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General-relativistic visualization helps us understand what we could see when massive objects curve spacetime.

special-relativistic visualization,!

we described what the travelers
from our highly developed civili-
zation observed when they passed
the Earth; now, they set out for the
Cygnus X-1 binary system, which is
roughly 6,000 light years away. The
Cygnus X-1 system consists of a super
giant variable star (HDE 226868) and
a very compact object—presumably a
black hole—with about 11 times the
mass of our Sun.” To make their jour-
ney as comfortable as possible, our
travelers split their trip into two halves.
In the first half, they accelerate with
one Earth gravity (1 g), while in the
second half, they decelerate again with
1 g. This simulates an artificial gravi-
tation like on Earth.

Fortunately, our travelers can take
advantage of the special-relativistic
time dilation effect, which makes the
trip last only 17 years with respect to
their ship’s chronometer. (Miiller and
his colleagues offer a detailed discus-
sion of such a journey elsewhere.’)

This time, the space ship captain
will play it safe and order his crew
to work out some tools in advance
to simulate and explain any rela-
tivistic effects before they arrive at
Cygnus X-1. The captain had heard
rumors that a black hole devours all
objects that come too close; in par-
ticular, the crew must find out how
the curved spacetime around a black
hole influences the propagation of
light and the trajectories of mas-
sive objects. Again, we’ll take up
their challenge, asking how we can

I n our previous article about

visualize general relativity’s strange
effects.

General Relativity

From special relativity, we already
know that space and time are not
two separate qualities, but rather
are combined into a single entity:
spacetime. While in special relativ-
ity spacetime is flat, general relativ-
ity uses curved spacetime to describe
gravitational attraction geometrically.
Although we have a certain notion
about what a curved surface is in our
everyday 3D world, we have extreme
difficulties imagining how curvature
“works” in a 4D non-Euclidean space-
time. Nonetheless, we can try to fig-
ure out what might be observed in
curved spacetimes.

A most striking general-relativistic
effectis the bending of light. Although
a light ray locally always follows a
straight line, its global trajectory is
curved. The extent of the overall light
deflection depends on the magnitude
of the spacetime’s curvature along the
light ray’s trajectory. In extreme situ-
ations, the curvature of some parts of
the spacetime becomes so strong that
even light cannot escape from that re-
gion. Hence, this region appears black
and we call it a black hole. The region’s
separation surface is the event horizon.
Figure 1 shows some examples of light
rays around a black hole.

Today, the bending of light is im-
portant for astronomical observa-
tions because astronomers can use
this effect as a gravitational lens to
study objects that are so far away that

they couldn’t be observed otherwise.
Figure 2 shows an example of gravi-
tational lensing by the galaxy cluster
Abell 2218, as recorded by the Hubble
space telescope.

Figure 3 depicts a simplified situ-
ation to study general-relativistic ef-
fects on light caused by a black hole
spacetime. Here, light from a distant
star, S, reaches the observer via differ-
ent paths and under different angles.
Because the observer can trace back
light rays only in a straight line, how-
ever, the star appears not at its actual
position but as multiple images in the
directions of the incoming light rays.
If the star were directly behind the
black hole, the observer would see an
Einstein ring because of the spherical
symmetry of the spacetime. Here, we
depicted only two light rays between
the star and the observer. In principle,
there’s an arbitrary number of light
rays that orbit the black hole multiple
times before they reach the observer,
resulting in an equivalent number of
apparent stars.

In addition to this geometric effect,
the resulting phantom stars S; and S,
also have different apparent luminosi-
ties compared to the star’s actual lu-
minosity: S appears slightly brighter
(7 percent), whereas S, has only one
eighth of the original luminosity. That’s
because of the different (de)focus-
ing and shearing effects of the curved
spacetime on a bundle of light rays
on the way between the star and the
observer.

Additionally, the star’s spectrum
is altered. Depending on the relative
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distances of the observer and
the star to the black hole, light
undergoes gravitational fre-
quency shift. In this example,
the star is a bit closer to the
black hole than the observer,

It’s important to note that, in
the theory of relativity, time
can also be a coordinate. In spe-
cial relativity, the Minkowski
diagram is an example of a dia-
gram where time is plotted over

which results in a slight red-
shift of the star’s spectrum. In
short, a light ray gains energy
when it’s approaching the black
hole and loses energy when it’s
receding from it. If the star’s
luminosity is time-dependent,
we also must take into account
the finite speed of light and the
time dilation effect. In gen-
eral, the different paths of the
light rays have different spatial
lengths, implying different light
travel times. Furthermore, the
closer a light ray passes the black
hole, the slower time passes
by. Thus, the star’s luminosity
variation will be observed at dif-
ferent times.

So far, we've considered only
the motion of light. In case of
the motion of massive objects in
curved spacetime, we also must

Figure 1. Light rays are bent due to curved
spacetime; the bending becomes stronger the
closer a light ray passes the black hole (black disk).
Some light rays can also return to the point of
emission. Hence, observers would see themselves as
if in a strong distortion mirror. If a light ray passes
the black hole too close (closer than the dashed
circle), it will be captured and will move into the
black hole.

one of the spatial coordinates,
as we described in our previous
article.!

The disadvantage of this
technique is that it’s explicitly
coordinate-dependent while
physics per se is coordinate-
independent. For example, the
coordinate distance between
the observer and the black hole’s
horizon doesn’t correspond to
the actual distance. Hence, we
must take care of the right in-
terpretation of these diagrams.
While standard plotting tools
are sufficient for a first glimpse
on how geodesics behave, a
detailed geodesic exploration
makes it necessary to interac-
tively vary parameters, such as
the initial position and direc-
tion of a geodesic or the intrin-
sic metric parameters.

account for several other effects.
For example, the geodesic pre-
cession and the Lense-Thirring
effect are responsible for the
change of an object’s orientation
when it orbits a black hole. The
“Mathematical Details of Gen-
eral Relativity” sidebar offers a
brief overview of the mathemat-
ical description of spacetimes,
as well as the representation of light
rays by lightlike geodesics and the tra-
jectories of massive particles by time-
like geodesics.

Diagram Techniques

We've already used a standard dia-
gram technique to depict the paths
of some light rays around a black hole

Figure 2. The galaxy cluster Abell 2218, composed
of thousands of individual galaxies, works as

gravitational lens for far distant galaxies that

appear as long, thin arcs. This is a detail of the
original picture by the Hubble space telescope
(Wwww.spacetelescope.org/images/heic0814a). —
Image courtesy of NASA, European Space Agency
(ESA), and Johan Richard, California Institute of

Technology; with thanks to Davide de Martin and
James Long (ESA/Hubble).

in Figures 1 and 3. For that, we rein-
terpreted the intrinsic coordinates of
the spacetime as the usual (pseudo)
Cartesian coordinates and used the
standard plotting software gnuplot
(www.gnuplot.info). Generalizing this
Cartesian-like illustration, we could
also plot any doublet or triplet of
the four coordinates in the diagram.

The GeodesicViewer* provides a
graphical user interface to real-
ize this job. With an interactive
tool, we can now investigate how
light rays behave qualitatively in
different regions of spacetime,
thus understanding the structure
of spacetime. In general rela-
tivity, were also interested in a
spacetime’s causal structure and
asymptotic properties. Hence, we need
a method to compress the whole spa-
cetime into a finite diagram while pre-
serving its causal structure. Both Roger
Penrose’ and Brandon Carter® inde-
pendently found such a transformation.

Figure 4 shows the 2D Penrose-
Carter diagram of a Schwarzschild
black hole. Here, the blue-shaded
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Figure 3. A simplified example of general-relativistic effects on light caused by a
black hole spacetime. The main image shows apparent positions $; and S, of a
star S located at (fytar, @star) Whose light is deflected due to the curved spacetime in
the neighborhood of a black hole. & and &, are the incoming light directions with
respect to the observer’s local reference frame. The blue ticks (At = 5) indicate the
elapsed time since the light emission. The inset (upper right) shows the temporal
variation of the apparent brightness due to the gravitational lensing effect. The
peaks correspond to a stellar eruption; there are different temporal delays for the
different light paths.

are preserved. In general, finding
an embedding representation is by
no means trivial, and is typically
modeled by partial differential equa-
tions. A numerical method for solv-
ing the embedding problem might
use a discretization with triangular
meshes.®’

Figure 5 shows a 2D surface cut
out from a Schwarzschild black hole
through its equatorial plane at con-
stant time. The surface is isometri-
cally embedded into the 3D Euclidean
space. Here, the embedding is quite
simple and can be represented by an
ellipsoid of revolution because of the
symmetry of the Schwarzschild spa-
cetime and the location of the cutting

region represents the inside and
the square represents the “radial”
outside of the black hole. The
dashed line is the trajectory of
a freely falling object that emits
light rays (dotted lines) in the
outward direction. As in the
Minkowski diagram, light rays
are lines with + 45-degree slope.

The above techniques use co-
ordinate mappings to show the
influence of curved spacetime
onto the trajectories of light
rays or massive objects. Now, it
would also be interesting to vi-
sualize the curvature of spacet-
ime itself. However, because we
have only an intuitive concept
of 1D and 2D curvature in a 2D
and 3D world, we’re limited to
a one- or 2D surface carved out
from the full 4D spacetime. To
visualize the curvature of this
surface, we must find another
surface embedded in the 3D
Euclidean space that’s isometric
to the original surface—that
is, distances on both surfaces

plane on the equator.

Singularity 1*
Black hole 3

.

R f" Future infinity
o&/0 :
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Figure 4. Penrose—Carter diagram of a
Schwarzschild black hole. The dashed line
represents an object that starts with zero velocity
from outside the horizon and falls freely into the
black hole. The dotted lines represent light rays
emitted by this object. As long as the object is
above the horizon, an observer outside the black
hole can receive these light rays; the light rays
eventually go infinitely far away from the black hole
when time approaches infinity. This kind of infinity
is drawn as line (.7 ). If the object is below the
horizon, no single light ray can ever escape, and
both the light rays and the object inevitably crash
into the singularity. The boundary marks represent
the so- called lightlike (7 ), timelike (l ), and
spacelike (/ ) infinity, respectively. Also, while we
show these boundary marks as points or lines, their
true topology is much more complex.”

First-Person
Visualization
As in special relativity, first-
person visualization in general
relativity also aims to depict
the image a virtual camera
would actually produce in a
general-relativistic setting. In
contrast to the above diagram
techniques, it has the additional
advantage of being coordinate-
independent. The generic ap-
proach for the first-person vi-
sualization is to extend the
standard 3D ray tracing (see
Figure 6) to relativistic ray trac-
ing in 4D spacetime. (Weiskopf
offers detailed technical back-
ground on general-relativistic
ray tracing and further referenc-
es on previous work elsewhere.®)
For each pixel of the ob-
server’s virtual image plane,
we must integrate the geodesic
equation for light rays within
the given spacetime instead of
using just straight lines. We
can stop the integration if one
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MATHEMATICAL DETAILS
OF GENERAL RELATIVITY

Einstein’s field equation, in today’s form,

G +Ag,, =T,

with k = 8w G/c*, Newton’s gravitational constant G,
the speed of light ¢, the cosmological constant A,

and the metric g, gives a relation between the
geometry of spacetime, expressed by the Einstein ten-
sor G, and the stress-energy tensor T, which repre-
sents mass density, and energy and momentum

flux.

The most famous nontrivial solution to Einstein’s
field equation was found by Karl Schwarzschild in 1916.
It describes the vacuum spacetime outside a static,
spherically symmetric massive object—in particular,
the outside of a black hole. The Schwarzschild metric,
which defines infinitesimal distances, is given by the line
element

dr?

2( 402 | cin2 2
1—rs/r+r (dz? +sin” ¥dp )

ds? = 7[175]c2dt2 4
r

with the Schwarzschild radius r, = 2GM/c? and the mass M
of the object or black hole. The propagation of light as well
as the trajectories of massive particles are determined by

the geodesic equation

d?xH

d\?
with affine parameter A and Christoffel symbols of the
second kind I'), which are functions of the metric g,,,.
The indices u,v,p run from 0 to 3. For the Schwarzschild
spacetime, the coordinates read x* = {t, r, 9, ©}. The
additional constraint,

p X ax?
Yodn dXh

dx" dx” 2
—_— =KC
dx dX

guy

determines whether the geodesic describes massive
particles (x = —1, timelike geodesic) or light rays (x = 0,
lightlike geodesic). The gravitational frequency shift zy,, in
the Schwarzschild spacetime,

NS
\/1_rs/rstar

depends only on the relative distances ro,s and ry,, to the
black hole. A detailed introduction to general relativity can
be found in the standard textbooks by Wolfgang Rindler’
and Charles Misner, Kip Thorne, and John Wheeler.?
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of the following conditions
is met:

e the light ray hits an object,

e the light ray leaves the region
of interest, or

* the numerical integration be-
comes invalid.

while the object’s motion is as-
signed a property of the local
frame. Then, the intersection
of a light ray with a “local” ob-
ject can be skipped if the light
ray doesn’t intersect with the
boundary sphere of the local
frame. The disadvantage, how-
ever, is that only objects that are

Unfortunately, shadow rays,
which connect directly to a light
source, can be traced in practice
only if there’s an analytic solu-
tion of the geodesic equation.
That’s because it’s nearly im-
possible to automatically find
a ray between the intersection point
and a light source in an arbitrarily
curved spacetime. Additionally, there
can be also more than just one con-
necting light ray.

Objects within general relativ-
ity can be defined either with respect
to the metric’s proper coordinates

Figure 5. Isometric embedding of an equatorial
plane through a Schwarzschild black hole. The blue
circle represents the horizon. Only the surface is

part of the Schwarzschild spacetime. Because of the
Schwarzschild spacetime’s staticity, a light ray or an
object moving in the equatorial plane can be drawn
onto the embedded surface.

or with respect to a local reference
(Minkowski) frame. The coordinate
representation can be used, for ex-
ample, to set a static global spherical
background. The local reference de-
scription has the advantage that an
object can be defined as static within
the spatial part of the local frame,

small compared to the curva-
ture’s size can be used because
the local reference frame is valid
only for a small neighborhood.
What makes general-relativistic
ray tracing so expensive is the
calculation of the intersections
between the curved light rays and
the object’s curved trajectories. In
principle and without using special
acceleration methods, every segment
of the light ray must be tested against
every trajectory segment of each sin-
gle object. Because light rays don’t
interact, 4D ray tracing can be easily
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Figure 6. For each pixel of the observer’s virtual image plane, standard 3D
ray tracing follows a rectilinear light ray into the scenery. Depending on the
illumination model, for each intersection point one or more secondary rays
are tracked and shadow rays to the light sources are determined.

Figure 7. A star textured with a spherical grid passes behind a black hole. Due

to light bending, the star appears not only distorted but also twice, where the
secondary image (left) is mirrored. The Milky Way panorama is also distorted

by the curved light rays. The image is produced using the CUDA-based general
relativistic ray tracer by Daniel Kuchelmeister.'® The slight shading on the star was
artificially added to enhance the 3D impression. — The Milky Way panorama is by
Serge Brunier, European Southern Observatory.

parallelized by image-space partition-
ing, for example, on a compute cluster
or using modern graphics hardware
and the Compute Unified Device Ar-
chitecture (CUDA; http://developer.
nvidia.com/cuda) or the Open Com-
puting Language (OpenCL; www.
khronos.org/opencl) programming
interface.

Figure 7 shows the first-person
view of a star that passes behind a
black hole. The star is a sphere with a

diameter three times the Schwarz-
schild radius defined within a local
reference frame that currently moves
at 90 percent the speed of light. Be-
cause of the bending of light, the star
appears distorted and on both sides
of the black hole. The background is
a coordinate sphere textured with the
Milky Way panorama. Here, we ap-
plied only the geometric distortion
effects. For the gravitational redshift
and the lensing effect, we would need

complete spectral information of the
Milky Way panorama.

The main problem of general-
relativistic visualization is the search
for geodesics that connect two arbi-
trary points in spacetime. If a space-
time is highly symmetric and there’s
an analytic solution to the geodesic
equation, an interactive visualization
becomes feasible, because we’re now
able to find light rays that connect two
points in spacetime. Connecting light
rays is key to rendering algorithms
that project objects of the scene onto
the image plane. Just like regular 3D
nonrelativistic graphics, we can now
efficiently process scene object af-
ter scene object and determine their
image on the viewing plane by ras-
terizing their image footprint into
corresponding pixels.

Figure 8 shows an example of pro-
jection and rasterization: we use the
analytic solution'! to the geodesic
equation in the Schwarzschild space-
time to simulate the distortion of the
stellar sky by a black hole.!” Because of
the spherical symmetry of the Schwarz-
schild spacetime, the search for an
interconnecting light ray between a
star and the observer can be restricted
to the 2D situation analogous to Fig-
ure 1. Here, we assume that all stars
have distances to the black hole that
are much larger than the observer’s
distance to the black hole so that we
can put the stars at infinity to reduce
the positional information to a single
angle. Then, in a preprocessing step,
we can generate a 2D lookup table that
stores for each observer position 7y, €
[, 7imax] and each star position ¢, €
[0, 27) the corresponding angular di-
rections & and & for the primary and
secondary apparent directions. (Here,
we could also store higher-order appar-
ent directions. But, because of the grav-
itational lensing effect, the apparent
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luminosity of higher-order images
strongly decreases.)

For this example of the stellar sky’s
distortion by a black hole, we illustrate
how point-based visualization can be
efficiently implemented on graphics
hardware. We assume that the reader
is familiar with the terminology from
GPUs as briefly reviewed in our previ-
ous article on special-relativistic visu-
alization.! As input for the algorithm,
we store the 2D lookup table in a 2D
texture. Each star is assigned a 2D ver-
tex (point) with spherical coordinates
(right ascension and declination) and
two additional attributes: its apparent
magnitude (observed scaled flux den-
sity) and effective color temperature.

In the first render pass, the vertex
program calculates the effective angle
Ostar Of a star from its right ascension
and declination and, by means of the
lookup table, determines the apparent
angle & with respect to the observer’s
local reference frame. (The apparent
star is located on the plane spanned
by the direction to the black hole and
the direction to the star,) The star’s
apparent magnitude, which is modi-
fied by the gravitational lensing effect
and the observer’s current velocity, is
mapped to the size of the vertex. The
frequency shift due to the observer’s
motion and gravitation determines
the star’s apparent color temperature.
After the rasterizer, the fragment pro-
gram maps the color temperature to a
predefined color table and smears the
point to a Fraunhofer diffraction pat-
tern caused by the finite aperture of a
telescope. In the second render pass,
the higher-order images of the stars
are drawn.

The points-based visualization
technique can also be applied to
expanded objects defined in a lo-
cal reference frame in highly com-
plex spacetimes, such as the Godel
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Figure 8. Projection and rasterization. (a) Constellation Orion distorted by the
curved spacetime of a black hole indicated by the dashed circle. Stars appear twice
because of light rays that pass the black hole to the left and to the right. The rings
around the stars simulate the Fraunhofer diffraction due to the finite telescope
aperture. The star database is taken from the Hipparcos catalogue (1/239), which
can be found at http://cdsarc.u-strasbg.fr/viz-bin/Cat?1/239. (b) Constellation
Orion (a: Betelgeuse, 3: Rigel, 7y: Bellatrix, 6: Mintaka, €: Alnilam, (: Alnitak,

K: Saiph) given in undistorted equatorial coordinates (ra: right ascension, dec:

declination).

universe as done by Frank Grave
and his colleagues."”

Field-Based Data
Visualization

The techniques we’ve described are
usually applied to spacetimes that
can be described mathematically in
closed form. However, realistic astro-
physical scenarios of interest—such
as the merger of two rotating black
holes—can be handled only by exten-
sive numerical simulation.

Thomas Baumgarte and Stuart
Shapiro provide a detailed introduc-
tion to numerical relativity."* Much
research in numerical relativity deals
with possible shapes of gravitational
waves induced by, for example, col-
lapsing stars, oscillating neutron
stars, or black hole mergers. For that,
the numerical calculations often use
grid-based techniques. In particular,
adaptive mesh refinement techniques,
known also from computational fluid
dynamics, are heavily used to meet
the concerns of the very different
strengths of curvature in the respec-
tive domains. In general, scientific
visualization supports the visual
analysis and communication of grid-
based data from the physical sciences.

Therefore, classical scientific visu-
alization techniques—such as color-
coding techniques, isosurface render-
ing, volume visualization, and glyph
representations—work for simulation
data from general relativity.

In the Visualization Handbook,
Charles Hansen and Chris Johnson
provide a comprehensive overview
of scientific visualization’s methods,
software systems, and applications.”’
One issue specific to general relativity
is that the visualization results shown
should be physically relevant. Here,
the dependency of numerical data on
the chosen coordinate system or ref-
erence frame plays an important role.
Because general relativity is usually
described in the tensor formalism,
relevant information is commonly ex-
tracted in the form of tensor fields or
in derived vector or scalar fields. This
kind of field data is then handed over
to the visualization system.

As an example, Figure 9 shows
isosurfaces of the Newman-Penrose
curvature scalar ¥, for a simulation
of gravitational waves produced by
the merger of two black holes. For ex-
amples of tensor visualization, we re-
ter to the work of Werner Benger and
Hans-Christian Hege,'® who discuss
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the direct visualization of the
metric tensor for the static
Schwarzschild or the rotating
Kerr spacetime using tensor
ellipsoids and tensor splats.

ue to general relativ-

ity’s complexity, there’s
a wide range of visualization
techniques, each specializing
in certain facets of curved
spacetime. Diagrams for general
relativity are often manually
drawn with generic graphics
software or generated by basic
plotting tools; they’re used for
visual explanation in textbooks
or other examples of the didac-
tics of physics. Advanced dia-
gram techniques—such as the

Figure 9. An image based on simulations of the

gravitational waves produced by the merger of two

black holes in full numerical relativity.!”” The black
holes are represented by colored “’balls” (actually
the so-called apparent horizons), where the color
indicates the local Gauss curvature. The wavy
features are iso-surfaces based on the Newman-
Penrose scalar ¥4, which is an indicator for the
emitted gravitational energy. — Image courtesy
of Werner Benger (MPI for Gravitational Physics,
Zuse Institute Berlin, Center for Computation &
Technology at Louisiana State University), 2001.

Penrose-Carter diagram—are
used by relativity experts to vi-
sualize a spacetime’s causal structure.

In contrast to the abstraction of di-
agrams, the general-relativistic first-
person visualization provides a more
immersive view. We, as beholder, take
part in a visual experiment by being
included as direct observer of the
physical scenario. Such visual experi-
ment is conceptually simple and there-
fore especially useful in the context
of teaching, visual communication
to non-experts, museum exhibitions,
and so on. First-person visualiza-
tion comes with high computational
costs for rendering scenes in 4D space-
time, such as in applying general-
relativistic ray tracing or projection
methods.

Finally, for simulation data from
numerical relativity, it’s possible to
use standard methods and software
systems for scientific visualization, as
long as the data is provided in process-
able form, such as a tensor, vector, or
scalar field. S
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WEB RESOURCES

ollowing are lists of resources that we’ve found particu-
larly relevant.

General-Relativistic Visualization

The Web offers several useful resources for general-
relativistic visualization:

e Field-based data visualizations for general relativistic situ-
ations, such as binary systems or gravitational collapses,
are provided by the Numerical Relativity Group (http://
numrel.aei.mpg.de) at the Albert Einstein Institute in
Golm, Germany.

e The Visualization in Special and General Relativity
website (www.vis.uni-stuttgart.de/relativity), which
we maintain at the University of Stuttgart, Germany,
provides several interactive applications, including the
GeodesicViewer for detailed explorations of lightlike and
timelike geodesics.

e Space Time Travel (www.spacetimetravel.org), main-
tained by Ute Kraus and Corvin Zahn at the University of
Hildesheim, Germany, includes many images and videos
of black hole and wormhole visualizations. In particular,
this site features many didactics papers that explain
special relativity.

* Robert Nemiroff, Michigan Technological University
and NASA Goddard, offers movies that show the visual
distortion effects near a black hole and neutron stars

(http://apod.nasa.gov/htmltest/rjn_bht.html) and also
provides an accompanying paper.'

e Andrew Hamilton, University of Colorado at Boulder,
provides movies that show the inside of a black hole
(http://jila.colorado.edu/~ajsh/insidebh/index.html).

e Leo Brewin, Monash University, Australia, offers relativity
movies (http://users.monash.edu.au/~leo/research/movies/
index.html).

Astrophysics Resources

Additional resources on astrophysics are available on the
following Web pages:

e The Hubble Space Telescope Web page by ESA (www.
spacetelescope.org) includes pictures and illustrative
movies of gravitational lensing in action.

e NASA offers an illustration of the Cygnus X-1 system
(http://apod.nasa.gov/apod/ap080811.html).

e More detailed information on the binary system Cygnus
X-1 is available in many places, including in the paper by
Saida Caballero-Nieves and her colleagues.?
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