
25(4), pp. 309-318, July 1991.

21

