
64	 Copublished by the IEEE CS and the AIP	 1521-9615/11/$26.00 © 2011 IEEE� Computing in Science & Engineering

V is  u a l i z a t i o n  C o r n e r

Editors: Cláudio T. Silva, csilva@cs.utah.edu

Daniel Weiskopf, weiskopf@visus.uni-stuttgart.de

General-Relativistic Visualization
By Thomas Müller and Daniel Weiskopf

I n our previous article about 
special-relativistic visualization,1 
we described what the travelers 

from our highly developed civili-
zation observed when they passed 
the Earth; now, they set out for the 
Cygnus X-1 binary system, which is 
roughly 6,000 light years away. The 
Cygnus X-1 system consists of a super 
giant variable star (HDE 226868) and 
a very compact object—presumably a 
black hole—with about 11 times the 
mass of our Sun.2 To make their jour-
ney as comfortable as possible, our 
travelers split their trip into two halves. 
In the first half, they accelerate with 
one Earth gravity (1 g), while in the 
second half, they decelerate again with  
1 g. This simulates an artificial gravi-
tation like on Earth.

Fortunately, our travelers can take 
advantage of the special-relativistic 
time dilation effect, which makes the 
trip last only 17 years with respect to 
their ship’s chronometer. (Müller and 
his colleagues offer a detailed discus-
sion of such a journey elsewhere.3)

This time, the space ship captain 
will play it safe and order his crew 
to work out some tools in advance 
to simulate and explain any rela-
tivistic effects before they arrive at 
Cygnus X-1. The captain had heard 
rumors that a black hole devours all 
objects that come too close; in par-
ticular, the crew must find out how 
the curved spacetime around a black 
hole influences the propagation of 
light and the trajectories of mas-
sive objects. Again, we’ll take up 
their challenge, asking how we can  

visualize general relativity’s strange  
effects.

General Relativity
From special relativity, we already 
know that space and time are not 
two separate qualities, but rather 
are combined into a single entity: 
spacetime. While in special relativ-
ity spacetime is flat, general relativ-
ity uses curved spacetime to describe 
gravitational attraction geometrically. 
Although we have a certain notion 
about what a curved surface is in our 
everyday 3D world, we have extreme 
difficulties imagining how curvature  
“works” in a 4D non-Euclidean space
time. Nonetheless, we can try to fig-
ure out what might be observed in 
curved spacetimes.

A most striking general-relativistic 
effect is the bending of light. Although 
a light ray locally always follows a 
straight line, its global trajectory is 
curved. The extent of the overall light 
deflection depends on the magnitude 
of the spacetime’s curvature along the 
light ray’s trajectory. In extreme situ-
ations, the curvature of some parts of 
the spacetime becomes so strong that 
even light cannot escape from that re-
gion. Hence, this region appears black 
and we call it a black hole. The region’s 
separation surface is the event horizon. 
Figure 1 shows some examples of light 
rays around a black hole.

Today, the bending of light is im-
portant for astronomical observa-
tions because astronomers can use 
this effect as a gravitational lens to 
study objects that are so far away that 

they couldn’t be observed otherwise.  
Figure 2 shows an example of gravi-
tational lensing by the galaxy cluster 
Abell 2218, as recorded by the Hubble 
space telescope.

Figure 3 depicts a simplified situ-
ation to study general-relativistic ef-
fects on light caused by a black hole 
spacetime. Here, light from a distant 
star, S, reaches the observer via differ-
ent paths and under different angles. 
Because the observer can trace back 
light rays only in a straight line, how-
ever, the star appears not at its actual 
position but as multiple images in the 
directions of the incoming light rays. 
If the star were directly behind the 
black hole, the observer would see an 
Einstein ring because of the spherical 
symmetry of the spacetime. Here, we 
depicted only two light rays between 
the star and the observer. In principle, 
there’s an arbitrary number of light 
rays that orbit the black hole multiple 
times before they reach the observer, 
resulting in an equivalent number of 
apparent stars.

In addition to this geometric effect, 
the resulting phantom stars S1 and S2 
also have different apparent luminosi-
ties compared to the star’s actual lu-
minosity: S1 appears slightly brighter 
(7 percent), whereas S2 has only one 
eighth of the original luminosity. That’s  
because of the different (de)focus
ing and shearing effects of the curved 
spacetime on a bundle of light rays 
on the way between the star and the 
observer.

Additionally, the star’s spectrum 
is altered. Depending on the relative 

General-relativistic visualization helps us understand what we could see when massive objects curve spacetime.
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distances of the observer and 
the star to the black hole, light 
undergoes gravitational fre-
quency shift. In this example, 
the star is a bit closer to the 
black hole than the observer, 
which results in a slight red-
shift of the star’s spectrum. In 
short, a light ray gains energy 
when it’s approaching the black 
hole and loses energy when it’s 
receding from it. If the star’s 
luminosity is time-dependent, 
we also must take into account  
the finite speed of light and the 
time dilation effect. In gen-
eral, the different paths of the 
light rays have different spatial 
lengths, implying different light 
travel times. Furthermore, the 
closer a light ray passes the black 
hole, the slower time passes  
by. Thus, the star’s luminosity 
variation will be observed at dif-
ferent times.

So far, we’ve considered only 
the motion of light. In case of 
the motion of massive objects in 
curved spacetime, we also must 
account for several other effects. 
For example, the geodesic pre-
cession and the Lense-Thirring 
effect are responsible for the 
change of an object’s orientation 
when it orbits a black hole. The 
“Mathematical Details of Gen-
eral Relativity” sidebar offers a 
brief overview of the mathemat-
ical description of spacetimes, 
as well as the representation of light 
rays by lightlike geodesics and the tra-
jectories of massive particles by time-
like geodesics.

Diagram Techniques
We’ve already used a standard dia-
gram technique to depict the paths 
of some light rays around a black hole 

in Figures 1 and 3. For that, we rein-
terpreted the intrinsic coordinates of 
the spacetime as the usual (pseudo) 
Cartesian coordinates and used the 
standard plotting software gnuplot 
(www.gnuplot.info). Generalizing this 
Cartesian-like illustration, we could 
also plot any doublet or triplet of 
the four coordinates in the diagram.  

It’s important to note that, in 
the theory of relativity, time 
can also be a coordinate. In spe-
cial relativity, the Minkowski 
diagram is an example of a dia-
gram where time is plotted over 
one of the spatial coordinates, 
as we described in our previous 
article.1

The disadvantage of this 
technique is that it’s explicitly 
coordinate-dependent while 
physics per se is coordinate-
independent. For example, the 
coordinate distance between 
the observer and the black hole’s 
horizon doesn’t correspond to 
the actual distance. Hence, we 
must take care of the right in-
terpretation of these diagrams. 
While standard plotting tools 
are sufficient for a first glimpse 
on how geodesics behave, a 
detailed geodesic exploration 
makes it necessary to interac-
tively vary parameters, such as 
the initial position and direc-
tion of a geodesic or the intrin-
sic metric parameters.

The GeodesicViewer4 provides a 
graphical user interface to real-
ize this job. With an interactive 
tool, we can now investigate how 
light rays behave qualitatively in 
different regions of spacetime, 
thus understanding the structure 
of spacetime. In general rela-
tivity, we’re also interested in a 
spacetime’s causal structure and 

asymptotic properties. Hence, we need 
a method to compress the whole spa-
cetime into a finite diagram while pre-
serving its causal structure. Both Roger 
Penrose5 and Brandon Carter6 inde-
pendently found such a transformation.

Figure 4 shows the 2D Penrose–
Carter diagram of a Schwarzschild 
black hole. Here, the blue-shaded  

Figure 1. Light rays are bent due to curved 
spacetime; the bending becomes stronger the 
closer a light ray passes the black hole (black disk). 
Some light rays can also return to the point of 
emission. Hence, observers would see themselves as 
if in a strong distortion mirror. If a light ray passes 
the black hole too close (closer than the dashed 
circle), it will be captured and will move into the 
black hole.

Figure 2. The galaxy cluster Abell 2218, composed 
of thousands of individual galaxies, works as 
gravitational lens for far distant galaxies that 
appear as long, thin arcs. This is a detail of the 
original picture by the Hubble space telescope 
(www.spacetelescope.org/images/heic0814a). — 
Image courtesy of NASA, European Space Agency 
(ESA), and Johan Richard, California Institute of 
Technology; with thanks to Davide de Martin and 
James Long (ESA/Hubble).
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region represents the inside and 
the square represents the “radial”  
outside of the black hole. The 
dashed line is the trajectory of 
a freely falling object that emits 
light rays (dotted lines) in the 
outward direction. As in the 
Minkowski diagram, light rays 
are lines with ± 45-degree slope.

The above techniques use co-
ordinate mappings to show the 
influence of curved spacetime 
onto the trajectories of light 
rays or massive objects. Now, it 
would also be interesting to vi-
sualize the curvature of spacet-
ime itself. However, because we 
have only an intuitive concept 
of 1D and 2D curvature in a 2D 
and 3D world, we’re limited to 
a one- or 2D surface carved out 
from the full 4D spacetime. To 
visualize the curvature of this 
surface, we must find another 
surface embedded in the 3D 
Euclidean space that’s isometric 
to the original surface—that 
is, distances on both surfaces 

are preserved. In general, finding  
an embedding representation is by 
no means trivial, and is typically 
modeled by partial differential equa-
tions. A numerical method for solv-
ing the embedding problem might 
use a discretization with triangular 
meshes.8,9

Figure 5 shows a 2D surface cut 
out from a Schwarzschild black hole 
through its equatorial plane at con-
stant time. The surface is isometri-
cally embedded into the 3D Euclidean 
space. Here, the embedding is quite 
simple and can be represented by an 
ellipsoid of revolution because of the 
symmetry of the Schwarzschild spa-
cetime and the location of the cutting 
plane on the equator.

First-Person  
Visualization
As in special relativity, first-
person visualization in general 
relativity also aims to depict 
the image a virtual camera 
would actually produce in a 
general-relativistic setting. In 
contrast to the above diagram 
techniques, it has the additional 
advantage of being coordinate- 
independent. The generic ap-
proach for the first-person vi-
sualization is to extend the 
standard 3D ray tracing (see 
Figure 6) to relativistic ray trac-
ing in 4D spacetime. (Weiskopf 
offers detailed technical back-
ground on general-relativistic 
ray tracing and further referenc-
es on previous work elsewhere.8)

For each pixel of the ob-
server’s virtual image plane, 
we must integrate the geodesic 
equation for light rays within 
the given spacetime instead of 
using just straight lines. We 
can stop the integration if one 

Figure 3. A simplified example of general-relativistic effects on light caused by a 
black hole spacetime. The main image shows apparent positions S1 and S2 of a 
star S located at (rstar, ϕstar) whose light is deflected due to the curved spacetime in 
the neighborhood of a black hole. ξ1 and ξ2 are the incoming light directions with 
respect to the observer’s local reference frame. The blue ticks (Δt = 5) indicate the 
elapsed time since the light emission. The inset (upper right) shows the temporal 
variation of the apparent brightness due to the gravitational lensing effect. The 
peaks correspond to a stellar eruption; there are different temporal delays for the 
different light paths.
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Figure 4. Penrose–Carter diagram of a 
Schwarzschild black hole. The dashed line 
represents an object that starts with zero velocity 
from outside the horizon and falls freely into the 
black hole. The dotted lines represent light rays 
emitted by this object. As long as the object is 
above the horizon, an observer outside the black 
hole can receive these light rays; the light rays 
eventually go infinitely far away from the black hole 
when time approaches infinity. This kind of infinity 
is drawn as line (I +). If the object is below the 
horizon, no single light ray can ever escape, and 
both the light rays and the object inevitably crash 
into the singularity. The boundary marks represent 
the so-called lightlike (I +), timelike (I±), and 
spacelike (i0) infinity, respectively. Also, while we 
show these boundary marks as points or lines, their 
true topology is much more complex.7
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of the following conditions  
is met:

•	 the light ray hits an object,
•	 the light ray leaves the region 

of interest, or
•	 the numerical integration be-

comes invalid.

Unfortunately, shadow rays, 
which connect directly to a light 
source, can be traced in practice 
only if there’s an analytic solu-
tion of the geodesic equation. 
That’s because it’s nearly im-
possible to automatically find 
a ray between the intersection point 
and a light source in an arbitrarily 
curved spacetime. Additionally, there 
can be also more than just one con-
necting light ray.

Objects within general relativ-
ity can be defined either with respect 
to the metric’s proper coordinates 

or with respect to a local reference 
(Minkowski) frame. The coordinate 
representation can be used, for ex-
ample, to set a static global spherical 
background. The local reference de-
scription has the advantage that an 
object can be defined as static within 
the spatial part of the local frame, 

while the object’s motion is as-
signed a property of the local 
frame. Then, the intersection 
of a light ray with a “local” ob-
ject can be skipped if the light 
ray doesn’t intersect with the 
boundary sphere of the local 
frame. The disadvantage, how-
ever, is that only objects that are 
small compared to the curva-
ture’s size can be used because 
the local reference frame is valid 
only for a small neighborhood.

What makes general-relativistic 
ray tracing so expensive is the 
calculation of the intersections 

between the curved light rays and 
the object’s curved trajectories. In 
principle and without using special 
acceleration methods, every segment 
of the light ray must be tested against 
every trajectory segment of each sin-
gle object. Because light rays don’t 
interact, 4D ray tracing can be easily  

Mathematical Details  
of General Relativity
Einstein’s field equation, in today’s form,

G g Tµν µν µνκ+ =Λ

with κ = 8π G/c4, Newton’s gravitational constant G, 
the speed of light c, the cosmological constant Λ, 
and the metric gμν, gives a relation between the 
geometry of spacetime, expressed by the Einstein ten-
sor Gμν, and the stress-energy tensor Tμν, which repre-
sents mass density, and energy and momentum  
flux.

The most famous nontrivial solution to Einstein’s 
field equation was found by Karl Schwarzschild in 1916. 
It describes the vacuum spacetime outside a static, 
spherically symmetric massive object—in particular, 
the outside of a black hole. The Schwarzschild metric, 
which defines infinitesimal distances, is given by the line 
element
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depends only on the relative distances robs and rstar to the 
black hole. A detailed introduction to general relativity can 
be found in the standard textbooks by Wolfgang Rindler1 
and Charles Misner, Kip Thorne, and John Wheeler.2
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Figure 5. Isometric embedding of an equatorial 
plane through a Schwarzschild black hole. The blue 
circle represents the horizon. Only the surface is 
part of the Schwarzschild spacetime. Because of the 
Schwarzschild spacetime’s staticity, a light ray or an 
object moving in the equatorial plane can be drawn 
onto the embedded surface.
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parallelized by image-space partition-
ing, for example, on a compute cluster 
or using modern graphics hardware 
and the Compute Unified Device Ar-
chitecture (CUDA; http://developer.
nvidia.com/cuda) or the Open Com-
puting Language (OpenCL; www.
khronos.org/opencl) programming 
interface.

Figure 7 shows the first-person 
view of a star that passes behind a 
black hole. The star is a sphere with a  

diameter three times the Schwarz
schild radius defined within a local 
reference frame that currently moves 
at 90 percent the speed of light. Be-
cause of the bending of light, the star 
appears distorted and on both sides 
of the black hole. The background is 
a coordinate sphere textured with the 
Milky Way panorama. Here, we ap-
plied only the geometric distortion 
effects. For the gravitational redshift 
and the lensing effect, we would need 

complete spectral information of the 
Milky Way panorama.

The main problem of general- 
relativistic visualization is the search 
for geodesics that connect two arbi-
trary points in spacetime. If a space
time is highly symmetric and there’s 
an analytic solution to the geodesic 
equation, an interactive visualization 
becomes feasible, because we’re now 
able to find light rays that connect two 
points in spacetime. Connecting light 
rays is key to rendering algorithms 
that project objects of the scene onto 
the image plane. Just like regular 3D 
nonrelativistic graphics, we can now 
efficiently process scene object af-
ter scene object and determine their 
image on the viewing plane by ras-
terizing their image footprint into 
corresponding pixels.

Figure 8 shows an example of pro-
jection and rasterization: we use the 
analytic solution11 to the geodesic 
equation in the Schwarzschild space
time to simulate the distortion of the 
stellar sky by a black hole.12 Because of 
the spherical symmetry of the Schwarz
schild spacetime, the search for an 
interconnecting light ray between a 
star and the observer can be restricted 
to the 2D situation analogous to Fig-
ure 1. Here, we assume that all stars 
have distances to the black hole that 
are much larger than the observer’s 
distance to the black hole so that we 
can put the stars at infinity to reduce 
the positional information to a single 
angle. Then, in a preprocessing step, 
we can generate a 2D lookup table that 
stores for each observer position robs ∈ 
[rs, rmax] and each star position ϕstar ∈ 
[0, 2π) the corresponding angular di-
rections ξ1 and ξ2 for the primary and 
secondary apparent directions. (Here, 
we could also store higher-order appar-
ent directions. But, because of the grav-
itational lensing effect, the apparent  

Figure 6. For each pixel of the observer’s virtual image plane, standard 3D 
ray tracing follows a rectilinear light ray into the scenery. Depending on the 
illumination model, for each intersection point one or more secondary rays  
are tracked and shadow rays to the light sources are determined.
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Figure 7. A star textured with a spherical grid passes behind a black hole. Due 
to light bending, the star appears not only distorted but also twice, where the 
secondary image (left) is mirrored. The Milky Way panorama is also distorted 
by the curved light rays. The image is produced using the CUDA-based general 
relativistic ray tracer by Daniel Kuchelmeister.10 The slight shading on the star was 
artificially added to enhance the 3D impression. — The Milky Way panorama is by 
Serge Brunier, European Southern Observatory.
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luminosity of higher-order images 
strongly decreases.)

For this example of the stellar sky’s 
distortion by a black hole, we illustrate 
how point-based visualization can be 
efficiently implemented on graphics 
hardware. We assume that the reader 
is familiar with the terminology from 
GPUs as briefly reviewed in our previ-
ous article on special-relativistic visu-
alization.1 As input for the algorithm, 
we store the 2D lookup table in a 2D 
texture. Each star is assigned a 2D ver-
tex (point) with spherical coordinates 
(right ascension and declination) and 
two additional attributes: its apparent 
magnitude (observed scaled flux den-
sity) and effective color temperature.

In the first render pass, the vertex 
program calculates the effective angle 
ϕstar of a star from its right ascension 
and declination and, by means of the 
lookup table, determines the apparent 
angle ξ with respect to the observer’s 
local reference frame. (The apparent 
star is located on the plane spanned 
by the direction to the black hole and 
the direction to the star.) The star’s 
apparent magnitude, which is modi-
fied by the gravitational lensing effect 
and the observer’s current velocity, is 
mapped to the size of the vertex. The 
frequency shift due to the observer’s 
motion and gravitation determines 
the star’s apparent color temperature. 
After the rasterizer, the fragment pro-
gram maps the color temperature to a 
predefined color table and smears the 
point to a Fraunhofer diffraction pat-
tern caused by the finite aperture of a 
telescope. In the second render pass, 
the higher-order images of the stars 
are drawn.

The points-based visualization  
technique can also be applied to 
expanded objects defined in a lo-
cal reference frame in highly com-
plex spacetimes, such as the Gödel  

universe as done by Frank Grave  
and his colleagues.13

Field-Based Data  
Visualization
The techniques we’ve described are 
usually applied to spacetimes that 
can be described mathematically in 
closed form. However, realistic astro-
physical scenarios of interest—such 
as the merger of two rotating black 
holes—can be handled only by exten-
sive numerical simulation.

Thomas Baumgarte and Stuart 
Shapiro provide a detailed introduc-
tion to numerical relativity.14 Much 
research in numerical relativity deals 
with possible shapes of gravitational 
waves induced by, for example, col-
lapsing stars, oscillating neutron 
stars, or black hole mergers. For that, 
the numerical calculations often use 
grid-based techniques. In particular, 
adaptive mesh refinement techniques, 
known also from computational fluid 
dynamics, are heavily used to meet 
the concerns of the very different 
strengths of curvature in the respec-
tive domains. In general, scientific 
visualization supports the visual 
analysis and communication of grid-
based data from the physical sciences.  

Therefore, classical scientific visu-
alization techniques—such as color- 
coding techniques, isosurface render-
ing, volume visualization, and glyph  
representations—work for simulation 
data from general relativity.

In the Visualization Handbook, 
Charles Hansen and Chris Johnson 
provide a comprehensive overview 
of scientific visualization’s methods, 
software systems, and applications.15 
One issue specific to general relativity 
is that the visualization results shown 
should be physically relevant. Here, 
the dependency of numerical data on 
the chosen coordinate system or ref-
erence frame plays an important role. 
Because general relativity is usually 
described in the tensor formalism, 
relevant information is commonly ex-
tracted in the form of tensor fields or 
in derived vector or scalar fields. This 
kind of field data is then handed over 
to the visualization system.

As an example, Figure 9 shows 
isosurfaces of the Newman-Penrose 
curvature scalar Ψ4 for a simulation 
of gravitational waves produced by 
the merger of two black holes. For ex-
amples of tensor visualization, we re-
fer to the work of Werner Benger and 
Hans-Christian Hege,16 who discuss 

Figure 8. Projection and rasterization. (a) Constellation Orion distorted by the 
curved spacetime of a black hole indicated by the dashed circle. Stars appear twice 
because of light rays that pass the black hole to the left and to the right. The rings 
around the stars simulate the Fraunhofer diffraction due to the finite telescope 
aperture. The star database is taken from the Hipparcos catalogue (I/239), which 
can be found at http://cdsarc.u-strasbg.fr/viz-bin/Cat?I/239. (b) Constellation 
Orion (α: Betelgeuse, β: Rigel, γ: Bellatrix, δ: Mintaka, ε: Alnilam, ζ: Alnitak, 
κ: Saiph) given in undistorted equatorial coordinates (ra: right ascension, dec: 
declination).
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the direct visualization of the 
metric tensor for the static 
Schwarzschild or the rotating 
Kerr spacetime using tensor  
ellipsoids and tensor splats.

Due to general relativ-
ity’s complexity, there’s 

a wide range of visualization 
techniques, each specializing  
in certain facets of curved  
spacetime. Diagrams for general 
relativity are often manually 
drawn with generic graphics 
software or generated by basic 
plotting tools; they’re used for 
visual explanation in textbooks 
or other examples of the didac-
tics of physics. Advanced dia-
gram techniques—such as the 
Penrose–Carter diagram—are 
used by relativity experts to vi-
sualize a spacetime’s causal structure.

In contrast to the abstraction of di-
agrams, the general-relativistic first-
person visualization provides a more 
immersive view. We, as beholder, take 
part in a visual experiment by being 
included as direct observer of the 
physical scenario. Such visual experi-
ment is conceptually simple and there-
fore especially useful in the context 
of teaching, visual communication 
to non-experts, museum exhibitions, 
and so on. First-person visualiza-
tion comes with high computational 
costs for rendering scenes in 4D space
time, such as in applying general-
relativistic ray tracing or projection  
methods.

Finally, for simulation data from 
numerical relativity, it’s possible to 
use standard methods and software 
systems for scientific visualization, as 
long as the data is provided in process-
able form, such as a tensor, vector, or 
scalar field.�
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WeB resoUrces

Following are lists of resources that we’ve found particu-
larly relevant. 

General-Relativistic Visualization

the Web offers several useful resources for general-
relativistic visualization:

• Field-based data visualizations for general relativistic situ-
ations, such as binary systems or gravitational collapses, 
are provided by the numerical relativity Group (http://
numrel.aei.mpg.de) at the Albert Einstein Institute in 
Golm, Germany. 

• the Visualization in Special and General relativity 
website (www.vis.uni-stuttgart.de/relativity), which 
we maintain at the university of Stuttgart, Germany, 
provides several interactive applications, including the 
GeodesicViewer for detailed explorations of lightlike and 
timelike geodesics. 

• Space time travel (www.spacetimetravel.org), main-
tained by ute Kraus and Corvin zahn at the university of 
Hildesheim, Germany, includes many images and videos 
of black hole and wormhole visualizations. In particular, 
this site features many didactics papers that explain 
special relativity.

• robert nemiroff, Michigan technological university 
and nASA Goddard, offers movies that show the visual 
distortion effects near a black hole and neutron stars 

(http://apod.nasa.gov/htmltest/rjn_bht.html) and also 
provides an accompanying paper.1 

• Andrew Hamilton, university of Colorado at Boulder, 
provides movies that show the inside of a black hole 
(http://jila.colorado.edu/~ajsh/insidebh/index.html). 

• leo Brewin, Monash university, Australia, offers relativity 
movies (http://users.monash.edu.au/~leo/research/movies/
index.html).

Astrophysics Resources

Additional resources on astrophysics are available on the 
following Web pages: 

• the Hubble Space telescope Web page by ESA (www.
spacetelescope.org) includes pictures and illustrative 
movies of gravitational lensing in action. 

• nASA offers an illustration of the Cygnus X-1 system 
(http://apod.nasa.gov/apod/ap080811.html).

• More detailed information on the binary system Cygnus 
X-1 is available in many places, including in the paper by 
Saida Caballero-nieves and her colleagues.2 
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