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Abstract 
Line Integral Convolution (LIC) is a common ap- 

proach for  the visualization of 2 0  vector fields. It is 
well suited for  visualizing the direction of a flow field, 
but it gives no information about the orientation of 
the underlying vectors. We introduce Oriented Line 
Integral Convolution (OLIC), where direction as well 
as orientation are encoded within the resulting image. 
This is achieved b y  using a sparse input texture and 
a ramp like (anisotropic) convolution kernel. This 
method can be used for  animations, whe,reby the com- 
putation of so called pixel traces fastens the calculation 
process. In the result section various OLICs illustrat- 
ing simple and real-world vector fields are shown. 

1 Introduction 
The visualization of vector fields, e.g., flow visu- 

alizat,ion or visualization of dynamical systems, is an 
important part of scientific visualization. Displaying 
small vectors at discrete points within the vector field 
(so-called arrow plots) only gives a rough overview of 
the underlying dynamics. Some of the techniques, e.g., 
streamlines and streaklines suffer from the disadvan- 
tage of showing only flow direction at locally restricted 
regions of the flow field [7]. 

An interesting approach towards a global visual- 
ization of flows has been done by Jarke J .  van Wijk 
with his spot noise technique [lo]. He used a vector 
field to control and modulate the generat,ion of ban- 
dlimited noise. A random texture is convolved with 
locally varying convolution kernels whose directions 
are tailored to the tangential directions of the flow. 
The quality of the results of this method depends to a 
large extend on the type of the texture used. Further- 
more the calculation of spot noise is a time consuming 
task. The spot noise idea has been extended to follow 
curved streamlines [5]. 

In 1993 Brian Cabral and Leith Leedom presented 
a method called line integral convolution (LIC) [l]. It 
is a modification of van Wijk’s method, as convolution 
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takes place along a (curved) streamline segment which 
is determined by integrating the vector field. 

The method calculates for every point Po(z + 
0.5/y+0.5) in the center of a pixel of the output image 
a streamline represented by a polyline. This polyline 
covers 1 pixels in positive and 1 pixels in negative inte- 
gration time. Weighted by the length of the line seg- 
ment within a single pixel the pixel intensities of an 
input image are summed. Typically an input image 
consists of dense white noise. The summing along the 
polyline is additionally weighted by a so called convo- 
lution kernel. For single images a constant convolution 
kernel gives a good impression of the flow directions. 
For the production of animations the convolution ker- 
nel is shifted for each frame. This gives the impression 
of flowing ripples, which also encodes the orientation 
of the flow. 

Lisa E;. Forssell extended the LIC technique to 
curvilinear grids [ 3 ] .  Due to the distortions introduced 
by curvilinear grids, animating the convolution kernel 
with equal kernel lengths over the entire grid produces 
a distorted and misleading flow visualization. Lisa 
Forssell overcame that problem by adapting the length 
of the convolution kernel during the calculation of the 
LIC. Speed encoding is achieved by changing accord- 
ing to the velocity of the vector field the amount of 
phase-shift of the convolution kernel. 

Calculating a LIC is a very time consuming task. 
Detlev Stalling and Hans-Christian Hege reduced cal- 
culation times by introducing the Fast LIC technique 
[SI. They exploit coherence in the LIC calculation 
which occurs to a large extent along streamlines. The 
computation order is not pixel-per-pixel but entire 
streamlines are processed at a time. This gives an 
order of magnitude speed-up with the drawback of al- 
lowing only simple convolution kernels. Additionally 
their method allows to continuously zoom into a spe- 
cific area of the vector field without problems. Thus 
the input texture and the resulting image do not have 
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to be of the same resolution. 
Turk and Banks dealt with the problem of dis- 

tributing small streaniline segments over a vector 
field [9]. Starting with a random placement of small 
streamlines they optimize the coverage of the vec- 
tor field with streamlines by moving and connecting 
streamline segments. 

All variations of the LIC method presented until 
now do not encode the orientation of a flow within a 
still image. The presented Oriented Line Integral Con- 
volution (OLIC) described in the following sections 
overcomes this disadvantage by using anisotropic con- 
volution kernels on a sparse texture. In contrast to the 
dense noise texture used for LIC this sparse texture 
consists of distinct white spots on a black background 
as input texture. OLIC also allows velocity encoding 
in still images and animations. The computation of 
animated OLICs can be accelerated by precalculating 
so called pixel traces. In the result section we show 
some examples of simple and realistic vector fields vi- 
sualized with the new method. 

2 Oriented Line Integral Convolution 

One of the main differences between Line Integral 
Convolution and Oriented Line Integral Convolution is 
that OLIC uses sparse textures rather than dense noise 
textures usually taken for LIC. This naturally implies 
distinct lines in the resulting image. As a physical 
justification for this approach one can think of Line 
Integral Convolution as distributing some drops of ink 
over a sheet of paper and smear them according to 
the underlying dynamics of a vector field. These ink 
droplets produce a sparse texture instead of the dense 
white noise textures typically used for LIC. Figures 
1 , 2  and 3 show a texture image as it is typically used 
by LIC and two texture images used by our algorithm 
as well as the resulting LICs for a simple vector field 
(saddle point). In both cases the constant function is 
used as convolution filter kernel. 

LIC with dense textures provides directional infor- 
mation for every point in the image. Due to  the re- 
sulting high frequencies the direction of the flow is, 
however, not as easy perceptable as in the more struc- 
tured LIC produced by a sparse texture. So we used 
a pattern of equidistant white dye droplets as input 
texture for a standard LIC procedure as shown in fig- 
ure 2 .  The much coarser output gives an impression 
of the flow that is easier to understand, but due to  
the regular pattern of the texture some undesireable 
artifacts are introduced. 

By perturbing (jittering) the positions of the 
equidistant droplets in the input texture these arti- 

(OLIC) 

Figure 1: Dense texture image with resulting LIC of a 
simple vector field (saddle point) 

facts disappear (figure 3) and the resulting image re- 
sembles pretty much the LIC in figure 1 albeit with 
distinct lines. Advantages of this approach are: 

the dynamics of the vector field can be seen more 
easily (more structure) 

0 scaling (e.g. downsizing) the resulting LIC (for 
example for printouts) does not produce artifacts 

0 the resulting LIC can be used as a texture for 
curved surfaces, where the density of the traces of 
the droplets gives additional depth and curvature 
cues 

0 the distinct lines of the resulting images allow ve- 
locity encoding by the length of the pixel traces 

the resulting LIC shows distinct traces of 
droplets. For OLICS we will use these to encode 
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Figure 2: Regular sparse texture image with resulting LIC 
of a simple vector field (saddle point) 

Figure 3: Jittered sparse texture image with resulting LIC 
of a simple vector field (saddle point) 

the orientation of the flow in addition to its direc- 
tion. The difference of direction and orientation 
can be seen in figure 4, where two streamlines 
with equal direction but opposite orientation are 
shown. 

Especially the last argument is quite advantageous. 
Until now encoding the orientation of a flow with LIC 
has only been possible by animation. In reality a re- 
searcher would like to know the direction of the flow 
as well as its orientation even in still images. 

Since single traces of pixels are distinguishable in 
our approach, their intensity can be used easily to en- 
code orientation. Every ink droplet of the sparse in- 
put texture thus has a trace comparable to the tail 
of a comet showing the temporal evolution of the un- 
derlying flow. High intensity areas of a pixel trace 
(set of all pixels covered by an ink droplet moving a 

I 

Figure 4: Two streamlines with equal direction but oppo- 
site orientation 

short distance according to the underlying vector field) 
correspond to  the current position of an ink droplet. 
Faded areas of the pixel trace, however, correspond 
to pixels which have already been crossed by the ink 
droplet during previous t ime steps. The principle is 
illustrated in figures 5 and 6 ,  where two simple rota- 
tional flow fields are given, which differ only in the 
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orientation of the flow. LIC shows no difference for 
the two vector fields. Images produced with the OLIC 
technique on the other hand give insight into both the 
direction and orientation of the flow 

Figure 6: OLIC for two flows with same direction but 
opposite orientation (same flows as in figure 5 

Figure 5: LIC of two flows with same direction but oppo- 
site orientation are indistinguishable 

The decreasing intensity for each pixel trace can 
be achieved by using an assymetric convolution kernel 
(figure 7). A simple ramp shaped function as shown 
in figure 7 was used for the images of figure 6. 

These pixel traces can be seen as paths which are 
nonuniformly motion blurred due to  the speed of the 
vector field. Thus encoding the speed at a specific 
pixel by adjusting the length of  its trace is a promis- 
ing approach. The length of the filter kernel has to  
be adapted correspondingly so that the ramp shaped 
function exactly covers the length of the trace. 

Due to the fact that each pixel is traced in tem- 
poral forward and reverse direction, the length o f  the 

ink droplet m, 
I I \  

I I conv. kernel I I 

Figure 7: Ramp-like kernel-function and convolution for 
OLIC 

trace corresponds to the speed in the (temporal) mid- 
dle of each trace. This method of encoding flow ve- 
locity gives only a feeling for relative speed differences 
within the flow field and not an absolut speed infor- 
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mation. But this seems to be no major drawback. 
Figure 8 shows another simple vector field with speed 
encoded in the length of the pixel traces, where the 
length of the pixel traces vary from 0 to 30 pixels. 

Figure 8: Flow velocity encoded in the length of a pixel 
trace 

3 Animation using Fast OLICs 
Oriented Line Integral Convolution encodes direc- 

tion, orientation and speed of a vector field in a single 
image. Nevertheless all this information can be inter- 
preted more easily with animation. The animation of 
Oriented Line Integral Convolutions can be achieved 
by simply phase shifting the convolution kernel for 
each frame accordingly. It has to be taken into ac- 
count, that velocity encoding leads to kernels with 
different lengths, thus producing an animation that 
can not be looped. This problem can be overcome by 
adapting the phase shift to the length of the filter ker- 
nel in a way, that each kernel is cycled within the same 
number of frames. Due to this adaption the visible ef- 
fect is, that slow parts of the vector field induce short 
pixel traces with short phase shifts. This results in 
slow moving spots along the pixel trace. A fast region 
of the flow induces long pixel traces with big consec- 
utive phase shifts. This translates into a fast moving 
spot on the long pixel trace. 

The result of the above described method is an an- 
imation that seems to pulse every cycle it is looped. 
This effect is due to the fact, that in the first frame 
every pixel trace has its brightest spot a t  the begin- 
ning of the trace and lower intensity towards the end 
of the trace. To overcome this unwanted synchronized 
effect an individual offset for the phase shift of each 
droplet in the input texture has to be taken into ac- 

count. Since the output image is calculated pixel by 
pixel the algorithm has to know which droplet (with 
corresponding specific initial kernel phase shift) in t,he 
input texture produces the pixel trace which covers 
the current pixel under consideration. 

This information must be provided by a precalcn- 
lation step, where for each pixel the coordinates of 
the responsible droplet are stored. Now every droplet 
may have its own phase shift offset and the looped 
animation looks smooth. 

The precalculation of pixel traces can also be used 
to speed up  the calculation of an animation. Due to 
the distances between distinct droplets of the input 
texture some pixels of the output image are not cov- 
ered by pixel traces, thus no calculation has to be done 
for these pixels. The determination of the information 
whether a pixel is covered or not is also done by the 
above mentioned precalculation step. Depending on 
the density of the input image and therefore on the 
density of the pixel traces the speed up factor is ap- 
proximately two to three (since a thirty to fifty percent 
coverage of the output image with pixel traces gives 
good results). 

Figure 9 shows the pixel traces and the correspond- 
ing OLIC of a simple vector field. For every white spot 
in the image of pixel-traces some information is stored. 
This information basically contains the identification 
of the corresponding ink droplet and its initial kernel 
phase shift. So far only one droplet can be stored for 
each trace. The errors induced by overlapping traces 
seem to be negligible. Nevertheless a modified version 
of the OLIC algorithm is planned which handles this 
situation correctly. 

4 Implementation and Future Work 
We implemented an experimental software system 

within an OpenGL environment [B]. The windows 
managment is made by GLUT, so the software runs 
on various platforms [4]. For future work an inter- 
net page is planned, where a Java applet allows the 
computation of different types of Line Integral Convo- 
lutions [ a ] .  The idea is, that researchers provide their 
vector fields to  the applet, which then calculates still 
images and animations of standard LICs and OLICs. 
This should give researchers the possibility to visual- 
ize their vector data  easily without having to  use any 
complex visualization tool. 

One drawback of Oriented Line Integral Convolu- 
tion is that overlapping pixel traces are not handled 
correctly. The problem can be solved by two differ- 
ent approaches. First, the precalculation step could 
store every droplet that has influence a t  a specific 
pixel of the output image (until now, only one droplet 
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Figure 9: Pixel traces and corresponding OLIC of 
field 

'low 

is stored). Thc othcr approach is to implcmcnt an 
adapted type of the Fast Line Int,cgral Convolution 
method as proposed by Stalling and Hege [8]. This 
will additionally speed up the calculation of Oriented 
Line Integral Convolution. 

5 Results 
The images in figure 10, 11 and 12 have been gen- 

erated with the described OLIC method. Figures 10, 
11 use no speed encoding, whereas figure 12 uses the 
length of the traces to display speed. Figure 10 shows 
an econometric model describing the interactions of 
the hight of the budget deficit and the publicity of 
politicians. Notice that the width of the pixel traces 
gives additional information whether the flow is diver- 
gent or convergent. 

Figure 11 shows an artificial model similar to  a 

Figure 10: OLIC of an econometric model 

predator-prey model as described by Volterra and 
Lotka. 

Figure 11: OLIC of a dynamical system similar to  a 
predator-prey model 

In figure 12 we used the length of the pixel traces to 
encode speed. Maximum speed is shown with traces 
of 60 pixels whereas slow traces have a length of about 
12 pixels. It is a good idea to limit the lower bound 
of the pixel trace length to ensure that no directional 
information is lost (see also figure 8).  

For additional results and to view some animation 
sequences we refer to our WWW-page: 
http:f/www.cg.tuwien.ac.at/research/vis-dyn-systfolicf. 
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Figure 12: OLIC of a simple pendulum model with speed 
encoding 
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